(1)
定義2[6]稱{Xk,k=1,2,…}為END隨機(jī)變量,如果存在常數(shù)M>0,使得對(duì)任意的n=1,2,…和x1,…,xn有
(2)
(3)
引理1[9]設(shè){Xk,k=1,2,…}為END隨機(jī)變量,共同分布為F∈D,期望μ<∞。{N(t),t≥0}滿足假設(shè)1,c是任一給定的實(shí)數(shù)且c+μ≥0,則對(duì)任意δ>0和γ>c,當(dāng)t→∞,x≥γλ(t)時(shí)有
引理2[10]設(shè){Xk,k=1,2,…}為END隨機(jī)變量,共同分布為F∈D,期望μ<∞。滿足?r>1,使得
E|X1|r1{X1≤0}<∞且
(4)
則對(duì)任意給定的γ>0,有下面不等式成立,
(5)
2主要結(jié)果及證明
定理設(shè){Xk,k=1,2,…}為END隨機(jī)變量,共同分布為F∈D,期望μ<∞,且滿足(4)式。再設(shè){N(t),t≥0}是一與{Xk,k=1,2,…}相互獨(dú)立的非負(fù)整數(shù)值計(jì)數(shù)過(guò)程,則對(duì)于任意給定的γ>c,關(guān)系式
(6)
在下列兩個(gè)條件下均成立:(1)當(dāng)c+μ≥0時(shí),{N(t),t≥0}滿足假設(shè)1;(2)當(dāng)c+μ<0時(shí),{N(t),t≥0}滿足假設(shè)2。
注在定理1中,如果令F∈C,注意到此時(shí)ρF=MF,μ≡1,LF≡1,則該定理可退化為[9]中的結(jié)果。
證明下面的證明過(guò)程中所有極限過(guò)程均指t→∞,且對(duì)x≥γλ(t)一致。證明過(guò)程可以分為(1)c+μ≥0與(2)c+μ<0兩種情形分別加以討論。由于
x+μλ(t)-(c+μ)n)P(N(t)=n)=
I1(x,t)+I2(x,t)+I3(x,t)
(7)
(1)當(dāng)c+μ≥0時(shí)。

(c+μ)(1-δ)λ(t))nP(N(t)=n)≤
δμλ(t))P(N(t)<(1-δ)λ(t))=
(8)

(x-cλ(t)))
(9)
以及
I2(x,t)(1-δ)λ(t)(1-ε)2·
(10)
最后由引理1知,
(11)
將(8)-(11)式帶入到(7)中,并令ε↓0,δ↓0,由LF的定義可得
(12)
以及
(13)
(12)和(13)式表明定理1(1)成立。
(2)當(dāng)c+μ<0時(shí)。分①γ+μ≥0和②γ+μ<0兩種情況來(lái)討論。
x+μλ(t)-(c+μ)n≥-(c+μ)n
(i)若μ≥0,c<0時(shí)有

(ii)若μ<0,c≥0時(shí)有
(iii)若μ<0,c≤0時(shí)有

故總有

于是由引理2得
(14)

(x-cλ(t)))
(15)
以及
I2(x,t)(1-δ)λ(t)(1-ε)2·
(16)

(17)
將(14)-(17)式代入(7),并令ε↓0,δ↓0,由LF的定義同理得(12)和(13)成立。

[γλ(t),∞]=[γ1λ(t),∞)∪[γλ(t),γ1λ(t)]
對(duì)于第一部分x≥γ1λ(t),有x+μλ(t)-(c+μ)n≥-(c+μ)n,同上①的證明可得(14)式成立。
對(duì)于第二部分γλ(t)≤x<γ1λ(t),由γ1-c>0和F∈D得

再由假設(shè)2,對(duì)所有的γλ(t)≤x<γ1λ(t)就有
I1(x,t)≤P(N(t)≤(1-δ)λ(t))=

因此對(duì)所有的t→∞,x≥γλ(t)就有
I1(x,t)o(λ(t)
(18)

綜上,定理成立。
參考文獻(xiàn):
[1] Embrechts P , Klüppelberg C, Mikosch T. Modeling extremal events for insurance and finance[M]. Spinger, Berlin, Heidelberg, 1997:1-20.
[2] Nagaev A V. Integral limit theorems with regard to large deviations when Cramér’s condition is not satisfied[J]. Theory Probability and its Applications, 1969( 14):51-64.
[3] Heyde C C. On large deviation problems for sums of random variables which are not attracted to the normal law[J]. The Annals of Mathematical Statistics, 1967(38):1575-1578.
[4] Klüppelberg C , Mikosch T. Large deviations of heavy-tailed random sums with applications in insurance and finance[J]. Journal of Applied Probability, 1997, 34(2):293-308.
[5] Tang Qihe, Su Chun, Jiang Tao, et al. Large deviations for heavy-tailed random sums in compound renewal model[J]. Statistics & Probability Letters, 2001, 52(1):91-100.
[6] Liu Li. Precise large deviations for dependent random variables with heavy tails[J]. Statistics & Probability Letters, 2009, 79(9):1290-1298.
[7] Chen Yiqing, Yuen Kam chuen , Ng Kai Wang. Precise large deviations of random sums in the presence of negatively dependence and consistent variation[J]. Methodology And Computing In Applied Probability, 2011, 13(4):821-833.
[8] Chen Yiqing, Yuen Kam chuen. Precise large deviations of aggregate claims in a size-dependent renewal risk model[J]. Insurance: Mathematics and Economics, 2012, 51(2):457-461.
[9] Wang Shijie, Wang Xuejun. Precise large deviations for random sums of END real-valued random variables with consistent variation[J]. Mathematical Analysis and Applications, 2013, 402(2):660-667.
[10] Wang Shijie, Wang Xuejun, Wang Wensheng. Precise large deviations of aggregate claims with dominated variation in dependent multi-risk models[J]. Abstract and Applied Analysis, 2014, doi:10.1155/2014/972029.
[11] Tang Qihe, Tsitsiashvili G. Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks[J]. Stochastic Processes and their Applications, 2003, 108(2): 299-325.
Precise Large Deviations of Random Sums
in the Presence of END Structure and Dominated Variation
HE Ji-jiao1,HU Yi-yu2,ZHOU Zhi-han3
(School of Mathematic Science, Anhui University, Hefei 230601,China)
Abstract:The risk model of precise large deviations for sums of heavy-tailed random variables is an important topic in insurance and finance. In this paper, let the claims be a sequence of real-valued identically distributed random variables with common distribution function. The claim number is a nonnegative inter-valued counting process independent of the claims. Under some conditions, we obtained precise large deviations of the risk model under the general case and promoted a number of classical results.
Key words:precise large deviation, extended negatively dependent, sums of random variables, dominated variation
中圖分類號(hào):O211.4
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1007-4260(2015)01-0016-04
DOI:10.13757/j.cnki.cn34-1150/n.2015.01.005
作者簡(jiǎn)介:何基嬌,女,安徽合肥人,安徽大學(xué)數(shù)學(xué)科學(xué)學(xué)院碩士研究生,研究方向?yàn)楸kU(xiǎn)精算。
基金項(xiàng)目:安徽大學(xué)科研訓(xùn)練計(jì)劃資助項(xiàng)目(資助號(hào):KYXL2014008)。
收稿日期:2014-07-23