?
近紅外光譜技術(shù)監(jiān)測(cè)局部腦氧飽和度在外科手術(shù)中的應(yīng)用進(jìn)展
黃昕,劉詩(shī)煜 綜述,朱俊超*審校
(中國(guó)醫(yī)科大學(xué)附屬盛京醫(yī)院 麻醉科,遼寧 沈陽(yáng)110004)
近紅外光譜技術(shù)(NIRS)是在70年代作為無創(chuàng)監(jiān)測(cè)生物組織氧合而引進(jìn)的一項(xiàng)技術(shù)[1]。目前應(yīng)用近紅外光譜技術(shù)測(cè)得的腦氧飽和度(rSO2)在臨床應(yīng)用比較廣泛。這一技術(shù)起初是用來檢測(cè)心臟手術(shù)患者的局部腦氧飽和度,近年來已經(jīng)應(yīng)用于各種手術(shù)。腦氧飽和度的測(cè)量可以準(zhǔn)確評(píng)價(jià)腦的缺氧、缺血損傷導(dǎo)致腦氧供需失衡。研究表明,術(shù)中腦氧飽和度波動(dòng)在基礎(chǔ)值的10%-20%能夠減少術(shù)后并發(fā)癥的發(fā)生[2]。因此持續(xù)實(shí)時(shí)監(jiān)測(cè)術(shù)中腦氧和度的變化可以指導(dǎo)臨床麻醉術(shù)中用藥,為臨床治療以及改善患者預(yù)后提供重要信息[3]。本文就近紅外光譜技術(shù)基本原理以及腦氧飽和度在臨床各種手術(shù)中的應(yīng)用作以論述。
1近紅外光譜技術(shù)基本原理
NIRS監(jiān)測(cè)技術(shù)在1977年由Franz Jobsis首先提出[4]。這一技術(shù)是基于生物組織對(duì)近紅外光譜(700-1 000 nm波長(zhǎng))的通透性以及對(duì)于發(fā)色基團(tuán)包括血紅蛋白,肌紅蛋白,細(xì)胞色素aa3的不同的吸收光波來實(shí)現(xiàn)的持續(xù)無創(chuàng)監(jiān)測(cè)活體組織的氧合作用。由于我們需要準(zhǔn)確測(cè)量氧合血紅蛋白和脫氧血紅蛋白的這兩個(gè)發(fā)色基團(tuán)的含量。所以臨床使用的NIRS選擇了波長(zhǎng)在700 nm和850 nm之間的近紅外光波。因?yàn)橥ǔ2ㄩL(zhǎng)在700-850 nm范圍內(nèi)時(shí),可最大程度的區(qū)分氧合血紅蛋白和脫氧血紅蛋白含量[5],并且此時(shí)水和細(xì)胞色素對(duì)光的吸收與血紅蛋白相比可忽略不計(jì)[6]。
在理想的狀態(tài)下,在發(fā)光原和探測(cè)光原之間,發(fā)色基團(tuán)的吸收作用是光衰減的唯一原因。在一定的光波范圍內(nèi)光的衰減可以通過Beer-Lamber Law 描述[7]。這一定律陳述光的衰減是直接與以下三個(gè)變量成正比:與發(fā)色光團(tuán)的濃度、從光源到探測(cè)光源之間運(yùn)行里程、以及發(fā)色光的比消光系數(shù)。在這個(gè)假設(shè)的狀態(tài)下,發(fā)色光團(tuán)的濃度可以用通過發(fā)色光相關(guān)的光源測(cè)定分離法和相關(guān)吸收系數(shù)的知識(shí)精確的計(jì)算出來。然而,光存在散射作用并且生物組織具有更復(fù)雜的狀況。雖然發(fā)色基團(tuán)的濃度與光的吸收明顯相關(guān),但是在大多數(shù)生物組織中包括成人的大腦,光的散射是衰減的主要原因。首先,不是所有的光都能到達(dá)探測(cè)器,因?yàn)橛幸恍┕鈴奶綔y(cè)器散射開來,導(dǎo)致散射損失。其次,一些光到達(dá)探測(cè)器之前會(huì)散射很多次,因此光將會(huì)走行比實(shí)際光源探測(cè)到的距離更遠(yuǎn)的距離[8]。因此,由于光存在散射作用,臨床用的NIRS使用改良后的比爾一郎伯定律對(duì)腦氧飽和度進(jìn)行測(cè)定:A=log(I0/I)=a·c·DPF+G,其中A:光密度,I0:入射光強(qiáng)度,I:反射光強(qiáng)度,d:色基吸收系數(shù),c:色基濃度,d:光穿過物質(zhì)的路徑長(zhǎng)度,DPF:為波長(zhǎng)系數(shù),G:為測(cè)量的組織類型和幾何學(xué)系統(tǒng)。根據(jù)HbO2和Hb相對(duì)若干個(gè)波長(zhǎng)吸收的結(jié)果可以計(jì)算出他們的相對(duì)濃度。HbO2saturation=[HbO2]/([Hb]+[HbO2])該血紅蛋白氧飽和度代表探測(cè)區(qū)腦內(nèi)HbO2和總血紅蛋白之比[9]。由于大腦組織中存在大量動(dòng)靜脈血管,而靜脈比率約為75%,動(dòng)脈約為20%,毛細(xì)血管約為5%:因此,我們測(cè)到的局部腦氧飽和度主要反應(yīng)靜脈部分。由于NIRS監(jiān)測(cè)腦氧飽和度技術(shù)具有簡(jiǎn)單,靈敏,無創(chuàng),能夠?qū)崟r(shí)監(jiān)測(cè)腦氧的變化等優(yōu)點(diǎn),目前術(shù)中監(jiān)測(cè)腦氧飽和度越來越受臨床工作者的歡迎,并且得以廣泛應(yīng)用。
2腦氧飽和度的監(jiān)測(cè)在心臟外科手術(shù)中的應(yīng)用
研究顯示在心肺轉(zhuǎn)流術(shù),瓣膜手術(shù),或者主動(dòng)脈弓修復(fù)術(shù)中,監(jiān)測(cè)局部腦氧飽和度可以被用來提示動(dòng)靜脈插管的對(duì)位是否準(zhǔn)確,有助于于術(shù)中及時(shí)調(diào)整與矯正[10,11]。另外還有研究顯示在心臟外科手術(shù)中腦氧飽和度的下降還與中風(fēng),以及術(shù)后Ⅰ型或Ⅱ型神經(jīng)神經(jīng)受損有關(guān)[12]。Edmonds[13]報(bào)道了一個(gè)用腦氧飽和度監(jiān)測(cè)322例患者進(jìn)行冠狀動(dòng)脈旁路移植術(shù)的回顧性研究。在這篇文章中,42%的患者發(fā)生過腦氧飽和度的下降超過基線值的20%。其結(jié)果顯示Ⅰ型和Ⅱ型神經(jīng)損傷的發(fā)生率與腦氧飽和度下降有關(guān)。發(fā)生神經(jīng)損傷的患者的術(shù)中最低腦氧飽和度要比沒有發(fā)生神經(jīng)損傷的患者低。Roach等[14]也證明了這一觀點(diǎn)。另有很多研究顯示,腦氧飽和度的急性下降與術(shù)后認(rèn)知功能障礙有關(guān)。Nollert等[15]和Yao等[16]發(fā)現(xiàn)低腦氧飽和度與術(shù)后認(rèn)知功能評(píng)分具有相關(guān)性。雖然多數(shù)研究發(fā)現(xiàn)低腦氧飽和度與術(shù)后認(rèn)知功能障礙的發(fā)生率有相關(guān)性,也有學(xué)者提出相反的觀點(diǎn),如Negargar等[17]通過研究冠狀動(dòng)脈搭橋手術(shù)對(duì)進(jìn)行心肺轉(zhuǎn)流術(shù)以及非心肺轉(zhuǎn)流術(shù),發(fā)現(xiàn)腦氧飽和度的測(cè)定并不能準(zhǔn)確的預(yù)測(cè)術(shù)后認(rèn)知功能障礙的發(fā)生率。Hong等[18]也在心臟瓣膜手術(shù)中發(fā)現(xiàn)腦氧飽和度與POCD的發(fā)生并沒有相關(guān)性。因此在心臟手術(shù)中腦氧飽和度的數(shù)值與POCD的發(fā)生是否具有相關(guān)性目前觀點(diǎn)還不完全統(tǒng)一。
3腦氧飽和度的監(jiān)測(cè)在非心臟外科手術(shù)中的應(yīng)用
3.1胸外科手術(shù)中的應(yīng)用
胸外科手術(shù)過程中經(jīng)常會(huì)采用單肺通氣,但是由于單肺通氣時(shí)會(huì)產(chǎn)生肺內(nèi)分流,所以氧合就會(huì)發(fā)生變化。Tobias等[19]在開胸手術(shù)或者胸腔鏡手術(shù)中,觀察到約有一半的患者呈現(xiàn)出術(shù)中至少一次腦氧飽和度在基線值的80%以下,并且Hemmerling、Kazan、Tang等[20-22]發(fā)現(xiàn)術(shù)中在單肺通氣期間75%的患者腦氧飽和度降低至少20%。Tobias等[19]還在開胸手術(shù)中發(fā)現(xiàn)腦氧飽和度降低的危險(xiǎn)因素包括年齡,體重,ASA分級(jí)在Ⅲ級(jí)以上的患者。并且進(jìn)一步發(fā)現(xiàn)腦氧飽和度值小于65%的暴露時(shí)間與術(shù)后認(rèn)知功能障礙的發(fā)生相關(guān),這一研究是通過MMSE評(píng)分評(píng)估的認(rèn)術(shù)前和術(shù)后認(rèn)知功能障礙的發(fā)生,并且當(dāng)評(píng)分比基線值減小2分記為POCD[22]。
3.2腦氧飽和度的監(jiān)測(cè)在骨科手術(shù)中的應(yīng)用
3.2.1肩關(guān)節(jié)手術(shù)
進(jìn)行肩部手術(shù)的患者常常采用沙灘椅體位,這一體位由于具有腦缺血的風(fēng)險(xiǎn),所以很可能會(huì)產(chǎn)生不利的神經(jīng)系統(tǒng)癥狀。Murphy等[23]研究發(fā)現(xiàn)肩關(guān)節(jié)鏡手術(shù)中,相比于側(cè)臥位的體位,當(dāng)患者取沙灘椅體位時(shí)腦氧飽和度就會(huì)下降,并且在沙灘椅體位中發(fā)生腦氧飽和度低于55%的患者例數(shù)較多。Fischer等[24-32]也同樣發(fā)現(xiàn)了這一現(xiàn)象。另外Lee等[26]發(fā)現(xiàn)腦氧飽和度的降低與平均動(dòng)脈壓的降低是相伴隨的,并且平均動(dòng)脈壓的升高能夠升高腦氧飽和度。通過研究肩關(guān)節(jié)手術(shù)患者發(fā)現(xiàn)諸多因素能夠影響腦氧飽和度,其中a1激動(dòng)劑,去氧腎上腺素也能夠增加平均動(dòng)脈壓進(jìn)而增加腦氧飽和度[24]。Jeong等[28]通過對(duì)肩關(guān)節(jié)手術(shù)研究發(fā)現(xiàn),吸入麻醉藥與靜脈麻醉藥對(duì)腦氧飽和度會(huì)有不同影響影響。在沙灘椅體位的患者中行七氟醚麻醉比丙泊酚麻醉具有更高的頸內(nèi)靜脈氧飽和度和腦氧飽和度,并且腦氧飽和度和頸靜脈氧飽和度具有相關(guān)性。作者得出結(jié)論是控制相同的BIS深度下,相比于丙泊酚,在沙灘椅體位患者中應(yīng)用七氟醚是更好的選擇。
3.2.2其他關(guān)節(jié)鏡手術(shù)
Han等[33]進(jìn)行了前瞻性的隨機(jī)研究,來比較大型關(guān)節(jié)鏡手術(shù)中在急性等容血液稀釋下或者在急性等容稀釋以及控制性降壓的混合條件下腦氧飽和度的變化。研究發(fā)現(xiàn)大型關(guān)節(jié)鏡手術(shù)(臀部手術(shù))能夠使腦氧飽和度相比于基線值的減少10%,通過應(yīng)用艾司洛爾產(chǎn)生低血壓后,也會(huì)使腦氧飽和度會(huì)變的更低。在髖骨骨折手術(shù)中Papadopoulos等[34]發(fā)現(xiàn)38%的患者中會(huì)出血腦氧飽和度小于50或者小于基線值的75%,并且Yoshitani[35]發(fā)現(xiàn)在髖骨骨折手術(shù)中,無論應(yīng)用丙泊酚或者七氟醚都會(huì)使腦氧飽和度下降。
3.3腦氧飽和度的監(jiān)測(cè)在泌尿外科手術(shù)中的應(yīng)用
泌尿外科手術(shù)中,前列腺切除術(shù)常需要建立氣腹并取頭低腳高位,這就會(huì)使顱內(nèi)壓增加以及腦血流增加。Park等[36]研究報(bào)道,通過腦氧飽和度來評(píng)估在頭低腳高位傾斜30度的條件下,建立氣腹對(duì)氧合的影響。此研究發(fā)現(xiàn)在頭低腳高位的狀態(tài)下,建立氣腹期間腦氧飽和度會(huì)增加。通過腦氧飽和度的增加可以說明腦的氧合也會(huì)輕度增加,提示在這種手術(shù)期間,此操作并不會(huì)增加腦缺血風(fēng)險(xiǎn)。此項(xiàng)研究顯示患者頭低腳高位進(jìn)行前列腺切除術(shù)時(shí)腦氧飽和度會(huì)升高。另Kalmar[37]也在前列腺切除術(shù)中發(fā)現(xiàn),術(shù)中采取40度的頭低腳高位狀態(tài)下,建立氣腹,腦氧飽和度會(huì)升高的相似的結(jié)論。
3.4腦氧飽和度的監(jiān)測(cè)在婦產(chǎn)科手術(shù)中的應(yīng)用
Fassoulaki等[38]在婦產(chǎn)科采取全麻腹腔鏡手術(shù)中研究了七氟醚和地氟醚在不同的麻醉深度下對(duì)于局部腦氧飽和度的影響,發(fā)現(xiàn)在控制相同的麻醉深度下BIS取40-50以及20-30時(shí),七氟醚和地氟醚對(duì)腦氧飽和度數(shù)值差異不大,但當(dāng)BIS在20-30之間,較深的麻醉狀態(tài)下,這兩種吸入麻醉藥都可以增加腦氧飽和度數(shù)值。由于在婦產(chǎn)科手術(shù)中,腰硬聯(lián)合阻滯麻醉應(yīng)用范圍很廣,并且此種麻醉方式下,術(shù)中患者低血壓很常見,Berlac等[39]應(yīng)用了近紅外光譜技術(shù)來探討患者氧合狀態(tài)是否與低血壓相關(guān),發(fā)現(xiàn)腦氧合減少5%就與低血壓的形成相關(guān)。Kondo等[40]發(fā)現(xiàn)在采用腰硬聯(lián)合阻滯麻醉的患者中,應(yīng)用高比重的布比卡因,較等比重的布比卡因更能夠減少氧合血紅蛋白濃度。Lee[41]在婦產(chǎn)科腹腔鏡手術(shù)中對(duì)24位女性患者研究發(fā)現(xiàn),患者術(shù)中采取頭低腳高位的腦氧飽和度會(huì)下降,并且發(fā)現(xiàn)術(shù)中腦氧飽和度減少到50%以下,術(shù)后會(huì)出現(xiàn)頭痛。
3.5腦氧飽和度的監(jiān)測(cè)在腹部手術(shù)中的應(yīng)用
Green等[42]對(duì)行大型腹部手術(shù)的老年患者進(jìn)行了一個(gè)有關(guān)腦氧飽和度變化的回顧性研究發(fā)現(xiàn),一共46例患者中有11例患者術(shù)中腦氧飽和度降幅超過了20%,這其中六例患者腦氧的下降與術(shù)中出血密切相關(guān)。在這46例患者中,23例患者術(shù)中發(fā)生過腦氧飽和度最大降幅超過15%的情況。這一研究表明,腦氧飽和度的下降與失血量明顯相關(guān)。盡管保證患者的收縮壓在正常范圍內(nèi),腦氧飽和度的下降似乎只能依靠輸血來糾正。雖然腦氧飽和度的下降在大型手術(shù)中尤其是與失血相關(guān)的手術(shù)中是很常見的,但腦氧飽和度的下降可以通過輸血得以糾正。大多數(shù)情況下,如果我們采用常規(guī)的監(jiān)測(cè)手段,很難發(fā)現(xiàn)這一變化。由于術(shù)中監(jiān)測(cè)腦氧飽和度是無創(chuàng)的,并且能夠?qū)崟r(shí)監(jiān)測(cè)患者的腦血供狀態(tài),便于術(shù)中及時(shí)調(diào)整,因此在大型術(shù)中應(yīng)用是很有必要的。
4腦氧飽和度的影響因素
腦氧飽和度受諸多因素影響其中包括年齡(患者年齡越大,腦氧飽和度越低),血紅蛋白濃度(Hb),(Hb降低,腦氧飽和度降低)、動(dòng)脈血氧飽和度、呼吸末二氧化碳濃度(EtCO2增高,高腦氧飽和度降低)[43],另有學(xué)者研究發(fā)現(xiàn)與吸氧濃度等、動(dòng)脈血pH、體溫以及脈搏血氧飽和度等都會(huì)影響rSO2監(jiān)測(cè)結(jié)果44。Kishi K等[45]研究發(fā)現(xiàn)腦氧飽和度與探頭放置的位置、Andersen JD等[46]發(fā)現(xiàn)俯臥位時(shí)頭顱旋轉(zhuǎn)的角度,以及Moerman,A.T.等[47]研究發(fā)現(xiàn)患者手術(shù)時(shí)的沙灘椅體位等也會(huì)影響腦氧飽和度的數(shù)值。腦氧飽和度由于通過近紅外光譜測(cè)得,所以腦氧飽和度還與光學(xué)路徑長(zhǎng)度相關(guān)的因素的影響[43],如血紅蛋白濃度,差分路徑長(zhǎng)度的因素,顱骨厚度(t-skull),和模具的腦脊液層面積(a-csfl)等[45,48],都會(huì)影響腦氧飽和度的數(shù)值。
綜上所述,NIRS監(jiān)測(cè)rSO2分析技術(shù)在外科手術(shù)中已經(jīng)得以廣泛應(yīng)用,能夠?qū)崟r(shí)、準(zhǔn)確、無創(chuàng)地反映腦組織的氧合情況及腦血流動(dòng)力學(xué)的變化,為預(yù)防圍術(shù)期腦缺血等不良事件提供有力的監(jiān)測(cè)保障;對(duì)于降低術(shù)后并發(fā)癥以及縮短術(shù)后住院時(shí)間也起著至關(guān)重要的作用。因此,NIRS監(jiān)測(cè)rSO2分析技術(shù)的臨床應(yīng)用具有廣泛前景。
參考文獻(xiàn):
[1]Terri Marin,James Moore.Understanding Near-Infrared Spectroscopy[J].Advances in Neonatal Care,2011,11(6):382.
[2]Heena Bidd,Audrey Tan,David Green.Using bispectral index and cerebral oximetry to guide hemodynamic therapy in high-risk surgical patients[J].Perioperative Medicine,2013,2:18.
[3]Green D,Paklet L.Latest developments in peri-operative monitoring of the high-risk major surgery patient[J].Int J Surg,2010,8(2):90.
[4]Jobsis FF.Noninvasive,infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J].Science,1977,198(4323):1264.
[5]Beena G.Sood,Kathleen McLaughl,Josef Cortez.Near-infrared spectroscopy:Applications in neonates[J].Seminars in Fetal & Neonatal Medicine,2015,20(3):164.
[6]李增勇,代世勛,張小印,等.駕駛員疲勞態(tài)下腦氧飽和度的近紅外光譜法檢測(cè)及其分析[J].光譜學(xué)與光譜分析,2010,30(1):58.
[7]Pellicer A.Bravo Mdel C.Nearqnfrared spectroscopy:a methodology—focused review[J].Semin Fetal Neonatal Med,2011,16(1):4249.
[8]Arnab Ghosh,MBChB,BSc Hons,et al.Cerebral Near-Infrared Spectroscopy in Adults:A Work in Progress[J].Neuroscience in Anesthesiology and Perioperative Medicine,2012,115(6):1373.
[9]唐羚珊,石翊颯.近紅外光譜技術(shù)與局部腦氧飽和度[J].國(guó)際麻醉學(xué)與復(fù)蘇雜志,2013,34(10):914.
[10]Aono M,Sata J,Nishino T Masui.Regional cerebral oxygen saturation as a monitor of cerebral oxygenation and perfusion during deep hypothermic circulatory arrest and selective cerebral perfusion[J].1998,47(3):335.
[11]Janelle GM,Mnookin S,Gravenstein N,et al.Unilateral cerebral oxygen desaturation during emergent repair of a DeBakey type 1 aortic dissection:potential aversion of a major catastrophe.Anesthesiology,2002,96(5):1263.
[12]Goldman S,Sutter F,Ferdinand F,et al.Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients[J].Heart Surg Forum,2004,7(5):376.
[13]Edmonds HL Jr.Protective effect of neuromonitoring during cardiac surgery[J].Ann N Y Acad Sci,2005,1053:12.
[14]Roach GW,Kanchuger M,Mangano CM,et al.Adverse cerebral outcomes after coronary bypass surgery.Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators[J].N Engl J Med,1996,335(25):1857.
[15]Nollert G,Mhnle P,Tassani-Prell P,et al.Postoperative neuropsychological dysfunction and cerebral oxygenation during cardiac surgery[J].Thorac Cardiovasc Sur,1995,43(5):260.
[16]Yao FS,Tseng CC,Ho CY,et al.Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery[J].J Cardiothorac Vasc Anesth,2004,18(5):552.
[17]Negargar S,Mahmoudpour A,Taheri R,et al.The relationship between cerebral oxygen saturation changes and postopoerative neurologic complications in patients undergoing cardiac surgery[J].Pak J Med Sci,2007,23(3):380.
[18]Hong SW,Shim JK,Choi YS,et al.Prediction of cognitive dysfunction and patients’ outcome following valvular heart surgery and the role of cerebral oximetry[J].Eur J Cardiothorac Surg,2008,33(4):560.
[19]Tobias JD,Johnson GA,Rehman S,et al.Cerebral oxygenation monitoring using near infrared spectroscopy during one lung ventilation in adults[J].J Minim Access Surg,2008,4(4):104.
[20]Hemmerling TM,Bluteau MC.Significant decreaseofcerebraloxygensaturationduringsingle-lungventilationmeasured using absolute oximetry[J].Br J Anaesth,2008,101(6):870.
[21]Kazan R,Bracco D,Hemmerling TM.Reduced cerebraloxygen saturation measured by absolute cerebral oximetry during thoracic surgery correlates with postoperative complications[J].Br J Anaesth,2009,103(6):811.
[22]Tang L,Kazan R,Taddei R,et al.Reduced cerebral oxygen saturation during thoracic surgery predicts early postoperative cognitive dysfunction[J].Br J Anaesth,2012,108(4):623.
[23]Murphy GS,Szokol JW,Marymont JH,et al.Cerebral oxygen desaturation events assessed by near-infrared spectroscopy during shoulder arthroscopy in the beach chair and lateral decubitus positions[J].Anesth Analg,2010,111(2):496.
[24]Fischer GW,Torrillo TM,Weiner MM,et al.A The use of cerebral oximetry as a monitor of the adequacy of cerebral perfusion in a patient undergoing shoulder surgery in the beach chair position[J].Pain Prac,2009,9(4):304.
[25]Dippmann C,Winge S,Nielsen HB.Severe cerebral desaturation during shoulder arthroscopy in the beach-chair position[J].Arthroscopy,2010,26(9):148.
[26]Lee JH,Min KT,Chun YM,et al.Effects of beach-chair position and induced hypotension on cerebral oxygen saturation in patients undergoing arthroscopic shoulder surgery[J].Arthroscopy,2011,27(7):889.
[27]Yadeau JT,Liu SS,Bang H,et al.Cerebral oximetry desaturation during shoulder surgery performed in a sitting position under regional anesthesia[J].Can J Anaesth,2011,58(11):986.
[28]Jeong H,Jeong S,Lim HJ,et al.Cerebral oxygen saturation measured by near-infrared spectroscopy and jugular venous bulb oxygen saturation during arthroscopic shoulder surgery in beach chair position under sevoflurane-nitrous oxide or propofol-remifentanil anesthesia[J].Anesthesiology,2012,116(5):1047.
[29]Ko SH,Cho YW,Park SH,et al.Cerebral oxygenation monitoring of patients during arthroscopic shoulder surgery in the sitting position[J].Korean J Anesthesiol,2012,63(4):297.
[30]Moerman AT,DeHert SG,Jacobs TF,et al.Cerebral oxygen desaturation during beach chair position[J].Eur J Anaesthesiol,2012,29(2):82.
[31]Salazar D,Sears BW,Aghdasi B,et al.Cerebral desaturation events during shoulder arthroscopy in the beach chair position:patient risk factors and neurocognitive effects[J].J.Shoulder Elbow Surg,2013,22(19):1228.
[32]Salazar D,Sears BW,Andre J,et al.Cerebral desaturation during shoulder arthroscopy:a prospective observational study[J].Clin Orthop Relat Res,2013,471(12):4027.
[33]Han SH,Bahk JH,Kim JH,et al.The acute normovolemichemo dilution on cerebral oxygenation[J].Acta Anaesthesiol Scand,2006,50(7):863.
[34]Papadopoulos G,Karanikolas M,Liarmakopoulou A,et al.Cerebral oximetry and cognitive dysfunction in elderly patients undergoing surgery for hipfractures:a prospective observational study[J].Open Orthop J,2012,6:400.
[35]Yoshitani K,Kawaguchi M,Iwata M,et al.Comparison of changes in jugular venous bulb oxygen saturation and cerebral oxygen saturation during variations of haemoglobin concentration under propofol and sevoflurane anaesthesia[J].Br J Anaesth,2005,94(3):341.
[36]Park EY,Koo BN,Min KT,et al.The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation[J].Acta Anaesthesiol Scand,2009,53(7):895.
[37]Kalmar AF,Dewaele F,Foubert L,et al.Cerebral haemodynamic physiology during steep Trendelenburg position and CO2 pneumoperitoneum[J].Br J Anaesth,2012,108(3):478.
[38]Fassoulaki A,Kaliontzi H,Petropoulos G,et al.The effect of desflurane and sevoflurane on cerebral oximetry understeady-state conditions[J].Anesth Analg,2006,102(6):1830.
[39]Berlac PA,Rasmussen YH.Peroperative cerebral near-infrared spectroscopy(NIRS)predicts maternal hypotension during elective caesareande livery in spinal anaesthesia[J].Int J Obstet Anesth,2005,14(1):26.
[40]Kondo Y,Sakatani K,Hirose N,et al.Effect of spinal anesthesia for elective cesarean section on cerebral blood oxygenation changes :comparison of hyperbaric and isobaric bupivacaine[J].Adv Exp Med Biol,2013,765:109.
[41]Lee JR,Lee PB,Do SH,et al.The effect of gynaecological laparoscopic surgery on cerebral oxygenation[J].J Int Med Res,2006,34(5):531.
[42]Green DW.A retrospective study of changes in cerebral oxygenation using a cerebral oximeter in older patients undergoing prolonged major abdominal surgery[J].Eur J Anaesthesiol,2007,24(3):230.
[43]賈寶森,張宏.腦氧飽和度監(jiān)測(cè)在臨床的應(yīng)用進(jìn)展[J].武警醫(yī)學(xué),2004,15(10):781
[44]王錦權(quán),文奎,潘愛軍,等.腦氧飽和度影響因素的臨床研究[J].中國(guó)急救醫(yī)學(xué),2002,22(5):284.
[45]Kishi K,Kawaguchi M,Yoshitani K et al.Influence of patient variables and sensor location on regional cerebral oxygen saturation measured by INVOS 4100 near-infrared spectrophotometers[J].J Neurosurg Anesthesiol,2003,15(4):302.
[46]Andersen JD,Baake G,Wiis JT,et al.Effect of head rotation during surgery in the prone position on regional cerebral oxygen saturation:A prospective controlled study[J].Eur J Anaesthesiol,2014,31(2):98.
[47]Moerman AT,DeHert SG,Jacobs TF.Cerebral oxygen desaturation during beach chair position[J].Eur J Anaesthesiol,2012,29(2):82.
[48]Keel M,Wolf M,Baenziger O,et al.Regional differences of cerebral hemoglobin concentration in preterm infants measured by near infrared spectrophotometry[J].Technol Health Care,1999,7(1):63.
(收稿日期:2015-03-20)
作者簡(jiǎn)介:黃昕(1991-),女,碩士研究生,研究方向:腦氧飽和度在全麻中監(jiān)測(cè)的應(yīng)用。
文章編號(hào):1007-4287(2016)02-0346-04
*通訊作者
中國(guó)實(shí)驗(yàn)診斷學(xué)2016年2期