亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類單位圓上單葉正則函數(shù)的分類

        2016-01-28 01:43:08李小光

        李小光

        (西安航空學(xué)院理學(xué)院, 陜西 西安 710077)

        ?

        一類單位圓上單葉正則函數(shù)的分類

        李小光

        (西安航空學(xué)院理學(xué)院, 陜西 西安 710077)

        摘要:為研究單位圓上單葉正則函數(shù)的性質(zhì)。運(yùn)用單葉解析法得到零點(diǎn)處函數(shù)值等于零、導(dǎo)數(shù)值等于1的函數(shù)具有的一些重要性質(zhì),給出這些性質(zhì)的分類,分別是:冪級數(shù)展式的系數(shù)估計(jì)、模的估計(jì)、像區(qū)域范圍的估計(jì)。單葉正則函數(shù)的性質(zhì)及其分類是研究復(fù)變函數(shù)幾何理論的基礎(chǔ),對復(fù)變函數(shù)基礎(chǔ)性研究具有一定的現(xiàn)實(shí)意義。

        關(guān)鍵詞:單葉解析; 系數(shù)估計(jì); 模的估計(jì); 像區(qū)域范圍的估計(jì)

        定義1 令n=1,2,…,對于k=1,2,…,n,稱

        τk(t)=

        (1)

        為deBranges函數(shù)[1]。其中(a)v是a(a+1)…(a+v-1)的縮寫。

        如果令τk+1(t)≡0,則有

        (2)

        還可以得到[1]

        τk(0)=n+1-k

        (3)

        τ′(t)<0, 0

        (4)

        (5)

        1系數(shù)的估計(jì)

        |cn|≤n, (n=1,2,…)

        (6)

        |c2|≤2

        (7)

        (8)

        證明設(shè)圓周|z|=ρ<1由w=f(z)=

        (n=1,2,…)

        (9)

        f(z,t)=etz+…(z∈D), 0≤t<+∞

        (10)

        使f(z,0)=f(z),且

        (11)

        其中χ(t)在0≤t+∞連續(xù),且|χ(t)|=1。

        適合f(D)/J的函數(shù)f在S中就D內(nèi)局部一致收斂來說是稠密的,因此僅需對這些函數(shù)證明式(9)。

        (12)

        (13)

        記b0(t)=0,

        (14)

        由式(14)得

        (15)

        令n=1,2,…固定,考慮

        t<+∞)

        (16)

        其中τk(t)是deBranges函數(shù)。

        2模的估計(jì)[6-8]

        記z=reiθ,則上述不等式可寫為

        (17)

        又因?yàn)閘nf′(z)=[|lnf′(z)|+iargf′(z)][3]

        (18)

        (19)

        由式(17)-(18),可得到下列定理

        定理6(變形定理)設(shè)f(z)在|(z)|<1上單葉解析,f(0)=0,f′(0)=1,則

        (20)

        (21)

        (22)

        同理在式(18)兩邊從0到r積分得

        (23)

        沿著直線從0到z對式(11)的右邊積分

        考慮圓周|z|=r上的像點(diǎn)w,將w=0與w以直線段連接,這條直線段的原像是L,則

        綜合以上積分得到

        (24)

        3像區(qū)域范圍的估計(jì)

        定理7 (面積掩蔽定理)[10]設(shè)函數(shù)f(z)=

        證明如果點(diǎn)c不在w=f(z)的像區(qū)域B內(nèi),則函數(shù)

        推論1[11]如果f(z)在|z|<1上單葉解析,f(0)=0,在圓|z|<1上不取數(shù)值c,則f′(0)≤4c。

        參考文獻(xiàn):

        [1]Imai Y, Iseki K.On axiom systems of propositional calculi xiv[J].Proc.Japan A cademy,1966,(42):19-22.

        [2]Borzooei R A,HasanKhani A,Zahedi M M.On hyper k-algebras[J].Mathematicae Japonicae,2000,52(1):113-121.

        [3]Borzooei R A ,Harizavi H .Regular Congruence relations on hyper Bck-algebras[J].Scientiae Mathematicae Japonicae,2005,61(1):83-97.

        [4]Bakhshi M, Borzooei R A. Lattice structures on fuzzy congruence relations of a hypergrouoid [J]. Information Science,2007,177(16):3305-3313.

        [5]Borzooei R A,Zahedi M M.(Anti) fuzzy positive implicative hyper k-ideals[J].Italian J. Pure and Appl.Math,2003,(14):9-22.

        [6]王國俊. 非經(jīng)典數(shù)理邏輯與近似推理[M].北京:科學(xué)出版社,2000.

        [7]吳忘名.Fuzzy蘊(yùn)含代數(shù)[J].模糊系統(tǒng)與數(shù)學(xué),1990,4(1):56-63.

        [8]謝云鵬. 基于包含度的模糊不定性度量[D].西北大學(xué),2008:18-28.

        [9]姚炳學(xué).群和環(huán)上的模糊理論[M].北京:科學(xué)出版社,2007:84-88.

        [10]戈魯辛.復(fù)變函數(shù)的幾何理論[M].北京:科學(xué)出版社,1956.

        [11]鐘玉泉.復(fù)變函數(shù)[M].北京:高等教育出版社,2003.

        Classification of a Class of Univalent Regular Functions on the Unit Circle

        LI Xiao-guang

        (College of Science, Xi'an Aviation College, Xi'an, Shaanxi 710077,China)

        Abstract:In this paper, the properties of univalent regular functions on the unit circle are studied. Through univalent analytical method, some important properties are introduced when some properties classification are given, these properties are the coefficients estimation of expansion of power series, the estimation of model and the estimation of the domain of image. Properties and classification of univalent regular function is the basis of geometric theory of function of complex variable, which has practical significance to the study of function of a complex variable.

        Key words:univalent analysis; the coefficients estimation; the estimation of model; the estimation of the domain of image

        中圖分類號:O175.14

        文獻(xiàn)標(biāo)識碼:A

        文章編號:1671-9131(2015)04-0012-04

        作者簡介:李小光(1973-),女,遼寧鐵嶺人,副教授,從事代數(shù)學(xué)及信息論方面的研究。

        亚洲性色av一区二区三区| 亚洲av色香蕉一区二区蜜桃| 国内国外日产一区二区| 亚洲中文字幕人妻av在线| 国产精品无码一区二区在线看| 亚洲人免费| 日本午夜理伦三级好看| 亚洲伊人av天堂有码在线| 久久精品夜色国产亚洲av| 亚洲 欧美 综合 另类 中字| 国产美女自拍国语对白| 国产91久久麻豆黄片| 帮老师解开蕾丝奶罩吸乳网站| 国产精品久免费的黄网站| 人成视频在线观看免费播放| av男人的天堂亚洲综合网| 人人妻人人爽人人澡欧美一区| 91视频免费国产成人| 久久久成人av毛片免费观看| 大桥未久av一区二区三区| 日本50岁丰满熟妇xxxx| 久久精品国产亚洲黑森林| 国产成人av三级三级三级在线 | 午夜视频在线瓜伦| 俄罗斯老熟妇色xxxx| 久久精品爱国产免费久久| 日本办公室三级在线观看| 五月天中文字幕mv在线| 男人扒开女人双腿猛进女人机机里| 情色视频在线观看一区二区三区| 国产精品高清视亚洲乱码| 久久国产精品久久久久久| 午夜a福利| 中文字幕人乱码中文字幕乱码在线| 久久精品国产自在天天线| 暖暖免费 高清 日本社区在线观看 | 国产久色在线拍揄自揄拍| 亚洲成在人线av品善网好看| 久久青草免费视频| 在线久草视频免费播放 | 日日摸日日碰夜夜爽无码|