張 靜,王長(zhǎng)新
(新疆農(nóng)業(yè)大學(xué) 水利與土木工程學(xué)院, 新疆 烏魯木齊 830052)
基于蒙特卡洛方法的壓力鋼管水錘風(fēng)險(xiǎn)分析
張靜,王長(zhǎng)新
(新疆農(nóng)業(yè)大學(xué) 水利與土木工程學(xué)院, 新疆 烏魯木齊 830052)
摘要:水電工程中壓力鋼管的結(jié)構(gòu)安全對(duì)整個(gè)電站的安全運(yùn)行有著重要的影響,而水錘對(duì)管道的安全性影響非常大,因而以特吾勒水電站回填式壓力鋼管為例,建立了計(jì)算水錘壓力風(fēng)險(xiǎn)的功能函數(shù),利用蒙特卡洛方法計(jì)算了考慮和不考慮軸向應(yīng)力兩種情況下的水錘壓力風(fēng)險(xiǎn)值,并具體計(jì)算分析了各隨機(jī)變量對(duì)綜合風(fēng)險(xiǎn)的影響,結(jié)果表明利用第四強(qiáng)度理論計(jì)算水錘壓力風(fēng)險(xiǎn)更加符合實(shí)際,為壓力鋼管的設(shè)計(jì)提供了依據(jù)。
關(guān)鍵詞:隨機(jī)變量;蒙特卡洛法;回填鋼管;風(fēng)險(xiǎn)值
壓力鋼管是水電工程中輸水建筑物的重要組成部分,它的結(jié)構(gòu)安全對(duì)整個(gè)電站的安全運(yùn)行有著重要的影響[1],而影響管道安全的重要因素為水錘壓力。因而在以往研究壓力鋼管的風(fēng)險(xiǎn)時(shí),主要集中在水錘壓力的計(jì)算方法[2-4]、水錘及其他隨機(jī)變量的概率分布和統(tǒng)計(jì)特征[5-8]以及風(fēng)險(xiǎn)計(jì)算方法上 ,但并未系統(tǒng)的計(jì)算水電站壓力鋼管的水錘風(fēng)險(xiǎn)率。本文在國(guó)內(nèi)外研究學(xué)者的研究基礎(chǔ)上,結(jié)合烏蘇市特吾勒水電站回填式壓力鋼管,利用蒙特卡洛法并借助MATLAB軟件計(jì)算了壓力鋼管在考慮和不考慮軸向應(yīng)力兩種情況下的水錘壓力風(fēng)險(xiǎn)值,并具體分析計(jì)算了各隨機(jī)變量對(duì)綜合風(fēng)險(xiǎn)的影響,為設(shè)計(jì)和評(píng)估壓力鋼管的可靠安全方面提供依據(jù)。
1蒙特卡洛法
到目前為止,計(jì)算風(fēng)險(xiǎn)的方法主要有:直接積分法、一次二階矩法、蒙特卡洛法、梯度優(yōu)化法和響應(yīng)面法。蒙特卡羅法隨著模擬次數(shù)的增加,其計(jì)算結(jié)果將逐漸趨近于精確解,因此被認(rèn)為是一種精確的計(jì)算方法,因而選擇蒙特卡洛方法。蒙特卡洛法又稱為隨機(jī)抽樣法,其基本方法是通過(guò)某種算法從相應(yīng)的概率分布中人為生成一組特殊隨機(jī)變量值,再進(jìn)行大量模擬運(yùn)算,通過(guò)檢驗(yàn)?zāi)M運(yùn)算的結(jié)果來(lái)估算風(fēng)險(xiǎn)。蒙特卡洛方法的精確性依賴于模擬次數(shù),蒙特卡洛法的關(guān)鍵是產(chǎn)生大量已知分布的隨機(jī)數(shù),而Matlab軟件它能快速的產(chǎn)生服從某些分布的隨機(jī)數(shù)并且在短時(shí)間內(nèi)進(jìn)行大量的模擬運(yùn)算,這為蒙特卡洛法的運(yùn)用提供了便利。
2建立壓力鋼管風(fēng)險(xiǎn)計(jì)算的功能函數(shù)
影響結(jié)構(gòu)狀態(tài)的基本變量x1,x2,…,xn,按其屬性,可歸為兩個(gè)基本變量,即強(qiáng)度隨機(jī)變量R和應(yīng)力隨機(jī)變量S,于是有:
(1)
其中,xRi是與結(jié)構(gòu)強(qiáng)度有關(guān)的量;xSj是與應(yīng)力有關(guān)的量,例如力、力矩、溫度等。經(jīng)過(guò)這樣的處理將對(duì)多個(gè)隨機(jī)變量的問(wèn)題轉(zhuǎn)換為兩個(gè)隨機(jī)變量的問(wèn)題,便于分析計(jì)算,由此結(jié)構(gòu)的功能函數(shù)可簡(jiǎn)寫(xiě)為:
Z=g(R,S)
(2)
對(duì)于公式(2),可以根據(jù)不同的情況取不同的具體形式[9];對(duì)于水電站壓鋼管,將功能函數(shù)取為:
Z=R-S
(3)
這里,壓力鋼管的強(qiáng)度隨機(jī)變量R是由R=R(σs,φ)構(gòu)成,其中σs為鋼材的屈服強(qiáng)度,φ為焊縫系數(shù);而對(duì)于壓力鋼管的應(yīng)力隨機(jī)變量S,由于其工作狀態(tài)處于三維應(yīng)力狀態(tài),但因剪應(yīng)力τ和徑向應(yīng)力σr對(duì)折算應(yīng)力的影響較小,忽略不計(jì)[10],并且當(dāng)?shù)匦纹露刃∮?0°時(shí),不考慮軸向應(yīng)力的影響,因而應(yīng)力隨機(jī)變量S=σθ,根據(jù)《給水排水工程管道結(jié)構(gòu)設(shè)計(jì)規(guī)范》[11](GB50332-2002)建立其功能函數(shù):
Z=R-S=0.55φσs-σθ
(4)
式中:σθ為鋼管管壁的最大環(huán)向應(yīng)力。
當(dāng)?shù)匦纹露却笥?0°時(shí),軸向應(yīng)力應(yīng)當(dāng)加以考慮,因而壓力鋼管的應(yīng)力隨機(jī)變量S=S(σx,σθ)構(gòu)成,按第四強(qiáng)度理論,建立其功能函數(shù):
(5)
式中:σx為軸向應(yīng)力。
3隨機(jī)變量的分布特征與統(tǒng)計(jì)特征值
本文在考慮了影響鋼管結(jié)構(gòu)安全的主要隨機(jī)變量的同時(shí),把一些鋼材性能參數(shù)也看作隨機(jī)變量加以考慮,如:鋼的彈性模量、泊松比、線膨脹系數(shù)。其中焊縫系數(shù)φ、前池水頭Hj、水擊壓力Hc這3個(gè)隨機(jī)變量可通過(guò)相對(duì)量獲得統(tǒng)計(jì)特征值[12]:
(6)
式中: Hmax為鋼管的最大水頭; Hd為設(shè)計(jì)水頭;Hc為鋼管中心水錘實(shí)測(cè)值;Hwh為水錘設(shè)計(jì)值;φs為焊縫系數(shù)實(shí)測(cè)值;φg為規(guī)范限定值。
統(tǒng)計(jì)研究表明[13],相對(duì)量ζj、ζφ和鋼材強(qiáng)度σs服從正態(tài)分布,其均值,標(biāo)準(zhǔn)差見(jiàn)表1,相對(duì)量ζc服從極值Ⅰ型[14],其均值μζc=1.065,方差為σζc=0.218。
影響鋼材性能參數(shù)的因素較多,很難確定何種因素起主要作用,且無(wú)相關(guān)數(shù)據(jù)進(jìn)行數(shù)理統(tǒng)計(jì)分析,根據(jù)誤差理論、中心極限定理[15]和王長(zhǎng)新[16]等人的研究,這里將它們視為正態(tài)分布,其均值為設(shè)計(jì)值,標(biāo)準(zhǔn)差按均值的5%選取。 隨機(jī)變量的分布特性與統(tǒng)計(jì)特征值見(jiàn)表1。
表1 隨機(jī)變量的概率分布與統(tǒng)計(jì)特征值
4回填式壓力鋼管風(fēng)險(xiǎn)計(jì)算實(shí)例
特吾勒水庫(kù)灌區(qū)骨干工程配套消能一級(jí)電站,電站裝機(jī)容量為13MW,壓力管道引水流量2.34 m3/s,設(shè)計(jì)發(fā)電流量為2.2 m3/s,根據(jù)《水利水電工程等級(jí)劃分及洪水標(biāo)準(zhǔn)》[17](SL252-2000)的規(guī)定,屬小(1)型Ⅳ等工程,主要建筑物應(yīng)為4級(jí),次要建筑物應(yīng)為5級(jí),本工程利用灌溉水發(fā)電,按《小型水力發(fā)電站設(shè)計(jì)規(guī)范》[18](GB50071-2002)規(guī)定,本工程發(fā)電廠房等主要建筑物防洪標(biāo)準(zhǔn)為20 a一遇設(shè)計(jì)。電站引水系統(tǒng)由特吾勒水庫(kù)放水洞、前池、壓力鋼管等主要建筑物組成,其中壓力管道采用回填式,地埋管管溝采用機(jī)械開(kāi)挖,底寬2.6 m,邊坡1∶1,底部設(shè)30 cm中粗砂墊層,管頂覆土1.8 m,鋼管總長(zhǎng)6.91 km,管道縱坡為0.34%~8.413%,管材選用Q235C和X60型螺旋卷焊鋼管,管徑1.4 m、1.2 m,壁厚為10 mm~16 mm, 靜水頭362.34 m,最大設(shè)計(jì)內(nèi)壓水頭447.34 m, 屬高水頭、長(zhǎng)距離的水電站壓力鋼管。
本工程為滿足地形和環(huán)境的要求,壓力鋼管為回填式。由于我國(guó)現(xiàn)行的電力行業(yè)標(biāo)準(zhǔn)和水利行業(yè)標(biāo)準(zhǔn)暫無(wú)回填管的計(jì)算依據(jù),因此在對(duì)回填管的設(shè)計(jì)和強(qiáng)度檢驗(yàn)時(shí)所采用的公式主要依據(jù)日本的 《壓力鋼管設(shè)計(jì)技術(shù)標(biāo)準(zhǔn)》,同時(shí)參考《給水排水工程埋地鋼管管道結(jié)構(gòu)設(shè)計(jì)規(guī)程》[19](CECS141:2002),采用規(guī)范[19]計(jì)算理論及水電站壓力鋼管設(shè)計(jì)規(guī)范中的荷載和材料參數(shù)對(duì)回填管進(jìn)行計(jì)算,荷載不考慮分項(xiàng)系數(shù)。
本工程管道縱坡為0.34%~8.41%,軸向應(yīng)力忽略不計(jì),根據(jù)公式(4),此時(shí)的環(huán)向應(yīng)力σθ由內(nèi)水壓力和土壓力產(chǎn)生[20],因而建立其功能函數(shù):
(7)
(8)
(9)
式中:W為土壓力;rm為管壁半徑;ΔX為水平撓度;K為管底支承角相關(guān)的系數(shù);e為被動(dòng)土壓力系數(shù);Ep鋼的彈性模量;I為單位長(zhǎng)度鋼管管壁慣性矩。
4.2.2考慮軸向應(yīng)力,參照第四強(qiáng)度理論建立的功能函數(shù)
為了定量的研究軸向應(yīng)力對(duì)風(fēng)險(xiǎn)率的影響,根據(jù)式(5),考慮軸向應(yīng)力,此時(shí)的軸向應(yīng)力由溫度荷載產(chǎn)生,建立功能函數(shù):
(10)
(11)
(12)
式中:α為鋼的線膨脹系數(shù);ΔT為溫度變化。
經(jīng)過(guò)計(jì)算,管道末端承受的內(nèi)水壓力最大,因此本工程選取回填壓力鋼管的末端截面作為計(jì)算點(diǎn)進(jìn)行風(fēng)險(xiǎn)計(jì)算與分析。參照表1各個(gè)隨機(jī)變量的概率分布和統(tǒng)計(jì)特征值,使用蒙特卡洛方法并借助Matlab軟件計(jì)算出回填式壓力鋼管的風(fēng)險(xiǎn)率Pf,見(jiàn)表2、表3。由表2可以看出,特吾勒水電站的回填式壓力鋼管的綜合風(fēng)險(xiǎn)為0.0015236,雖然用兩種功能函數(shù)計(jì)算出的風(fēng)險(xiǎn)率均滿足要求,但是在不考慮軸向應(yīng)力情況下計(jì)算的風(fēng)險(xiǎn)值是用第四強(qiáng)度理論計(jì)算出來(lái)的11倍。從表3可以看出,在模擬次數(shù)為1000萬(wàn)次時(shí)相對(duì)于將鋼的彈性模量、泊松比和線膨脹系數(shù)這些參數(shù)作為常量時(shí),將鋼的彈性模量、泊松比和線膨脹系數(shù)這些參數(shù)作為變量時(shí),風(fēng)險(xiǎn)只增加0.59%,因而可知是否將其作為隨機(jī)變量對(duì)壓力鋼管水錘風(fēng)險(xiǎn)的影響很小;而當(dāng)σ=1.5σj時(shí)計(jì)算得到的風(fēng)險(xiǎn)率是當(dāng)σ=σj時(shí)的16倍,說(shuō)明各個(gè)隨機(jī)變量標(biāo)準(zhǔn)差的選取對(duì)計(jì)算壓力鋼管風(fēng)險(xiǎn)的影響重大。
表2 回填式壓力鋼管的綜合風(fēng)險(xiǎn)
表3 考慮鋼材性能參數(shù)與否的風(fēng)險(xiǎn)值對(duì)比計(jì)算結(jié)果
為了得到某一隨機(jī)變量對(duì)回填壓力鋼管的綜合風(fēng)險(xiǎn)的影響,單獨(dú)改變某一個(gè)變量的標(biāo)準(zhǔn)差σ,其他隨機(jī)變量的標(biāo)準(zhǔn)差為設(shè)計(jì)值σj,σj的取值參照表1,標(biāo)準(zhǔn)差的變化范圍為0.5σj~1.5σj,計(jì)算其風(fēng)險(xiǎn)率,計(jì)算成果見(jiàn)表4和圖1~圖3,由表4的最后一行得,水錘壓力的不確定性對(duì)風(fēng)險(xiǎn)的影響最大,其風(fēng)險(xiǎn)變化可達(dá)到1.12×10-2。根據(jù)圖1曲線可知隨著實(shí)際值與設(shè)計(jì)值比值的增加風(fēng)險(xiǎn)率也隨著增加,兩者風(fēng)險(xiǎn)率的增長(zhǎng)速度近似,從而可得鋼材強(qiáng)度和焊縫系數(shù)的不確定性對(duì)風(fēng)險(xiǎn)的影響效果幾近相同;圖2中三條線接近水平,說(shuō)明鋼的彈性模量、泊松比和線膨脹系數(shù)的不確定對(duì)壓力鋼管的水錘風(fēng)險(xiǎn)的影響是很小的,其引起的風(fēng)險(xiǎn)變化最大的也只有1.27×10-5,從而在設(shè)計(jì)中我們完全可以把材料性能參數(shù)看做是確定量;由圖3曲線可知水錘壓力的不確定性對(duì)風(fēng)險(xiǎn)的影響可分為兩部分,當(dāng)實(shí)際標(biāo)準(zhǔn)差小于設(shè)計(jì)值時(shí)風(fēng)險(xiǎn)率的增長(zhǎng)速度較小,當(dāng)大于時(shí)風(fēng)險(xiǎn)率的增長(zhǎng)速度明顯加大,可見(jiàn)如果選擇不當(dāng)將會(huì)帶來(lái)較大的風(fēng)險(xiǎn)。
表4 各隨機(jī)變量的不確定性對(duì)風(fēng)險(xiǎn)Pf的影響
圖1 鋼材強(qiáng)度σs和焊縫系數(shù)φ的不確定性與風(fēng)險(xiǎn)的關(guān)系
圖2鋼的彈性模量、泊松比和線膨脹系數(shù) 的不確定與風(fēng)險(xiǎn)的關(guān)系
圖3靜水壓力與水錘壓力系數(shù)的不確定性與風(fēng)險(xiǎn)的關(guān)系
5結(jié)論
(1) 在設(shè)計(jì)壓力鋼管時(shí),我們應(yīng)采用第四強(qiáng)度理論對(duì)鋼管進(jìn)行設(shè)計(jì)和校核,若采用單一方向的應(yīng)力,可能導(dǎo)致風(fēng)險(xiǎn)率偏大,對(duì)該結(jié)構(gòu)設(shè)計(jì)過(guò)于保守,加大經(jīng)濟(jì)的投入。
(2) 材料參數(shù)的不確定性對(duì)鋼管的風(fēng)險(xiǎn)影響很小,所以在壓力鋼管設(shè)計(jì)中,我們可以忽略其不確定性的影響,以便簡(jiǎn)化計(jì)算;鋼材強(qiáng)度、焊縫系數(shù)、前池水頭的不確定性對(duì)風(fēng)險(xiǎn)的影響雖然沒(méi)有水錘壓力的大,但與材料參數(shù)相比要大的多,設(shè)計(jì)計(jì)算時(shí)應(yīng)當(dāng)考慮。
(3) 對(duì)各隨機(jī)變量風(fēng)險(xiǎn)的影響作了定量的分析,水擊壓力的不確定性對(duì)風(fēng)險(xiǎn)的影響最大,其風(fēng)險(xiǎn)變化可達(dá)到1.12×10-2,因而在設(shè)計(jì)當(dāng)中我們應(yīng)當(dāng)選取合適的水錘計(jì)算方法與標(biāo)準(zhǔn)差。水錘壓力計(jì)算的過(guò)小,壓力鋼管達(dá)不到強(qiáng)度要求,計(jì)算的過(guò)大,造成經(jīng)濟(jì)上的浪費(fèi)。
參考文獻(xiàn):
[1]溫婧.水電站埋管結(jié)構(gòu)優(yōu)化設(shè)計(jì)與有限元分析[D].邯鄲:河北工程大學(xué),2013.
[2]熊水應(yīng),王建國(guó),張凱,等.水錘計(jì)算分析軟件的開(kāi)發(fā)與應(yīng)用[J].給水排水,2014(11):104-108.
[3]黃興,王云莉.水電站壓力管道系統(tǒng)非恒定流現(xiàn)狀及發(fā)展動(dòng)態(tài)[J].水科學(xué)與工程技術(shù),2014,30(4):28-32.
[4]王川江.新疆準(zhǔn)東五彩灣供水工程停泵水錘計(jì)算[J].中國(guó)給水排水,2014(11):55-57,61.
[5]何英明,侯建國(guó),安旭文.地下埋管可靠度校準(zhǔn)分析[J].武漢水利電力大學(xué)學(xué)報(bào),1999(5):64-68.
[6]袁子厚,陳明祥,何英明.水電站中明管可靠度校準(zhǔn)分析[J].重慶建筑大學(xué)學(xué)報(bào),2007,29(3):75-77,82.
[7]楊綠峰,張偉,韓曉鳳.水電站壓力鋼管整體安全評(píng)估方法研究[J].水力發(fā)電學(xué)報(bào),2011,30(5):149-156,169.
[8]侯建國(guó),李春霞,安旭文,等.水電站地下埋管圍巖內(nèi)壓分擔(dān)率的統(tǒng)計(jì)特征研究[J].巖石力學(xué)與工程學(xué)報(bào),2003,22(8):1334-1338.
[9]何水清,王善.結(jié)構(gòu)可靠度分析與設(shè)計(jì)[M].北京:國(guó)防工業(yè)出版社,1993.
[10]劉啟釗.水電站[M].北京:中國(guó)水利水電出版社,2010.
[11]中華人民共和國(guó)建設(shè)部,國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局.GB50332-2002給水排水工程管道結(jié)構(gòu)設(shè)計(jì)規(guī)范[S].北京:中國(guó)建筑工業(yè)出版社,2002.
[12]何英明,侯建國(guó),張健,等.壓力鋼管可靠度分析基本變量的統(tǒng)計(jì)特性[J].武漢水利電力大學(xué)學(xué)報(bào),2000,35(5):5-10.
[13]吳世偉,張思俊,余強(qiáng).壩上游水位變化規(guī)律及統(tǒng)計(jì)量[J].華東水利學(xué)院報(bào),1984(4):66-74.
[14]侯建國(guó),安旭文,李春霞,等.水電站壓力鋼管水錘壓力的統(tǒng)計(jì)特征研究[J].長(zhǎng)江科學(xué)院院報(bào),2004,21(1):4-7.
[15]楊惠蓮,張濤.誤差理論與數(shù)據(jù)處理[M].天津:天津大學(xué)出版社,1992.
[16]王長(zhǎng)新.施工導(dǎo)流風(fēng)險(xiǎn)分析及計(jì)算[D].南京:河海大學(xué),1995.
[17]中華人民共和國(guó)水利部.SL252-2000水利水電工程等級(jí)劃分及洪水標(biāo)準(zhǔn)[S].北京:中國(guó)水利水電出版社,2000.
[18]中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局,中華人民共和國(guó)建設(shè)部.GB50071-2002小型水力發(fā)電站設(shè)計(jì)規(guī)范[S].北京:中國(guó)計(jì)劃出版社,2002.
[19]中國(guó)工程建設(shè)標(biāo)準(zhǔn)化協(xié)會(huì).CECS141:2002給水排水工程埋地鋼管管道結(jié)構(gòu)設(shè)計(jì)規(guī)程[S].北京:中國(guó)建筑工業(yè)出版社,2002.
[20]石長(zhǎng)征,伍鶴皋,袁文娜.柔性回填鋼管的設(shè)計(jì)方法與實(shí)例分析[C]//第八屆全國(guó)水電站壓力管道學(xué)術(shù)會(huì)議論文集,2014.
DOI:10.3969/j.issn.1672-1144.2015.04.042
收稿日期:2015-02-11修稿日期:2015-03-09
作者簡(jiǎn)介:張靜(1990—),女,四川安岳人,碩士研究生,研究方向?yàn)樗煽慷壤碚?。E-mail:18099175425@163.com 通訊作者:王長(zhǎng)新(1957—),男,遼寧撫順人,教授,博士生導(dǎo)師,主要從事水工水力學(xué)、河流泥沙和水力可靠度理論方面的研究和教學(xué)工作。E-mail:wangcx@xjau.edu.cn
中圖分類號(hào):TV732.4+1 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1672—1144(2015)04—0210—05
Risk Analysis of Water Hammer in Steel Penstocks Based on Monte Carlo Method
ZHANG Jing, WANG Changxin
(CollegeofHydraulicandCivilEngineering,XinjiangAgriculturalUniversity,Urumqi,Xinjiang830052,China)
Abstract:The safety of steel penstock structure in hydropower projects has an important influence on the safe operation of the whole power plant, and the water hammer has a great impact on the safety of the pentocks. Based on this, a performance function was developed to calculate the risk caused by water hammer in the backfill penstock of Tewule hydropower station. Monte Carlo method was adopted to calculate the risk caused by water hammer with or without the consideration of axial stress, and the effect of random variables on the comprehensive risks were analyzed. The results indicate that the fourth strength theorem is more suitable for the risk calculation. This will provide the theoretical basis for the design of steel penstocks.
Keywords:random variables; Monte Carlo method; backfill penstock; risk value