涂艷陽,祁 婧,張永生(第四軍醫(yī)大學:唐都醫(yī)院實驗外科,唐都醫(yī)院,陜西西安70038)
·述評·
膠質瘤中分子標記物的應用進展
涂艷陽1,祁 婧1,張永生2(第四軍醫(yī)大學:1唐都醫(yī)院實驗外科,2唐都醫(yī)院,陜西西安710038)
【Abstract】Gliomas are a common central nervous system tumor. The malignant gliomas are the most lethal in all gliomas,with a poor prognosis.The overall survival of GBM patients is only 12 to 14 months after diagnosis.With the personal medication precision progress,therapeutic options for various tumors have become gradually dependent on the molecular spectrum of patients.Malignant gliomas are one of the tumors in which treatment response relies largely on the molecular characteristics of the tumor.Therefore,awareness of the genetic background of the patients will help decision-making regarding the best treatment strategy to use.In this paper,a novel molecular classification of gliomas based on recent findings of their genetic characteristics is introduced. Representative molecular markers(IDH1 mutation,1p19q co-deletion,EGFRvIII amplification and MGMT promoter methylation)are described.In addition,the progress of malignant gliomas omics studies are briefly discussed.Finally,a novel concept for non-invasive detection that could facilitate both diagnosis and treatment monitoring is presented.There is no doubt that the use of molecular profiling by biomarkers will indeed improve the overall survival and quality of life of malignant gliomas patients.
【Keywords】glioblastoma;molecular markers;therapeutic strategies
膠質瘤是一種常見的成人中樞神經(jīng)系統(tǒng)腫瘤.惡性膠質細胞瘤的預后相對較差,是所有膠質瘤中最致命的.惡性膠質瘤患者確診后的總生存期僅為12~14個月.隨著個人用藥精度的不斷提高,腫瘤治療方案逐漸依賴于患者的分子譜.惡性膠質瘤的治療響應很大程度上依賴于腫瘤的分子特征.因此,對于每個患者遺傳背景的認識將有助于選擇最佳的治療策略.在本文中介紹了一種基于最新發(fā)現(xiàn)的遺傳特性的新型膠質瘤分子分型.對代表性的分子標記,如IDH1突變、1p19q共缺失、MGMT啟動子甲基化以及EGFRvIII擴增等進行說明.此外,還針對惡性膠質瘤組學研究的發(fā)展進行簡要討論.無創(chuàng)檢測這一新的概念可以促進現(xiàn)有的診斷和治療監(jiān)控.利用生物標記物的使用分子分析確實會提高惡性膠質瘤患者的整體存活率和生活質量.
惡性膠質瘤;分子標記物;治療策略
膠質瘤是最常見的原發(fā)性中樞神經(jīng)系統(tǒng)腫瘤,發(fā)病率幾乎達到腦腫瘤的50%.膠質瘤分為室管膜瘤、星形細胞瘤、少突膠質細胞、腦干膠質瘤、視神經(jīng)膠質瘤以及根據(jù)主要細胞類型的混合膠質瘤.根據(jù)世界衛(wèi)生組織執(zhí)行的病理表現(xiàn)型,膠質瘤進一步分為四個等級(Ⅰ~Ⅳ),其中Ⅰ和Ⅱ級反映了低級別膠質瘤,Ⅲ和Ⅳ級(膠質母細胞瘤,惡性膠質瘤)反映了高級別膠質瘤.近60%的高級別膠質瘤為惡性膠質瘤,發(fā)病率約為3/10 0000[1].
惡性膠質瘤是最常見的成人中樞神經(jīng)系統(tǒng)腫瘤,約占所有顱內腫瘤的17%[2].對于治療惡性膠質瘤的標準策略是手術后進行放療和化療.然而,由于腫瘤細胞的大量浸潤和快速增殖,惡性膠質瘤患者的生存期只有12~14個月,5年存活率最高為9.8%[3].對于Ⅱ和Ⅲ級膠質瘤,預后相對較好,但生存期仍然很差,分別為2年和2~5年[4].
根據(jù)病理神經(jīng)膠質瘤標準,世界衛(wèi)生組織將等級分為Ⅰ~Ⅳ,而新出現(xiàn)的分子分型是基于癌癥基因組計劃(the cancer genome atlas,TCGA)數(shù)據(jù).作為最早出現(xiàn)的通過TCGA研究的癌癥類型,惡性膠質瘤分為經(jīng)典型、間質型、神經(jīng)元型和神經(jīng)元前型[5-6].神經(jīng)元前型惡性膠質瘤表現(xiàn)出α型血小板源型生長因子受體的突變、異檸檬酸脫氫酶的點突變(isocitrate dehydrogenase,IDH)、磷脂酰肌醇3-激酶的過度表達和通路激活以及翻譯阻遏4EBP1的抑制[6-7].經(jīng)典型表現(xiàn)出7號染色體擴增和10號染色體的損失、EGFR擴增/突變、凋亡蛋白和絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)略微下調以及Notch1和Notch3的水平增加[6-7].神經(jīng)元亞型通常表達神經(jīng)元標記物,如神經(jīng)細絲蛋白輕鏈多肽、γ-氨基丁酸A受體α1、突觸結合蛋白1以及溶質載體家族12-成員5[6].
膠質瘤 CpG島甲基化表型(glioma-CpG island methylator phenotype,G-CIMP)是用于膠質瘤分級的新的分子特征.Noushmehr等[8]確定TCGA數(shù)據(jù)庫中272個惡性膠質瘤病例中G-CIMP表現(xiàn)出大量位點的協(xié)同甲基化.這些數(shù)據(jù)在另一組惡性膠質瘤和低級別膠質瘤中進行了驗證,因為低級別膠質瘤中也普遍存在G-CIMP腫瘤.驗證結果表明它們屬于神經(jīng)元前亞型.G-CIMP腫瘤與神經(jīng)元前亞型有共同的通路特征,同時Cox-2、IGFBP2以及膜聯(lián)蛋白1下降,且GCIMP腫瘤患者趨于年輕化[8].Brennan等[7]證實GCIMP表型有助于通過影響下游靶基因來改善神經(jīng)元前亞型惡性膠質瘤患者預后.分子變化表明大多數(shù)非G-CIMP間充質惡性膠質瘤是從神經(jīng)元前型演變來的[9].
Turcan等[10]表明IDH1突變是通過甲基化重構來建立G-CIMP亞型.他們進一步驗證在G-CIMP腫瘤中觀察到的廣泛DNA甲基化是否有助于通過DNA甲基轉移酶(DNA methyltransferases,DNMT)抑制劑治療IDH1突變膠質瘤初始化細胞來實現(xiàn)神經(jīng)膠質瘤細胞去分化.該數(shù)據(jù)表明靶向病理DNA甲基化可逆轉IDH1突變引起的甲基化狀態(tài),阻止膠質瘤起始細胞分化以及加強對腫瘤的控制[11].這些發(fā)現(xiàn)強調DNA甲基化在腦膠質瘤發(fā)展和治療中的重要性作用.
2.1IDH突變 IDH是代謝的關鍵因素之一,催化異檸檬酸產生酮戊二酸和二氧化碳的氧化脫羧反應. IDH1和IDH2利用NADP+作為輔因子催化相同的反應.IDH基因突變(IDH1和IDH2)在低等級膠質瘤中超過70%,在惡性膠質瘤中同時存在[10,12-13].最常見的 IDH1突變(超過 95%)發(fā)生在精氨酸 132(R132H).野生型IDH1催化異檸檬酸生成α-酮戊二酸(一種潛在的癌代謝物),而在IDH1突變后新生性酶功能催化α-酮戊二酸生成2-羥基戊二酸,2-羥基戊二酸是與遺傳性高血壓、遺傳不穩(wěn)定性和惡性轉化等關聯(lián)的癌代謝物.IDH1突變是一種最常見的在膠質瘤最早發(fā)生的遺傳改變,且是用于膠質瘤患者最有效的診斷和預測指標的生物標記.Izquierdo-garcia等[13]研究TCGA數(shù)據(jù)發(fā)現(xiàn)IDH1突變神經(jīng)膠質瘤患者的丙酮酸羧化酶的水平比野生型更高.Esmaeili等[14]表明IDH1-R132H突變影響磷酸乙醇胺和甘油磷酸膽堿以及改變了腦膠質瘤中的磷脂代謝.
在人星形膠質細胞中突變IDH1的強制表達來模擬G-CIMP陽性低級別膠質瘤的甲基化的改變. Duncan等[15]發(fā)現(xiàn)IDH1突變是G-CIMP表型的分子基礎,其中強調的是致癌作用和制定治療策略的表觀遺傳學的重要性.采用聚類分析,Shinawu等[16]在研究1例長期存活膠質瘤患者的G-CIMP陽性表型,發(fā)現(xiàn)該表型與IDH1突變狀態(tài)緊密相關.Usher等[17]發(fā)現(xiàn)CD4+Th1細胞和抗體自發(fā)地發(fā)生在IDH1-R132H膠質瘤患者,且特異性識別IDH1-R132H,顯示出有效突變特異的抗腫瘤免疫反應.
2.21p19q共缺失 已報道膠質瘤經(jīng)常發(fā)生染色體1p和19q上遺傳信息的缺失.膠質瘤中發(fā)現(xiàn)少突膠質細胞中1p上等位基因丟失有如下幾種:Ⅱ級少突膠質細胞(6/6),Ⅲ級間變性少突膠質細胞(5/6)和Ⅱ~Ⅲ級混合少突膠質細胞(2/3)[18].19q上等位基因缺失發(fā)生率特別高,在少突膠質細胞瘤和混合膠質瘤中分別為81%和31%.75%以上在19q上的等位基因缺失的腫瘤細胞也表現(xiàn)出在1p上的基因座雜合性缺失[19].存在1p19q共缺失的患者進行放療后有更長的總生存期[20].研究表明,存在1p19q共缺失的患者進行放療結合PCV療法(甲基芐肼,洛莫司汀和長春新堿)比單獨接受放療的患者生存期延長兩倍[21].
有證據(jù)表明1p19q共缺失不僅作為一個有利的預后因素,而且可作為化學敏感性的預測.目前1p19q共缺失是膠質瘤預后并與其它組合治療反應的評估標記.共缺失1p19q和MGMT啟動子甲基化是獨立的正預后指標.此外由于1p19q缺失腫瘤也表現(xiàn)出IDH突變,1p19q共缺失與IDH突變是密切相關的.IDH突變、MGMT啟動子甲基化和1p19q共缺失患者的存活期大大增加[22-23].
2.3O6-甲基鳥嘌呤DNA甲基轉移酶(MGMT)啟動子甲基化 MGMT是一種DNA修復酶,可在烷化劑(如替莫唑胺)誘導時直接從鳥嘌呤O6位去除烷基,從而減少腫瘤細胞對于化療劑的反應.MGMT啟動子經(jīng)常在神經(jīng)膠質瘤細胞中發(fā)生甲基化,隨后導致MGMT活性喪失[7,24].臨床研究已預先證明MGMT啟動子甲基化是一個正預后標志,可以使得腫瘤對放療更敏感[20].大量證據(jù)表明MGMT甲基化水平是初診為腦膠質瘤對于烷基化劑反應的陽性預測標記物[25-27].另兩個前瞻性隨機III期試驗報道MGMT啟動子甲基化狀態(tài)可以在老年患者替莫唑胺治療中起到一種預測作用[28-29].但是MGMT啟動子甲基化水平并不是替莫唑胺治療唯一獨立的預測指標.
2.4EGFRvIII擴增 組成型活性突變EGFRvIII,已知的de2-7 EGFR或ΔEGFR,存在于25%~30%惡性膠質瘤中,同時還存在EGFR擴增/過表達[30-31].在大多數(shù)(97%)經(jīng)典亞型膠質瘤觀察到存在EGFR擴增,但是在其他亞型很少見到.EGFR點基因突變包括vIII(在12/22中的經(jīng)典亞型樣品中鑒定),并伴有p53缺失突變.研究發(fā)現(xiàn)在G-CIMP陽性惡性膠質瘤中EGFR信號受到抑制,而對G-CIMP表型的誘導與EGFR和H-ras基因的表達抑制有關,會導致EGFR信號的抑制[32].
EGFRvIII通過激活其他受體酪氨酸激酶(receptor tyrosine kinase,RTK)在腫瘤發(fā)生中發(fā)揮作用. Greenall等[33]證實 MET反式激活轉錄與體外U87MG膠質瘤細胞中 EGFRvIII的活性成正比. EGFRvIII和反式激活轉錄RTK兩者同時靶向顯著比單獨任一藥劑處理的小鼠模型有更長生存期,說明反式激活轉錄RTK的有效封鎖對于治療EGFRvIII陽性神經(jīng)膠質瘤可能是一種治療策略.
2.5其他標記 除了上述已經(jīng)充分研究的分子標記,還有一些其它因素也與神經(jīng)膠質瘤患者預后相關.NF1突變經(jīng)常發(fā)生在骨髓間質亞型.Ozawa等[9]研究發(fā)現(xiàn)NF1缺失可以使得神經(jīng)元前型腫瘤轉化為間質亞型.在神經(jīng)膠質瘤Myc的過表達為60%~80%,并且其表達水平與分級相關[34].增加的Myc基因的活性在減弱神經(jīng)元分化以及促進惡性膠質瘤啟動細胞的自我更新能力等方面起著重要作用[34-35].
隨著測序技術的發(fā)展,全基因組、外顯子組和RNA測序已經(jīng)被廣泛地應用到膠質瘤組學研究中.通過結合全基因組、外顯子組、轉錄和甲基化測序分析,確定在彌漫性內在腦橋膠質瘤發(fā)現(xiàn)激活素受體基因ACVR1復發(fā)性體細胞突變[36-37].這些突變引起組成性激活蛋白,導致了Smad蛋白的磷酸化和DNA結合蛋白1和2(ID1/2)下游目標抑制劑的過表達[37].在兒科高級的星形膠質細胞瘤中ACVR1中的功能獲得性突變會引起骨形態(tài)蛋白(bone morphogenetic protein,BMP)-ACVR1通路超活化、增加Smad 1/5/8的磷酸化以及BMP靶基因的活化[38].在兒科高級別膠質瘤細胞中也檢測到其他常見的突變,如受體酪氨酸激酶-Ras-PI3K信號通路(68%)、組蛋白修飾基因(73%)和染色質重塑的基因(59%)[36].在腦干神經(jīng)膠質瘤,通過外顯子組測序鑒定和有針對性的突變分析得到在PPM1D上的腫瘤特異性突變(p53誘導蛋白磷酸酶1D)[39].作為體細胞突變的高頻率靶點,PPM1D突變增強細胞抑制DNA損傷應答的活化能力,使其成為腦干膠質瘤治療的潛在治療靶點.
識別惡性膠質瘤調控網(wǎng)絡的分子特征可以增加個性化藥物的精確度.但是目前的檢測方法落后于分子譜進展.用于癌癥診斷和響應評價的方法很大程度上取決于病理和成像技術.內窺鏡和腹腔鏡檢查是侵入性方法,成像方法的靈敏度受腫瘤最小尺寸的限制.因此容易觀察的樣品(如血液、尿液和腦脊髓液)是可用于預測患者預后,決定治療策略以及監(jiān)測治療反應和疾病進展的有效液體活檢.
循環(huán)腫瘤細胞和循環(huán)脫細胞核酸是血漿/血清中兩個重要的“資源”,為無創(chuàng)檢測方法提供線索.癌細胞的游離DNA(cfDNA)在凋亡和壞死期間被釋放到腫瘤微環(huán)境中.cfDNA的大小范圍從小的70~200堿基對的片段到大的約21千堿基的片段[40].cfDNA的半衰期是5分鐘至幾小時,因為這些片段由肝臟和腎臟快速有效循環(huán)清除.由于它們可以實時反映疾病的進展和周轉,因此cfDNAs是活檢完美指標[41-43].
最近一項研究表明,腫瘤實體IDH1突變的患者血漿中可以檢測到IDH1突變.同時確定了IDH1可檢測性的高比率和血腦屏障破壞之間的關系[44].另一項研究報告顯示在星形細胞瘤患者9/12血清樣品和腫瘤組織中檢測到p16異常啟動子甲基化[45].在血清中也發(fā)現(xiàn)MGMT甲基化,其存在與膠質瘤組織高度相關[46].在惡性膠質瘤患者血清中也能檢測到其他標記物(如染色體1p,19q和10q雜合性缺失),并且與匹配高度腫瘤組織高度相關[47].未來對膠質瘤生物標記物的研究工作必須著眼于鑒定用于檢測和提高檢測方法的靈敏度和可行性的特異分子.
[1]de Groot JF.High-grade gliomas[J].Continuum,2015,21(2 Neurooncology):332-344.
[2]Wu CX,Lin GS,Lin ZX,et al.Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma[J].World J Surg Oncol,2015,13:97.
[3]Stupp R,Mason WP,Van den Bent MJ,et al.Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma[J]. N Engl J Med,2005,352(10):987-996.
[4]Bell C,Dowson N,F(xiàn)ay M,et al.Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET:toward clinical translation[J].Semin Nucl Med,2015,45(2):136-150.
[5]Phillips HS,Kharbanda S,Chen R,et al.Molecular subclasses of high-grade glioma predict prognosis,delineate a pattern of disease progression,and resemble stages in neurogenesis[J].Cancer Cell,2006,9(3):157-173.
[6]Verhaak RG,Hoadley KA,Purdom E,et al.Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,IDH1,EGFR,and NF1[J]. Cancer Cell,2010,17(1):98-110.
[7]Brennan CW,Verhaak RG,McKenna A,et al.The Somatic Genomic Landscape of Glioblastoma[J].Cell,2013,155(2):462-477.
[8]Noushmehr H,Weisenberger DJ,Diefes K,et al.Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma[J].Cancer Cell,2010,17(5):510-522.
[9]Ozawa T,Riester M,Cheng YK,et al.Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma[J].Cancer Cell,2014,26(2):288-300.
[10]Turcan S,Rohle D,Goenka A,et al.IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype[J].Nature,2012,483(7390):479-483.
[11]Turcan S,F(xiàn)abius AW,Borodovsky A,et al.Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine[J].Oncotarget,2013,4(10):1729-1736.
[12]Balss J,Meyer J,Mueller W,et al.Analysis of the IDH1 codon 132 mutation in brain tumors[J].Acta Neuropathol,2008,116(6):597-602.
[13]Izquierdo-garcia JL,Cai LM,Chaumeil MM,et al.Glioma cells with the IDH1 mutation modulate metabolic fractional flux through pyruvate carboxylase[J].PLoS ONE,2014,9(9):e108289.
[14]Esmaeili M,Hamans BC,Navis AC,et al.IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma[J]. Cancer Res,2014,74(17):4898-4907.
[15]Duncan CG,Barwick BG,Jin G,et al.A heterozygous IDH1R132 H/ WT mutation induces genome-wide alterations in DNA methylation[J]. Genome Res,2012,22(12):2339-2355.
[16]Usher CL,Handsaker RE,Esko T,et al.Structural forms of the human amylase locus and their relationships to SNPs,haplotypes and obesity[J].Nat Genet,2015,47(8):921-925.
[17]Schumacher T,Bunse L,Pusch S,et al.A vaccine targeting mutant IDH1induces antitumour immunity[J].Nature,2014,512(7514):324-327.
[18]Bello MJ,Vaquero J,de Campos JM,et al.Molecular analysis of chromosome 1 abnormalities in human gliomas reveals frequent loss of 1p in oligodendroglial tumors[J].Int J Cancer,1994,57(2):172-175.
[19]Reifenberger J,Reifenberger G,Liu L,et al.Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p[J].Am J Pathol,1994,145(5):1175-1190.
[20]Wick W,Hartmann C,Engel C,et al.NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine,lomustine,and vincristine or temozolomide[J].J Clin Oncol,2009,27(35):5874-5880.
[21]Cairncross G,Wang M,Shaw E,et al.Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma:long-term results of RTOG 9402[J].J Clin Oncol,2013,31(3):337-343.
[22]Zhang ZY,Chan AK,Ng HK,et al.Surgically treated incidentally discovered low-grade gliomas are mostly IDH mutated and 1p19q codeleted with favorable prognosis[J].Int J Clin Exp Pathol,2014, 7(12):8627-8636.
[23]Leu S,Von Felten S,F(xiàn)rank S,et al.IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival[J].Neuro-oncology,2013,15(4):469-479.
[24]Berghoff AS,Hainfellner JA,Marosi C,et al.Assessing MGMT methylation status and its current impact on treatment in glioblastoma[J]. CNS Oncol,2015,4(1):47-52.
[25]Mur P,Rodríguez de Lope á,Díaz-Crespo FJ,et al.Impact on prognosis of the regional distribution of MGMT methylation with respect to the CpG island methylator phenotype and age in glioma patients[J].J Neurooncol,2015,122(3):441-450.
[26]Minniti G,Salvati M,Arcella A,et al.Correlation between O6-methylguanine-DNA methyltransferase and survival in elderly patients with glioblastoma treated with radiotherapy plus concomitant and adjuvant temozolomide[J].J Neurooncol,2011,102(2):311-316.
[27]Hegi ME,Diserens AC,Gorlia T,et al.MGMT gene silencing and benefit from temozolomide in glioblastoma[J].N Engl J Med,2005,352(10):997-1003.
[28]Malmstr?m A,Gr?nberg BH,Marosi C,et al.Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma:the Nordic randomised,phase 3 trial[J].Lancet Oncol,2012,13(9):916-926.
[29]Wick W,Platten M,Meisner C,et al.Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly:the NOA-08 randomised,phase 3 trial[J].Lancet Oncology,2012,13(7):707-715.
[30]Pelloski CE,Ballman KV,F(xiàn)urth AF,et al.Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma[J].J Clin Oncol,2007,25(16):2288-2294.
[31]Cominelli M,Grisanti S,Mazzoleni S,et al.EGFR amplified and overexpressing glioblastomas and association with better response to adjuvant metronomic temozolomide[J].J Natl Cancer Inst,2015,107(5):1-13.
[32]Li J,Taich ZJ,Goyal A,et al.Epigenetic suppression of EGFR signaling in G-CIMP+glioblastomas[J].Oncotarget,2014,5(17):7342-7356.
[33]Greenall SA,Donoghue JF,Van Sinderen M,et al.EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma:mechanism and therapeutic implications[J].Oncogene,2015,34(41):5277-5287.
[34]Annibali D,Whitfield JR,F(xiàn)avuzzi E,et al.Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis[J].Nat Commun,2014,5:4632.
[35]Zheng H,Ying H,Yan H,et al.Pten and p53 converge on c-Myc to control differentiation,self-renewal,and transformation of normal and neoplastic stem cells in glioblastoma[J].Cold Spring Harb Symp Quant Biol,2008,73:427-437.
[36]WU G,Diaz AK,Paugh BS,et al.The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma[J].Nat Genet,2014,46(5):444-450.
[37]Buczkowicz P,Hoeman C,Rakopoulos P,et al.Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations[J].Nat Genet,2014,46(5):451-456.
[38]Fontebasso AM,Papillon-Cavanagh S,Schwartzentruber J,et al. Recurrent somatic mutations in ACVR1 in pediatric midline highgrade astrocytoma[J].Nat Genet,2014,46(5):462-466.
[39]Zhang L,Chen LH,Wan H,et al.Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas[J]. Nat Genet,2014,46(7):726-730.
[40]Jahr S,Hentze H,Englisch S,et al.DNA fragments in the blood plasma of cancer patients:quantitations and evidence for their origin from apoptotic and necrotic cells[J].Cancer Res,2001,61(4):1659-1665.
[41]Schwarzenbach H,Hoon DS,Pantel K.Cell-free nucleic acids as biomarkers in cancer patients[J].Nat Rev Cancer,2011,11(6):426-437.
[42]Heidary M,Auer M,Ulz P,et al.The dynamic range of circulating tumor DNA in metastatic breast cancer[J].Breast Cancer Res,2014,16(4):421.
[43]Murtaza M,Dawson SJ,Tsui DW,et al.Non-invasive analysis of acquired resistancetocancertherapybysequencingofplasma DNA[J].Nature,2013,497(7447):108-112.
[44]Boisselier B,Gállego Pérez-Larraya J,Rossetto M,et al.Detection of IDH1 mutation in the plasma of patients with glioma[J].Neurology,2012,79(16):1693-1698.
[45]Wakabayashi T,Natsume A,Hatano H,et al.p16 promoter methylation in the serum as a basis for the molecular diagnosis of gliomas[J].Neurosurgery,2009,64(3):455-461.
[46]Balaňa C,Ramirez JL,Taron M,et al.O6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1,3-bis(2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme[J].Clin Cancer Res,2003,9(4):1461-1468.
[47]Lavon I,Refael M,Zelikovitch B,et al.Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades[J].Neuro-oncology,2010,12(2):173-180.
The progress of molecular biomarkers in gliomas
TU Yan-Yang1,QI Jing1,ZHANG Yong-Sheng2
Fourth Military Medical University:1Department of Experimental Surgery of Tangdu Hospital,2Tangdu Hospital,Xi'an 710038,China
R739.4
A
2095-6894(2016)07-01-05
2016-06-05;接受日期:2016-06-22
國家自然科學基金面上項目(81572983);第四軍醫(yī)大學科技發(fā)展基金(2016XD306)
涂艷陽.博士,副教授,副主任醫(yī)師.Tel:029-84777469
E-mail:tu.fmmu@gmail.com