馬丁·克里格爾 巴巴拉·芒奇 克勞斯·斯蒂芬 克勞斯·崔里希 (德)
林波榮 鄭曉笛 曾 穎 李思遙 [譯]
邁向“零碳”校園
——一個聚焦于柏林工業(yè)大學(xué)的泛歐洲校園聯(lián)盟
馬丁·克里格爾(德國柏林工業(yè)大學(xué))
Martin Kriegel, Technische Universit?t Berlin, Berlin, Germany
巴巴拉·芒奇(德國柏林工業(yè)大學(xué))
Barbara Münch, Technische Universit?t Berlin, Berlin, Germany
馬丁·克里格爾 巴巴拉·芒奇 克勞斯·斯蒂芬 克勞斯·崔里希 (德)
林波榮 鄭曉笛 曾 穎 李思遙 [譯]
克勞斯·斯蒂芬(德國柏林工業(yè)大學(xué))
Claus Steffan, Technische Universit?t Berlin, Berlin, Germany
克勞斯·崔里希(德國柏林工業(yè)大學(xué))
Klaus Zillich, Technische Universit?t Berlin, Berlin, Germany
[譯者] 林伯榮 鄭曉笛 曾 穎 李思遙(清華大學(xué))
[Translator] LIN Borong, ZHENG Xiaodi, ZENG Ying, LI Siyao, Tsinghua University, Beijing, China
馬丁·克里格爾(Martin Kriegel)教授多年從事規(guī)劃、項目管理建筑技術(shù)等領(lǐng)域的研究與實踐工作,2011年起擔(dān)任柏林工業(yè)大學(xué)Hermann-Rietschel-Institut負責(zé)人,2013年起擔(dān)任柏林工業(yè)大學(xué)能源學(xué)院(Institute for Energy) 主管。
巴巴拉·芒奇 (Barbara Münch) 是德國柏林工業(yè)大學(xué)建筑系講師,多年從事節(jié)能建筑和可持續(xù)城市發(fā)展、遺產(chǎn)保護等領(lǐng)域的教學(xué)和研究工作,曾在清華大學(xué)和北京建筑大學(xué)進行教學(xué)和研究工作,并發(fā)表多篇關(guān)于中國建筑與城市發(fā)展的論文。
克勞斯·斯蒂芬 (Claus Steffan) 是德國著名建筑師,現(xiàn)為柏林工業(yè)大學(xué)規(guī)劃與建筑環(huán)境學(xué)院副院長、教授,并任慕尼黑PSA Architects事務(wù)所負責(zé)人。他長期從事可持續(xù)建筑領(lǐng)域的研究與實踐,曾在德國慕尼黑美術(shù)學(xué)院、美國麻省理工學(xué)院等學(xué)校任教。
克勞斯·崔里希 (Klaus Zillich) 是德國著名建筑師,1989——2012年任柏林工業(yè)大學(xué)建筑系教授。他1996年獲得柏林建筑獎;2010年主持唐山北郊污水處理廠更新設(shè)計研究。 2014年起,他與本文另三位作者一道發(fā)起并組織了一項泛歐洲可持續(xù)校園聯(lián)盟研究。本文就是該項研究部分成果的匯總。
來源:作者提供。
Received Date: February 27, 2015
本文展示了大學(xué)校園如何作為氣候創(chuàng)新的引擎并成為生態(tài)創(chuàng)新與低碳設(shè)計的試驗平臺。
眾所周知,世界正在遭受氣候變化和自然資源枯竭的折磨。建筑行業(yè)貢獻了全球能源領(lǐng)域CO2排放量的30%~40%,消耗了全世界能源的40%。與此同時,建筑行業(yè)也成為緩解該壓力的最為經(jīng)濟有效的領(lǐng)域[1-3]。對城市規(guī)劃師與建筑師而言,致力于減緩氣候變化和自然資源枯竭成為一項重要的任務(wù)。然而,他們無法僅依靠自身來完成這項工作。解決這樣一個巨大尺度的問題,需要一種創(chuàng)新的跨學(xué)科途徑,不僅把不同學(xué)科領(lǐng)域內(nèi)最優(yōu)秀的人聚集在一起,還可以將政府、公共機構(gòu)、科學(xué)家、企業(yè)和公眾等社會不同領(lǐng)域組織在一起。此外,為了達到既定目標(biāo),這種方法不能局限于某一國家之內(nèi),而是需要建立一個強大的國際網(wǎng)絡(luò),以使知識得到共享與互換。只有如此,可持續(xù)發(fā)展才可以加速,快到足以及時地應(yīng)對氣候變化和自然資源枯竭。
大學(xué)校園本身就是個小城市。它們是運用綜合跨學(xué)科途徑的最佳環(huán)境,因為這里不僅擁有所有學(xué)科中最聰慧且最具創(chuàng)新思想的人才,還與政府、公共機構(gòu)、公司和其他科學(xué)家聯(lián)系廣泛。在這里,未來的一代接受教育,他們將更多地受到由氣候變化所帶來的負面影響,并具有盡快找到解決方案的緊迫感。在校園里,年輕的一代在早期階段就接觸到關(guān)于氣候調(diào)節(jié)的最先進的研究成果,并養(yǎng)成一種全新的環(huán)境意識。這些將幫助他們找到所急需的解決方案來對抗氣候變化和自然資源枯竭,以塑造一個更可持續(xù)的未來。
在實踐中,大學(xué)校園作為試驗場,也提供了非常有利的條件:校園具有統(tǒng)一的所有權(quán)和自我管理的系統(tǒng),有自己的設(shè)備和能源管理體系,有自己的能源供應(yīng)系統(tǒng),以及特定的使用對象團體——學(xué)生、教師和員工,并在校園內(nèi)就具有所有必要的專業(yè)知識和研究能力。它們可以同時作為培育基地、生活實驗室、終端用戶、乘數(shù)效應(yīng)者和企業(yè)家,從而成為氣候創(chuàng)新的范例和領(lǐng)導(dǎo)者。本文將聚焦于德國柏林工業(yè)大學(xué)校園,詳細闡釋其作為可持續(xù)城市街區(qū)試點的范例性特征。
論文主體內(nèi)容分為三個章節(jié),由8篇相對獨立的文章構(gòu)成。其中,A部分為一個章節(jié),由題為“作為區(qū)域氣候創(chuàng)新引擎的泛歐洲校園聯(lián)盟”的文章構(gòu)成;B1部分為第二個章節(jié),由題為“2020年能源高效的柏林大學(xué)校園”的文章構(gòu)成;B2部分是第三個章節(jié),由6篇介紹關(guān)鍵可持續(xù)技術(shù)的文章構(gòu)成。
跨學(xué)科研究的關(guān)鍵是學(xué)科交叉。因此,論文主體不僅介紹校園建筑與城市設(shè)計的挑戰(zhàn),更聚焦關(guān)鍵性的可持續(xù)支撐技術(shù)。作為邁向零碳排放校園建設(shè)的第一步,這些技術(shù)正在柏林工業(yè)大學(xué)研發(fā)。這也是本論文的一大亮點。
作為區(qū)域氣候創(chuàng)新引擎的泛歐洲校園聯(lián)盟可持續(xù)校園:發(fā)動用戶(SCLC)
A Pan-European Campus Network as Regional Climate Innovation Engines Sustainable Campus: Launching Customer (SCLC)
弗朗西斯卡·卡培拉羅 葛簡·德·沃克 杰倫·納格爾
Francesca Cappellaro, Gertjan de Werk, Jeroen Nageld
弗朗西斯卡·卡培拉羅(意大利博洛尼亞大學(xué),意大利國家新技術(shù)、能源和可持續(xù)經(jīng)濟發(fā)展局)
Francesca Cappellaro, University of Bologna / Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Italy
葛簡·德·沃克(荷蘭代爾夫特理工大學(xué))
Gertjan de Werk, TU Delft, the Netherlands
杰倫·納格爾(荷蘭烏得勒支大學(xué),烏得勒支可持續(xù)發(fā)展研究所)Jeroen Nagel, Utrecht University / Utrecht Sustainability Institute, the Netherlands
針對明確的重大社會挑戰(zhàn),歐盟發(fā)起了若干個知識與創(chuàng)新共同體(Knowledge and Innovation Communities,KIC)。針對重大挑戰(zhàn)之一的氣候變化,“氣候知識與創(chuàng)新共同體”(Climate-KIC)于2011年成立。目前,擁有240多個機構(gòu)參與的共同體建立了歐洲規(guī)模最大的、公私合作的創(chuàng)新型伙伴關(guān)系,共同應(yīng)對氣候變化的挑戰(zhàn)。該共同體通過在大型與小型、地方與全球、私人、公共與學(xué)術(shù)領(lǐng)域之間建立創(chuàng)造性伙伴關(guān)系,來推動應(yīng)對氣候變化的創(chuàng)新。該共同體由教育、創(chuàng)業(yè)和創(chuàng)新三個重要支柱領(lǐng)域組成。創(chuàng)新支柱領(lǐng)域被劃分為八個專題平臺,其中一個為“實現(xiàn)轉(zhuǎn)變平臺”(Making Transitions Happen, MTH)。這些平臺向他們的社區(qū)發(fā)出提交項目意向書的邀請,以啟動在其主題范圍內(nèi)的項目研究。所采用的方法是,先從為期約一年時間的小規(guī)?!疤铰氛摺表椖块_始,如果成功,可以成長為一個完整的創(chuàng)新項目,有更多的合作伙伴參與,并持續(xù)更長的2~3年時間。除此以外,這些專題平臺還運行一些“旗艦”項目,它們涉及更復(fù)雜、更具整合性的挑戰(zhàn),也有更多的參與團體。本文介紹的是“探路者”項目——可持續(xù)校園:發(fā)動用戶(SCLC)的一些初步成果,并展示了作為項目參與者之一的柏林工業(yè)大學(xué)的更為深入的案例。據(jù)此,對于隨后進行的創(chuàng)新項目的應(yīng)用,我們掀起了面紗的一角,這一項目就是“協(xié)同大學(xué)校園推動氣候創(chuàng)新融入社會”(SUCCESS),目前該項目正處于審核過程中。本文中介紹的兩個合作伙伴因其特殊的專業(yè)知識而參與其中。如需更多了解climate-KIC的相關(guān)信息,請查看網(wǎng)站www.climate-kic.org。
1 背景
我們的社會正不斷面臨與氣候變化和自然資源枯竭相關(guān)的新挑戰(zhàn)。為獲取能源的礦物燃料開采、不可再生資源的消耗、溫室氣體的排放都會影響到現(xiàn)在和未來幾代人的發(fā)展。我們越來越需要一種大刀闊斧的系統(tǒng)性創(chuàng)新,將那些不可持續(xù)的活動和行為轉(zhuǎn)變?yōu)殚L期的、利于人類福祉與氣候友好的系統(tǒng)。我們需要一種跨學(xué)科的方法,以應(yīng)對氣候變化引起的各種復(fù)雜問題,并加速轉(zhuǎn)變?yōu)橐粋€可持續(xù)性社會。盡管各種清潔技術(shù)不斷涌現(xiàn),然而為了讓這些技術(shù)走向市場,提高其在經(jīng)濟、環(huán)境和社會變化方面進行轉(zhuǎn)換的策略和過程是至關(guān)重要的。在這種情況下,一個影響社會變化動態(tài)的轉(zhuǎn)變引擎,是走向低碳社會的關(guān)鍵因素。
2 大學(xué)校園作為社會挑戰(zhàn)的試驗平臺
大學(xué)校園具有創(chuàng)造和發(fā)展可持續(xù)性系統(tǒng)創(chuàng)新的所有先決條件:智慧的頭腦,與政府、公司和其他科學(xué)家建立的國際網(wǎng)絡(luò)聯(lián)系,足夠的空間,以及實現(xiàn)創(chuàng)新所需的設(shè)備及未來一代人才。另外兩方面重要趨勢是:第一,現(xiàn)今,政府和校園所在的當(dāng)?shù)厣鐓^(qū)認為大學(xué)應(yīng)該對社會問題提出解決方案;第二,由于能源、水和廢物等資源越來越昂貴,且政府的資助逐漸減少,大學(xué)希望將自身的運作系統(tǒng)進行優(yōu)化。建立一個高效的生態(tài)創(chuàng)新體系,有助于將大學(xué)校園轉(zhuǎn)變?yōu)閰^(qū)域氣候創(chuàng)新引擎,使其在走向低碳社會進程中扮演重要角色。創(chuàng)建該高效的生態(tài)創(chuàng)新體系將促進實質(zhì)性的轉(zhuǎn)變,涉及到大學(xué)及其校園在結(jié)構(gòu)、文化、組織,以及在整個社會中所扮演角色等方面的適應(yīng)性改變。校園可以進一步加快技術(shù)創(chuàng)新在社會中的應(yīng)用與傳播。
本文展示了由幾座歐洲校園所推進的可持續(xù)性轉(zhuǎn)型提案,這些提案是在歐洲創(chuàng)新與技術(shù)學(xué)院的氣候知識與創(chuàng)新共同體(Climate-KIC)項目的框架下提出的。例如,“可持續(xù)校園發(fā)動用戶”(Sustainable Campus Launching Customer)項目證明了大學(xué)作為區(qū)域性氣候創(chuàng)新的引擎,有雄心在氣候創(chuàng)新方面擔(dān)當(dāng)重要角色。關(guān)于“技術(shù)推動型”與“需求拉動型”兩種創(chuàng)新模式有效性的討論廣為人知。當(dāng)前的現(xiàn)狀似乎是在校園中采用技術(shù)推動型模型,項目目標(biāo)在于開放校園社區(qū),使其以社會需求作為研究問題的輸入并在實驗室中進行測試,隨后將其應(yīng)用回城市和社會(圖1)。
為了給項目成員中的大學(xué)創(chuàng)建一個創(chuàng)新型模型,我們把現(xiàn)有的兩種模式相結(jié)合。一種是更為傳統(tǒng)的(業(yè)務(wù))階段決策模型,將大學(xué)中生態(tài)系統(tǒng)的特定參與者與過程結(jié)合在一起,另一種為美國宇航局技術(shù)成熟度水平指示模型,分別如圖2和圖3所示。
圖4展示了項目已開發(fā)的大學(xué)創(chuàng)新渠道。
在箭頭的頭部,我們引入了階段0——顯示活躍的社會需求,和階段10——通過在社會上的傳播與采用而實現(xiàn)的某一創(chuàng)新的廣泛傳播。技術(shù)成熟度水平(TRL)被重新定義為創(chuàng)新成熟度水平(IRL)。
其意圖是為了動態(tài)地標(biāo)示出不同大學(xué)在這一渠道下的不同創(chuàng)新,以簡化項目合作者之間知識交流的過程。關(guān)于創(chuàng)新及創(chuàng)新推進過程的初步總覽信息,可以從以下網(wǎng)址獲得:www. sustainablecampus.eu/eplanete/diamonds/。
如需了解關(guān)于該項目及其參與者的更多信息,請查看我們的網(wǎng)站:www.sustainablecampus.eu。
圖1 / Figure 1校園應(yīng)如何解決來自于社會的氣候挑戰(zhàn)的概念圖式Conceptual scheme on how the campuses should solve climate challenges of society
圖2 / Figure 2典型的二代階段決策過程a typical second-generation stage-gate-processCooper et al. 1990, p.46. http://www.tuhh.de/tim/downloads/arbeitspapiere/Working_Paper_12.pdf.
圖3 / Figure 3美國宇航局技術(shù)成熟度水平NASA Technology Readiness Levelshttp://www.nasa.gov/sites/default/files/trl.png (definitions http://esto.nasa.gov/ files/trl_definitions.pdf).
3 協(xié)同大學(xué)校園推動氣候創(chuàng)新融入社會(SUCCESS)
如上所述,我們想將該創(chuàng)新項目未來計劃發(fā)展思想的面紗揭開一角。大學(xué)校園可以被看作小城市——它們面臨類似的挑戰(zhàn),校園問題通常采用城市中的常規(guī)方法來進行應(yīng)對。然而,校園里擁有當(dāng)前最杰出的頭腦,有準(zhǔn)備并且有能力面對這些挑戰(zhàn)。
我們的目標(biāo)是創(chuàng)建一個強大的氣候創(chuàng)新引擎:一個泛歐洲校園聯(lián)盟。在該聯(lián)盟中,通過知識、技能、經(jīng)驗和方法的交流,氣候創(chuàng)新在這些校園中得到高效發(fā)展。我們將構(gòu)建實體的和虛擬的基礎(chǔ)設(shè)施,使這些思想在由需求所帶動的氣候創(chuàng)新中發(fā)揮最大潛能。基于在意大利博洛尼亞的成功經(jīng)驗,該引擎將在由互動轉(zhuǎn)型團隊(TTs)管理的向低碳社會的轉(zhuǎn)變過程中發(fā)揮強有力作用。自然而然地,隨著發(fā)動用戶將整個地區(qū)作為潛在的利基市場(niche markets)而創(chuàng)建了聯(lián)系,成功的創(chuàng)新將被銷售給多所大學(xué)。我們將開發(fā)一種創(chuàng)新型校園轉(zhuǎn)型工具包,以推進并保持該創(chuàng)新引擎的運轉(zhuǎn)。該工具包的核心要素將包括具有不斷擴大潛力的數(shù)據(jù)庫、基準(zhǔn)設(shè)定、儀表板和評估工具。圖5展示了這一氣候創(chuàng)新引擎的意向圖。
該工具包將被開發(fā)成交互式、基于網(wǎng)絡(luò)平臺的工具,以挑選現(xiàn)有的示例策略、產(chǎn)品、生活實驗室范例等,通過快速學(xué)習(xí)、分享、整合并優(yōu)化氣候創(chuàng)新來加速自身校園的可持續(xù)策略。圖6展示了一個示例模型。
4 從SCLC到SUCCESS,以意大利博洛尼亞大學(xué)和瑞典查爾姆斯理工大學(xué)為例
在歐洲和世界范圍內(nèi),自發(fā)的可持續(xù)校園項目已實現(xiàn)大量增長。所有這些項目幫助大學(xué)建立可持續(xù)發(fā)展原則,并推動校園在日常運營中可持續(xù)性的實施。在研究和教育之外,實現(xiàn)可持續(xù)性的過程也包括將大學(xué)視為一個組織。將可持續(xù)發(fā)展付諸行動需要不同的、特定的方式。這可以創(chuàng)造一種通用知識,使大學(xué)所在社區(qū)的眾多成員參與其中。通過把所學(xué)到的最佳實踐、解決方案和經(jīng)驗教訓(xùn)等知識匯集在一起,關(guān)鍵網(wǎng)絡(luò)系統(tǒng)實現(xiàn)經(jīng)驗匯總,這在成功地將高等教育機構(gòu)轉(zhuǎn)變?yōu)榭沙掷m(xù)發(fā)展之地的過程中至關(guān)重要。這一領(lǐng)域無論在技術(shù)還是行動層面均具有很大的發(fā)展?jié)摿Α?/p>
4.1 意大利博洛尼亞大學(xué):示范將校園轉(zhuǎn)變?yōu)樯顚嶒炇?/p>
博洛尼亞大學(xué)(The University of Bologna)是意大利最大的高等教育機構(gòu)之一。其特拉茨尼校園(Terracini Campus)展示了一種轉(zhuǎn)型方式,為在轉(zhuǎn)型過程的實際應(yīng)用層面上可持續(xù)性的實現(xiàn)打下基礎(chǔ)。該大學(xué)已為其自身打造了一個可持續(xù)性行動計劃。其采用的轉(zhuǎn)型方法有助于校園本身通過采取行動,來發(fā)展一種為教學(xué)和研究實踐服務(wù)的反饋機制,同時建立一個強大的可持續(xù)性社區(qū)。大學(xué)層面主動選擇研究可持續(xù)性還具有另一個優(yōu)點,即在可持續(xù)性的科學(xué)領(lǐng)域中、在可持續(xù)性轉(zhuǎn)型的理論方面揭示新的考量和貢獻。這一示范方法分為戰(zhàn)略、戰(zhàn)術(shù)和操作三個階段。在戰(zhàn)略階段,博洛尼亞大學(xué)為轉(zhuǎn)型管理搭建平臺,并在大學(xué)層面探討了其動態(tài)性。學(xué)校成立了轉(zhuǎn)型工作組,使包括學(xué)生、管理人員和教師在內(nèi)的整個大學(xué)社區(qū)參與其中。此外,兼顧頂層管理投入、員工及學(xué)生參與的做法,為大學(xué)的可持續(xù)項目提供了最佳機會,無論是在成功的起步階段還是在遠期運營階段。第二階段是戰(zhàn)術(shù)階段,進一步界定了轉(zhuǎn)型中的挑戰(zhàn)以及遠期發(fā)展的愿景框架。第三階段為實際操作階段,下文會進行更為深入的介紹。
圖4 / Figure 4SCLC項目中的大學(xué)創(chuàng)新渠道University's innovation funnel in the context of the SCLC project
圖5 / Figure 5由校園轉(zhuǎn)型工具包所管理的終極氣候創(chuàng)新引擎The ultimate climate innovation engine managed with the campus transition toolkit
4.2 實際操作階段的專點試驗
操作階段包括兩部分:發(fā)展小規(guī)??沙掷m(xù)議案的行動和實用建議。所有這些轉(zhuǎn)型試驗都嚴格地與加快實施博洛尼亞大學(xué)可持續(xù)發(fā)展行動計劃相銜接。在轉(zhuǎn)型過程中,小規(guī)模議案被稱為轉(zhuǎn)型試驗,也被稱為“專點試驗”(niche-experiments)。當(dāng)這些“專點”被廣泛傳播和采用時,它們具有產(chǎn)生突破性成果的可能性。轉(zhuǎn)型試驗的運行,可能提高人們的意識并加強利益相關(guān)者的參與。通過對可持續(xù)校園進程中對象、目標(biāo)和績效進行界定,實施可持續(xù)發(fā)展計劃是一種加強和聯(lián)系現(xiàn)有可持續(xù)最佳實踐的途徑。可持續(xù)性計劃有助于克服缺點,增強優(yōu)勢。最后,這還創(chuàng)造了一個擴展現(xiàn)有知識并引入新可持續(xù)性問題的機會。此外,有一個管理可持續(xù)校園的路徑值得一提,即國際可持續(xù)校園聯(lián)盟和全球大學(xué)領(lǐng)導(dǎo)人論壇(GULF)關(guān)于可持續(xù)校園憲章(International Sustainable Campus Network, ISCN, 2014)的提案。該憲章以整體方式來應(yīng)對可持續(xù)性為目標(biāo),將校園對可持續(xù)性的承諾梳理為一個嵌套層次結(jié)構(gòu),包括單體建筑、全校范圍規(guī)劃與目標(biāo)設(shè)定,以及以可持續(xù)性為目標(biāo)的研究、教學(xué)、拓展和設(shè)施的整合(圖7)。
如圖7所示,可持續(xù)計劃的實施可以成為一個涉及整個大學(xué)和更大范圍的有益過程。然而,計劃過程不僅要對各種活動的可持續(xù)性進行監(jiān)測,還要為來自大學(xué)社區(qū)及外部利益相關(guān)者參與其中創(chuàng)造機會。為此,特拉茨尼可持續(xù)發(fā)展行動計劃包括了技術(shù)措施和有助于整合管理活動的附加行動,以增加大學(xué)向可持續(xù)發(fā)展邁進的變革能力。這些行動中還包括為學(xué)生創(chuàng)造轉(zhuǎn)型試驗室等教育類活動。這是一個特殊的課程,在這里,學(xué)生可以在校園可持續(xù)發(fā)展具體行動的設(shè)計中將技術(shù)知識付諸實踐。另一項附加提案是建立跨學(xué)科的團隊,來自大學(xué)不同院系的教師和研究人員共同關(guān)注可持續(xù)性主題的研究。這一團隊被命名為阿爾瑪?shù)吞技裳芯拷M(Alma Low-Carbon Integrated Research Team),有超過160名博洛尼亞大學(xué)的研究人員參與其中。學(xué)校在可持續(xù)發(fā)展主題范圍內(nèi)的多學(xué)科研究能力得以整合,促進了以科學(xué)進步為目標(biāo)的跨學(xué)科路徑與戰(zhàn)略愿景的發(fā)展。
4.3 結(jié)論
我們展示了博洛尼亞大學(xué)特拉茨尼校園的轉(zhuǎn)型試驗平臺。案例顯示出超越僅對環(huán)境性能與效率進行改善的必要性??沙掷m(xù)性提案缺乏與校園現(xiàn)實生活的整合,是限制其達到互相關(guān)聯(lián)更為緊密且持久的局限因素。依據(jù)這些目標(biāo),在博洛尼亞大學(xué)特拉茨尼校園采用的轉(zhuǎn)型管理方式,創(chuàng)造了真正邁向可持續(xù)發(fā)展的轉(zhuǎn)型機會。我們介紹了其轉(zhuǎn)型之路的發(fā)展,包括將可持續(xù)發(fā)展提案作為可持續(xù)性轉(zhuǎn)型的專點試驗。轉(zhuǎn)型過程幫助人們提高意識,使其他利益相關(guān)者參與其中,并在不同參與者之間創(chuàng)建了新的網(wǎng)絡(luò)系統(tǒng)。作為結(jié)果,一個增強大學(xué)向可持續(xù)發(fā)展邁進轉(zhuǎn)型能力的學(xué)習(xí)過程得以建立。總體來說,本文論證了在應(yīng)對可持續(xù)發(fā)展危機的動態(tài)、復(fù)雜因素過程中,大學(xué)在形成具體解決方案與策略方面可以扮演重要角色。為實現(xiàn)這種期望,至關(guān)重要的是把教育、研究和社會貢獻無縫地結(jié)合成一個整體,然后在制度化過程中將其提升并強化。
4.4 瑞典查爾姆斯理工大學(xué):在校園體驗和測試城市地區(qū)可持續(xù)發(fā)展要求
圖6 / Figure 6校園轉(zhuǎn)型工具包的界面Interface of the Campus Transition Toolkit
圖7 / Figure 7ISCN-GULF可持續(xù)校園憲章(ISCN, 2014)的基礎(chǔ)原則Basing principles of ISCN-GULF Sustainable Campus Charter (ISCN, 2014)
查爾姆斯理工大學(xué)(Chalmers University of Technology)位于瑞典西海岸的哥德堡。學(xué)校有12,000名學(xué)生和3,000名員工,分布于兩個校區(qū)。查爾姆斯是一所研究型大學(xué),其工程與建筑學(xué)教育及所有的碩士生學(xué)位課程處于國際領(lǐng)先地位。約翰伯格科技園(Johanneberg Science Park)隸屬于查爾姆斯大學(xué),在這里知識和創(chuàng)新與相關(guān)的國家及國際級公司、市政當(dāng)局和地區(qū)緊密結(jié)合。約翰伯格科技園被選為Climate KIC旗艦項目“智慧可持續(xù)地區(qū)”(Smart Sustainable Districts)的核心區(qū)域。因此,該地區(qū)建立了雄心勃勃的“改進因素10”(factor 10 improvement)愿景。該校園對世界領(lǐng)先的創(chuàng)新者而言,是一個理想的試驗場。查爾姆斯大學(xué)正處于可持續(xù)校園發(fā)展進程中。這是由一位副校長領(lǐng)導(dǎo)的校園發(fā)展指導(dǎo)委員會和查爾姆斯環(huán)境辦公室及Fastigheter AB地產(chǎn)公司共同協(xié)作進行的。查爾姆斯理工大學(xué)最近進行了一次標(biāo)示建筑可持續(xù)性水平方法(BREEAM)的社區(qū)測試,涉及校園范圍內(nèi)廣泛的利益相關(guān)者。其可持續(xù)發(fā)展目標(biāo)引導(dǎo)著校園的發(fā)展過程。校園發(fā)展的一個主要驅(qū)動力是綠色通行計劃(Green Travel Plan),計劃中校園將擴充5,000名新員工,其中很多來自商業(yè)與創(chuàng)新領(lǐng)域,但計劃中沒有新增車輛。正在進行的“因素10”具有很強的包容性,涉及商業(yè)與社會中多方利益相關(guān)者。在約翰伯格科技園內(nèi),一些標(biāo)志性項目正在進行中,包括雷克斯比艮正面碳足跡住宅項目(Riksbyggen Positive Footprint Housing)和HSB生活實驗室等。在創(chuàng)業(yè)方面,查爾姆斯有三個組織負責(zé)學(xué)生教育和創(chuàng)業(yè)及創(chuàng)新的市場推廣。自2012年以來,基于在教育、研究、創(chuàng)新與內(nèi)部環(huán)境方面的系統(tǒng)性工作,以及教育、研究與校園物質(zhì)實體的積極關(guān)聯(lián),查爾姆斯獲得了ISO 14001的環(huán)境認證。查爾姆斯為SUCCESS項目的理念、創(chuàng)新與工具數(shù)據(jù)庫做出了貢獻,并與智慧可持續(xù)地區(qū)的資源箱建立了聯(lián)系。該系統(tǒng)工具可以在聯(lián)盟中的其他大學(xué)進行復(fù)制。
此外,查爾姆斯理工大學(xué)與沃爾沃集團、沃里克與巴倫西亞(Warwick and Valencia)等合作伙伴在低碳汽車等特定領(lǐng)域的合作,將為新型交通工具的進一步研發(fā)與測試貢獻力量。
柏林工業(yè)大學(xué)、代爾夫特理工大學(xué)和烏得勒支大學(xué)已被指定為試點大學(xué)。參見:www.sustainablecampus.eu。
TU Berlin, TU Delft and Utrecht University have been appointed as Pilot Universities. See: www.sustainablecampus.eu.
在研究型大學(xué)國際聯(lián)盟(IARU)最近公布的“大學(xué)綠色指南”中可以找到有趣的“生活實驗室”途徑。
Find also interesting ‘living lab’ approaches in the recent International Alliance of Research Universities (IARU) “Green Guide for Universities”.
2020年能源高效的柏林大學(xué)校園SCLC先鋒項目——柏林工業(yè)大學(xué)
Energy Efficient University Campus Berlin 2020 SCLC Pilot Technische Universit?t Berlin
馬丁·克里格爾 巴巴拉·芒奇 克勞斯·斯蒂芬 克勞斯·崔里希 (德)
Martin Kriegel, Barbara Münch, Claus Steffan, Klaus Zillich
1 介紹
鑒于2011年日本福島核電站事故之后相繼發(fā)生的核災(zāi)難事件,德國聯(lián)邦政府已經(jīng)決定在短期內(nèi)逐步停用核能,并擴展可再生能源的使用。該項決定被稱為德國的“能源轉(zhuǎn)向計劃”(Energiewende)。德國聯(lián)邦政府采取了一項雄心勃勃的“2020/2050能源理念”,以期緩解并適應(yīng)氣候變化。
——2020年 比1990年溫室氣體排放水平減少40%
——2020年 比2008年能源效率提高20%
——2020年 將能源消耗中可再生能源所占比例提高至18%
——2050年 比1990年溫室氣體排放水平減少85%~95%
——2050年 比2008年能源效率提高80%
——2050年 將能源消耗中可再生能源所占比例提高至60%
為加速實現(xiàn)這些目標(biāo),德國聯(lián)邦經(jīng)濟與能源局(BMWi)發(fā)起了一項研究基金項目,主要內(nèi)容包括三項研究焦點,即能源高效城市、能源高效校園、能源高效:熱量與能源優(yōu)化建筑。
該項目的重要性基于這樣一個事實:德國約40%的最終能源消耗是建筑領(lǐng)域所造成的。同時,建筑領(lǐng)域具有最具成本效益的減排潛力,突顯了城市規(guī)劃師、建筑師和工程師在應(yīng)對氣候變化與自然資源消耗問題上的重要作用。2010年,柏林的CO2排放量為2,130百萬噸,其中約47%來自建筑領(lǐng)域。建筑領(lǐng)域是最重要的CO2排放者(見“2050氣候中立的柏林”(Climate Neutral Berlin 2050)[4])。
基于“2020/2050聯(lián)邦能源理念”,柏林大學(xué)校園(柏林工業(yè)大學(xué)和柏林藝術(shù)大學(xué))正在申請2015——2020年的BMWi基金,希望將校園打造為示范項目:柏林夏洛騰堡能源高效高校校園(Energy Efficient Hochschul Campus Berlin Charlottenburg),以下簡稱EnEff: HCBC校園。項目旨在于2020年以前建設(shè)生態(tài)創(chuàng)新與氣候友好的先鋒柏林城市街區(qū),甚至設(shè)定了比政府項目更大的愿景。參照諸如哥本哈根在2025年將CO2排放量減少100%[4]等相近目標(biāo),EnEff: HCBC校園正在制訂自身的愿景——“氣候地區(qū)2020”(Climate Kiez 2020)[4],其更加雄心勃勃的目標(biāo)包括:100%溫室氣體減排,100%可再生能源應(yīng)用,100%能源效率提升。
2014年3月,柏林工業(yè)大學(xué)加入了上文介紹的泛歐洲校園聯(lián)盟SCLC“可持續(xù)校園發(fā)動用戶”項目,與荷蘭代爾夫特理工大學(xué)和烏德勒支大學(xué)一起被指定為“試點大學(xué)”。
柏林工業(yè)大學(xué)擁有兩位在減緩與適應(yīng)氣候變化領(lǐng)域最杰出的人物。2012年,波茨坦氣候影響研究所(PIK)主任約翰·施蘭赫伯教授(John Schellnhuber)被柏林工業(yè)大學(xué)授予名譽博士學(xué)位并成為學(xué)校一員;奧特瑪爾·埃登霍費爾教授(Ottmar Edenhofer)作為PIK成員及政府間氣候變化專門委員會的領(lǐng)導(dǎo)成員,在柏林工業(yè)大學(xué)擔(dān)任“氣候變化經(jīng)濟學(xué)”的主任。
2 HCBC校園及其優(yōu)越的地理位置
HCBC校園是柏林的四個核心城市熱點之一。柏林中心城區(qū)的肌理結(jié)構(gòu)是由四個關(guān)鍵的交通路口所界定出的四個主要城市中心構(gòu)成的:動物園/城西,柏林中央火車站/施普雷河灣(北),波茨坦廣場/CBD波茨坦/萊比錫廣場(南),亞歷山大廣場/城東。這四處城市中心因首都柏林四個顯著的世界級政治、科學(xué)與文化機構(gòu)而聞名:
(1) 夏洛滕堡科學(xué)與藝術(shù)學(xué)校,城西
(2) 施普雷河灣聯(lián)邦政府論壇
(3) 波茨坦廣場附近的文化論壇
(4) 博物館島和“執(zhí)政市長的”市政廳,城東
夏洛騰堡校園尤其具有獨特的城市特質(zhì):HCBC校園與城市的主要東西軸線“六月十七大道”相交。此外,校園緊臨重要的交通樞紐“柏林動物園”,為所在社區(qū)提供了完美的公共交通連接,包括一個主要的長途火車站、城市快速列車站、地鐵站和柏林中央汽車站。城市核心——“城西”也緊臨校園。
120m寬的城市軸線“六月十七大道”與整片校園區(qū)域相交,將其切成南北兩半。如此一來,柏林工業(yè)大學(xué)校園的北界面與南界面就面向著首都柏林這一著名的公共空間,為展示和宣傳提供了理想環(huán)境(圖8)。
此外,HCBC校園緊鄰柏林市中心城區(qū)的綠肺和娛樂區(qū)——“蒂爾加滕”及“柏林動物園”,使其成為更加吸引人的場所。考慮到所有這些特有的品質(zhì),EnEff: HCBC大學(xué)區(qū)在可持續(xù)性的現(xiàn)代化與城市化方面具有出色的先天條件,注定成為契合的先鋒性能源高效城市地區(qū)。
3 HCBC的歷史與地位
1879年,威廉二世皇帝成立了“德累斯頓工業(yè)大學(xué)”,即皇家技術(shù)學(xué)院。該學(xué)院由1799年由建筑師卡爾·弗里德里?!ど昕藸枺↘.F. Schinkel)創(chuàng)辦的著名的建筑學(xué)院和與1821年成立的柏林“商學(xué)院”合并而成。1884年,學(xué)院搬遷至位于夏洛滕堡公路上一個新的、具有代表性的校園建筑,這條公路今天被稱為“六月十七大道”(圖9)?;始壹夹g(shù)學(xué)院專注的科學(xué)領(lǐng)域以“機械工程”和“電氣工程”為代表。19世紀(jì)后十年至20世紀(jì)前十年間,在柏林工業(yè)化向著著名的柏林“電氣都市”前進的路途中,該學(xué)院成為主要支柱之一。老“德累斯頓工業(yè)大學(xué)”的建筑盡管在第二次世界大戰(zhàn)中被部分損毀,但經(jīng)過修復(fù)目前仍是柏林工業(yè)大學(xué)的主要代表建筑,承擔(dān)著校長辦公、行政機關(guān)、奧迪中心和大型校園文化空間等功用。
今天,EnEff: HCBC校園的特點在于高建筑密度。校園中有大約50棟不同尺度、年代和功能的建筑,提供了總計約60萬m2的凈建筑面積。學(xué)?,F(xiàn)有5萬人,其中學(xué)生數(shù)量為4萬。
柏林工業(yè)大學(xué)設(shè)備管理部門表示,校園建筑整體目前面臨著巨大的更新需求,特別是其能源效率問題,涉及超過3億歐元的資本。
校園東側(cè)是柏林工業(yè)大學(xué)/柏林藝術(shù)大學(xué)及城西/柏林動物園的“后院”,可以提供15萬m2作為新城市中心的可持續(xù)建筑空間,潛力巨大。由于其大部分區(qū)域歸屬于柏林工業(yè)大學(xué)和柏林藝術(shù)大學(xué),因此該場地完全可以成為科學(xué)與經(jīng)濟、研究與項目啟動、學(xué)生生活與商務(wù)公寓之間的接口。
4 挑戰(zhàn)
“無論在最好或最壞的情況下,我們的國家都將會成為從化石燃料——核能向高效可再生經(jīng)濟轉(zhuǎn)變的全球模型。但是如果沒有德國最大城市的推動,這樣的轉(zhuǎn)變將不會以一種精彩的方式取得成功?!盵4]——約翰·施蘭赫伯教授
5 目標(biāo)
EnEff: HCBC校園將被作為德國“能源轉(zhuǎn)換計劃”的先鋒進行發(fā)展與宣傳。其核心目標(biāo)是在2020年成為100%溫室氣體減排、100%可再生能源應(yīng)用、100%能源效率提升的校園。為實現(xiàn)這些遠大目標(biāo),EnEff: HCBC校園將轉(zhuǎn)變?yōu)椤澳茉丛鲋祬^(qū)”,即一個綜合使用多種創(chuàng)新節(jié)能技術(shù)的能源生產(chǎn)商。它將因此而成為育種場、試驗場和氣候創(chuàng)新的引擎——一個柏林“氣候地區(qū)”的藍本。[4]
在實操層面,學(xué)校具有成為可持續(xù)城區(qū)發(fā)展范例的有利條件和特點。下列事實促進了試點工程的實施:學(xué)校擁有統(tǒng)一的所有權(quán)、一個被推舉出來的科學(xué)統(tǒng)領(lǐng)、一個能源供應(yīng)系統(tǒng)、一個設(shè)備與能源管理部門,一個由學(xué)生、教授、職工組成的用戶群體,一個由最杰出的人才和科學(xué)家所組成的知識網(wǎng)絡(luò),一個求知若渴的學(xué)生群體。
為達成上述規(guī)劃目標(biāo),以下的重點領(lǐng)域被確證是至關(guān)重要的。
5.1 建筑結(jié)構(gòu)
大學(xué)校園通過一種徹底的可持續(xù)方式來更新現(xiàn)有建筑,在節(jié)約能源和減少CO2排放方面具有很大潛力。EnEff: HCBC校園將以最可持續(xù)的方式來開發(fā)并改善現(xiàn)有建筑的潛力。在城市尺度上,校園的東部將進行可持續(xù)的創(chuàng)新性城市設(shè)計,包括便捷的步行距離、高密度和良好的公交系統(tǒng)可達性等。所有新建筑的設(shè)計都會重點考慮能源效率和資源保護。
5.2 能源生產(chǎn)
HCBC校園作為能源生產(chǎn)商,將基于對場地中可利用的可再生能源的應(yīng)用,使用一系列創(chuàng)新節(jié)能的工廠技術(shù),如太陽能、深層地?zé)?、計算機中心與禮堂等產(chǎn)生的廢熱、植物廢料、動物/大象糞便、污水等。此類關(guān)于城市區(qū)域能源生產(chǎn)的宏大愿景可以參見兩個先進范例:一是位于德國阿倫多夫市的生產(chǎn)性校園、由菲斯曼集團執(zhí)行的戰(zhàn)略性可持續(xù)項目“效率增值”總部[5];二是2011年emhz建筑事務(wù)所在中國唐山進行的“城市基礎(chǔ)設(shè)施向城市公共空間的轉(zhuǎn)型”可行性研究[6]。
5.3 改變用戶行為
25%的能源消耗都是由錯誤的用戶行為所導(dǎo)致的。因此,多種手段與實踐將進行開發(fā)和測試,以激勵學(xué)生、教授、行政職員等校園使用者以一種負責(zé)任的方式參與其中。
6 執(zhí)行策略
EnEff: HCBC校園期望在2020年達到德國聯(lián)邦政府2050年的目標(biāo)。
2013年,HCBC校園的最終能源消耗總共達到100千兆瓦時,相當(dāng)于140千兆瓦時/年的初級能源消耗。
到目前為止,HCBC校園的能源部門做到了持續(xù)改進校園中能源與環(huán)境的平衡關(guān)系,這是通過在可持續(xù)發(fā)展中的積極參與和完成主動能源控制系統(tǒng)來實現(xiàn)的。它正在不斷減少能源消耗,逐步實現(xiàn)新的“能源總體規(guī)劃”。
作為實現(xiàn)EnEff: HCBC校園項目的第一步,我們將推動下列相互關(guān)聯(lián)的項目活動。這些活動部分基于當(dāng)前已有技術(shù),部分基于新開發(fā)的創(chuàng)新技術(shù),部分基于對現(xiàn)有建筑結(jié)構(gòu)的節(jié)能更新和新建筑的節(jié)能建造。活動還包括動員校園使用者通過改變其使用行為來節(jié)約能源,從而支持校園的可持續(xù)性改變:
——原型解決方案的研發(fā),并展示先進的“建筑——能源——系統(tǒng)”與節(jié)能抗噪建筑表皮的結(jié)合/“柔聲氣候圍護結(jié)構(gòu)”(Soft Sound Climate Envelopes)。
——校園區(qū)域、建筑群和單體建筑層面的跨學(xué)科試點與示范項目,聚焦于“零能耗”整修(如數(shù)學(xué)樓,圖10~12)、節(jié)能建筑體量擴大(如柏林藝術(shù)大學(xué)主樓的屋頂,圖13)、生產(chǎn)能源的新建筑即“能源增值建筑”(如校園東區(qū),圖14、圖15),以此將校園轉(zhuǎn)型成進行可持續(xù)性建設(shè)與運轉(zhuǎn)的學(xué)習(xí)、研究和實驗場。
——通過“BNB”(聯(lián)邦可持續(xù)建筑證書)對實現(xiàn)節(jié)能與“能源增值”校園建筑的杰出模型進行認證。
——針對整個校園的創(chuàng)新性“熱量——能源——管理”體系,將評估系統(tǒng)的范圍從單體建筑轉(zhuǎn)向整個HCBC校園。
——校園內(nèi)創(chuàng)新節(jié)能設(shè)備技術(shù)的落實,可將其與多功能建筑進行集成以成倍增加有限空間的利用價值[6,7],或?qū)⑵渥鳛楠毩⒌臉影鍋碚故荆▓D16)。
——綠色校園學(xué)生活動,例如,學(xué)生提案DAEJAYON[8]:在HCBC校園內(nèi)實現(xiàn)節(jié)能獎金模型,向所有校園使用者推廣“綠色法典”。又如,通過國際學(xué)生交流與合作項目,針對氣候問題進行知識交流并提高認知。
7 合作伙伴關(guān)系
圖8 / Figure 8HCBC校園被主要城市軸線穿過——“六月十七大道”HCBC Campus crossed by main city axis “Stra?e des 17. Juni”
圖9 / Figure 9皇家技術(shù)學(xué)院Royal Institute of TechnologyMax Lübke于1885年左右繪制,柏林工業(yè)大學(xué)檔案 / Drawing by Max Lübke undated, around 1885, Archive of TU Berlin
圖10 / Figure 10柏林工業(yè)大學(xué)數(shù)學(xué)樓南立面,六月十七大道上的視角Mathematics Building, TU Berlin, South facade, View from "Stra?e des 17. Juni"https://www.math.tu-berlin.de/fileadmin/i26/Bilder_ Webseite/2007-04-17_Mathegeb_ude.jpg.
圖11 、圖12 / Figure 11 & 12學(xué)生Annika Falkstedt的課程設(shè)計,研討課“新”(Neu),數(shù)學(xué)樓的活力與功能更新,GtE Claus Steffan教授主持Project by student Annika Falkstedt, Seminar, "Neu", energetic and programmatic renewal of the Mathematics Building, Chair GtE Prof. Claus Steffan
圖13 / Figure 13柏林藝術(shù)大學(xué)的屋頂加建項目:建筑師Ernst & Zillich的獲獎設(shè)計Rooftop Enlargement UdK: Winning Project by Architects Ernst & Zillich Ernst和Zillich拍攝 / Photo by Ernst & Zillich
圖14 / Figure 14學(xué)生Violetta Kumsta的課程設(shè)計:沉碳校園,2011年柏林工業(yè)大學(xué)與柏林藝術(shù)大學(xué)的學(xué)生設(shè)計研討課,聯(lián)合主持:Nytsch-Geusen教授(柏林藝術(shù)大學(xué))、Klaus Zillich教授(柏林工業(yè)大學(xué))Project by student Violetta Kumsta, Carbon Sink Campus TU/UdK, Student's Design Seminar TUB/UdK 2011. Chairs: Prof. Dr. Nytsch-Geusen (UdK) / Prof. Klaus Zillich (TUB) Violetta Kumsta繪制 / Visualisations by Violetta Kumsta.
圖15 / Figure 15學(xué)生Violetta Kumsta的課程設(shè)計:沉碳校園,2011年柏林工業(yè)大學(xué)與柏林藝術(shù)大學(xué)的學(xué)生設(shè)計研討課Carbon Sink Campus TU/UdK, Student's Design Seminar TUB/UdK 2011 Violetta Kumsta繪制 / Visualisations by Violetta Kumsta.
圖16 / Figure 161974年蘭德韋爾運河洛克島上的循環(huán)水箱Water Circulation Tank on the Landwehrkanal lock island 1974建筑師路德維格·利奧Architect: Ludwig Leo
圖17 / Figure 17柏林夏洛特堡HCBC Hochschul校園,柏林工業(yè)大學(xué)與柏林藝術(shù)大學(xué)作為“氣候地區(qū)”柏林2020The HCBC Hochschul Campus Berlin Charlottenburg, TUBerlin and UdK as "Climate Kiez" Berlin 2020 Martin Kriegel, Klaus Zillich, Claus Steffa. EnEff_HCBC_Pr?sentation_2014_04_08.
EnEff: HCBC作為首都柏林先鋒校園的成功實現(xiàn),需要強大廣泛的伙伴關(guān)系與合作。因此,大學(xué)、研究機構(gòu)、聯(lián)邦政府(BMWi)、柏林市和私人公司之間的合作是必要且頗具前景的。
科學(xué)和商業(yè)領(lǐng)域的合作伙伴包括:
——PIK 波茨坦氣候影響研究所
——GFZ 波茨坦地學(xué)研究中心/儲層技術(shù)/深層地?zé)崮?/p>
——MPIKG 馬普膠體與界面研究所
——普利德曼表皮實驗室
——GASAG 柏林燃氣集團
——海瑞克深層鉆探研究部
8 關(guān)鍵性可持續(xù)技術(shù)(鉆石DIANOND)
如上所述,我們需要一個跨學(xué)科的、高整合度的途徑以實現(xiàn)HCBC校園項目設(shè)定的宏偉目標(biāo):100%溫室氣體減排,100%可再生能源應(yīng)用,100%能源效率提升。一個關(guān)鍵問題是識別與開發(fā)場地內(nèi)本地已有的可再生能源的新來源,比如太陽能、地?zé)崮?、生物質(zhì)能(校園或公園里的植物廢料、附近動物園的動物糞便),計算機中心、實驗室與禮堂所產(chǎn)生的廢熱等。與此同時,需要開發(fā)新的先進技術(shù)來提高場地上可利用可再生能源的轉(zhuǎn)化、儲存與分配效率。
在后續(xù)的“詳解”章節(jié)中,我們將更詳細地介紹6個被選中的關(guān)鍵性可持續(xù)技術(shù),即“鉆石”(DIAMOND)。所有這些關(guān)鍵性可持續(xù)技術(shù)都是柏林工業(yè)大學(xué)及其合作伙伴的研究項目,也將會成為EnEff: HCBC校園2020年全局策略的一部分。
——整合采暖、制冷和電力的吸收式制冷機
——ATES:含水層蓄熱
——深層地?zé)崮?/p>
——HTC:水熱碳化
——LowExTra:低能耗區(qū)供熱與制冷
——Watergy:來自城市溫室的熱量供給
關(guān)鍵可持續(xù)技術(shù)1 – Diamond 1
用于熱電冷三聯(lián)供的吸收式冷機
Absorption Chillers for Combined Heating, Cooling and Power
斯蒂芬·彼得森 菲利克斯·齊格勒
Stefan Petersen, Felix Ziegler
菲利克斯·齊格勒(德國柏林工業(yè)大學(xué))
Felix Ziegler, Technische Universit?t Berlin, Berlin, Germany
斯蒂芬·彼得森(德國柏林工業(yè)大學(xué))
Stefan Petersen, Technische Universit?t Berlin, Berlin, Germany
在德國、瑞典、丹麥、芬蘭等歐洲國家,超過25%的采暖需求通過集中采暖的方式來達成。在一些北歐國家,這一比例甚至超過70%[9]。在一些月份,歐洲的絕大多數(shù)集中供熱系統(tǒng)都是在低負荷率狀態(tài)下運行。而另一方面,空調(diào)的制冷需求卻在持續(xù)增加。在夏季,低溫驅(qū)動的吸收式冷機可以采用集中供熱提供的熱量來制冷。通過這種方式,集中供熱網(wǎng)絡(luò)的效率可以得到提升,集中供熱的供應(yīng)商可以開拓一個新的市場,冷機的運行可以依靠一個廉價、可靠、生態(tài)的動力來源[10,11]。當(dāng)熱量來自于工業(yè)余熱、發(fā)電廢熱或者太陽能光熱時,吸收式制冷技術(shù)是一種被廣泛運用的節(jié)能制冷裝置。
由柏林工業(yè)大學(xué)(TU Berlin)運行、ZAE Bayern提供技術(shù)支持、Vattenfall Europe提供技術(shù)合作、德國聯(lián)邦經(jīng)濟技術(shù)部提供贊助的研究和技術(shù)開發(fā)示范項目已經(jīng)啟動,這個項目的主要目的是研究50~320kW的高效吸收機。項目的二期工程繼續(xù)由柏林工業(yè)大學(xué)運行,德國機構(gòu)AGFW、BTGA、TU Dresden和ILK Dresden提供支持,德國聯(lián)邦經(jīng)濟技術(shù)部提供贊助。
該項目主要研究高效的制冷過程,包括散熱、水力部件(及由此導(dǎo)致的能耗需求)以及控制。制冷量范圍在50~320kW,這對應(yīng)于一個中等規(guī)模的住宅區(qū)。所以第一步是,在幾個示范點設(shè)計、制造和安裝50kW的冷機。之后,160kW的設(shè)備被研發(fā)出來。這兩種機型的名字分別是Bee和Bumble-Bee,現(xiàn)已在德國境內(nèi)的16個試點地區(qū)進行過現(xiàn)場測試。
冷機設(shè)計工況是可以在25%到140%的額定負荷之間,以不高于0.8的熱COP運行。此外,即使負載率低到5%,它依舊能夠穩(wěn)定運行。
當(dāng)驅(qū)動熱源的入口溫度在55℃到110℃之間變化時(標(biāo)準(zhǔn)的運行工況是供回水溫度分別為90/72℃),冷卻側(cè)入口溫度不超過45℃是可行的。第一臺50kW機組的熱物理性質(zhì)在2011年的一篇文獻里已有闡釋[12]。
這套新研發(fā)機組的另外一個重要概念是它可以用干冷機組來冷卻。排熱溫度新的基準(zhǔn)線已經(jīng)被確定,高排熱溫度下不存在結(jié)晶問題。部分負荷下,理論上可以節(jié)省排熱循環(huán)的泵耗(如圖19所示)。在歐洲季節(jié)能效比(ESEER)的定義中,大約40%的時間機組運行在50%的額定容量下。如果水泵的效率是一定的,那么通過減少部分負荷下的冷卻水;流量,可以實現(xiàn)多達98.5%的水泵節(jié)能。此外,如果采用合適的控制策略,同步減小冷卻塔風(fēng)機的轉(zhuǎn)速可以實現(xiàn)80%~90%的節(jié)能潛力。
圖18 / Figure 18冷凝熱變化范圍Reject heat variation
圖19 / Figure 19吸收式冷機特征容量基準(zhǔn)線Specific sizing benchmarks of absorption chillers
圖20 / Figure 20模塊化160kW機組“Bumble Bee”modularized 160 kW "Bumble Bee"
圖21 / Figure 21吸收式冷機的尺寸Geometrical data of absorption chillers
圖22 / Figure 22吸收式冷機的額定工況Nominal conditions of absorption chillers
采用和強化50kW機組換熱器的概念,可以建立160kW機組的換熱器概念。主要目的是確保冷機和冷機模塊的重量小于1000kg(方便運輸),尺寸控制在1.9m×1.6m×0.88m(以便順利通過門和拐角)。最終,新的設(shè)計理念量化到數(shù)字中,在圖21的表格中得以體現(xiàn)。就像圖18~20所展示的,這一概念可以把冷機拆分為兩個主要模塊,包括兩個主要的換熱器、低壓增發(fā)器、吸收器、溶液換熱器、水泵、基座和用于盛放解析塔和冷凝器的高壓容器。
圖21將這一冷機和市場上主流的冷機進行了對比。即使作為一個整體的系統(tǒng),它仍然比圓形組裝的“一體式”的市場主流產(chǎn)品更輕更小。一體式冷機是不能拆分的,無論是重量上還是體積上。為了能夠通過門,作為一個整體,只有采用這個容量下最小的冷機,才能把它控制在0.86m的范圍之內(nèi)。更重要的是,初步的經(jīng)濟分析指出這套系統(tǒng)可以比市面上現(xiàn)有的產(chǎn)品便宜50%~70%。
圖21歸納了這套新型吸收式冷機的幾何尺寸,圖22總結(jié)了這兩種設(shè)備的額定工況。
本章描述的產(chǎn)品研發(fā)展示了將一種看似成熟的科技進一步現(xiàn)代化的可能。吸收式冷機或者熱泵在電氣化時代不是一個主流市場。在近期廣泛討論的能源末端利用效率、太陽能利用和熱電聯(lián)產(chǎn)的背景下,吸收式冷機使得在夏季使用余熱成為可能,通過這種方式,可以增加熱電聯(lián)產(chǎn)的使用率,同時減小由于壓縮式制冷導(dǎo)致的額外電量需求。
致謝
作者感謝德國聯(lián)邦經(jīng)濟與能源部(German Federal Ministry of Economics and Energy)的支持項目Project Management Jülich (PTJ)。
關(guān)鍵可持續(xù)技術(shù)2 – Diamond 2城市含水層的季節(jié)性蓄能的效率和可靠性研究
Efficiency and Reliability of Energy Systems in Urban Districts with Seasonal Energy Storage in Aquifers (Aquifer Thermal Energy Storage - ATES)
斯蒂芬·克朗茲 阿里·薩阿達特 亞歷山大·尹德福斯 ??恕於嗫?/p>
Stefan Kranz, Ali Saadat, Alexander Inderfurth, Falk Cudok
未來城市的能源系統(tǒng)要求使用高效率的能源技術(shù)以及對于可再生能源更多的分享。由于完全的節(jié)能潛力,不同時間尺度上的能量存儲非常重要,其主要原因在于可以彌補能源需求和能源供給間的時間差異。對于建筑密度高的城市地區(qū),大存儲容量是有利的,地下含水層就是特別合適的存儲設(shè)施。不少案例很好地證明了這一點,例如在荷蘭相對較低的溫度(10~40℃),再比如在德國一些個人的試點項目可以得到更高的、達到80℃的溫度。
此項技術(shù)方面為取得更進一步進展,一個新的研發(fā)項目正在啟動,其主要目是針對現(xiàn)有或未來的市區(qū)能源系統(tǒng),開發(fā)可以使含水層跨季節(jié)蓄能的更可靠和更有效的設(shè)計方法。這個項目涉及來自多個專業(yè)的專家和學(xué)者。其中,有來自柏林大學(xué)藝術(shù)學(xué)院城市和建筑能效領(lǐng)域的專家,也有柏林技術(shù)大學(xué)水文地質(zhì)、地?zé)峒夹g(shù)領(lǐng)域的專家,還有來自國際地?zé)嵫芯恐行牡聡厍蚩茖W(xué)研究中心地下熱能存儲技術(shù)的專家。項目的主要案例是柏林工業(yè)大學(xué)校園。校園中由共有49棟建筑,分別用作辦公室、講堂、實驗室等功能,建筑的建設(shè)年代從1883年至今跨越了一個多世紀(jì)。
1 含水層儲存熱能的工作原理
在ATES系統(tǒng)中,水軸承砂巖是熱能的存儲介質(zhì)。地下水是同樣被作為傳熱介質(zhì)和存儲介質(zhì)。一般的ATES系統(tǒng)包含兩口井或者多口井。圖23中,藍色的為冷水井,紅色的為熱水井。ATES系統(tǒng)用于季節(jié)性的存儲熱能,主要功能是加熱和冷卻建筑物。ATES系統(tǒng)儲存熱量時,從冷水井出來的地下水在表面被加熱,然后通過熱水井注入含水層。在釋放能量時,能流方向逆轉(zhuǎn),微熱的地下水從熱水井被抽出,在使用熱量時被冷卻,再通過冷水井注入含水層。
2 存儲集成和能量系統(tǒng)分析季節(jié)性蓄能設(shè)計的主要目標(biāo)是優(yōu)化能源的供求關(guān)系和儲存系統(tǒng),需考慮可靠性和安全運行。一項存儲設(shè)計的開發(fā)中,多個影響因素必須被考慮。一方面,最相關(guān)的因素包括地質(zhì)結(jié)構(gòu)、流體化學(xué)、微生物學(xué)和含水層的水力及熱力儲存性質(zhì);另一方面,有一些因素取決于表面能量系統(tǒng),如多少能量可以用于充電或放電,還有地下水循環(huán)量、溫度及時間行為的系統(tǒng)組件和需求等方面。為了優(yōu)化并整合區(qū)域能源系統(tǒng),設(shè)計和規(guī)劃方法需要考慮建筑物、能量轉(zhuǎn)換技術(shù)和ATES系統(tǒng)。
3 ATES系統(tǒng)的地球化學(xué)因素
利用深層地下水含水層作為能量儲存的方式可能與化學(xué)或微生物產(chǎn)生相互作用,最后可能導(dǎo)致存儲性能的降低。這些反應(yīng)可以由改變溫度或地下水與大氣中的氧氣接觸而觸發(fā)。為減少儲存性能降低的風(fēng)險,需要對含水層特性和溶質(zhì)輸送性能進行調(diào)查和研究,并考慮現(xiàn)有的可能操作條件?;谶@些結(jié)果,可以認定溫度變化對滲透系數(shù)的影響,并確定操作中的溫度限制。這一調(diào)查包括實驗室研究和現(xiàn)場實地測試,過程中使用數(shù)值模擬進行支持。其結(jié)果對于蓄能運行的可持續(xù)性與可靠性都是至關(guān)重要的。
斯蒂芬·克朗茲(亥姆霍茲波茨坦中心德國地學(xué)中心——GFZ)
Stefan Kranz, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany
阿里·薩阿達特(亥姆霍茲波茨坦中心德國地學(xué)中心——GFZ)
Ali Saadat, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany
亞歷山大·尹德福斯(德國柏林藝術(shù)大學(xué))
Alexander Inderfurth, Universit?t der Künste Berlin, Berlin, Germany
??恕於嗫耍ǖ聡亓止I(yè)大學(xué))
Falk Cudok, Technische Universit?t Berlin, Berlin, Germany
圖23 / Figure 23在柏林大學(xué)校園的含水層存儲熱能的綜合能源系統(tǒng)(使用谷歌地球模型)Aquifer thermal energy storage for heat integrated in the energy system of the University Campus in Berlin (modified Google Earth)
4 能量轉(zhuǎn)換技術(shù)
在本項研究中,熱電聯(lián)產(chǎn)單位、壓縮制冷機、壓縮熱泵、吸收式熱泵、吸收式制冷機、吸收熱量變壓器等能量轉(zhuǎn)換設(shè)備被列入研究范圍。研究的重點是吸收式熱變換器技術(shù)。這里將開發(fā)、搭建并實驗分析一項新的組件。吸收式熱變換器(第二類吸收式熱泵)可以像吸收式熱泵、吸收式制冷機和吸收熱量交換器一樣被使用。由于具有很大的可調(diào)節(jié)性,該類熱轉(zhuǎn)換器是一種很有前景的城市集成冷熱供應(yīng)系統(tǒng)技術(shù)。
圖24顯示了一座應(yīng)用ATES系統(tǒng)進行集中供熱和制冷的城市的可能場景。在夏季,該熱變壓器在吸收式制冷機運行模式下運行,與此同時,ATES系統(tǒng)像水槽一樣存儲余熱;在冬季,熱泵運行方式或加熱變壓器模式被啟動,ATES系統(tǒng)作為熱源進行供熱。
5 建筑和城市街區(qū)
該項研究提出了一個普適的模擬方法。這一方法可以建立囊括整個街區(qū)眾多建筑和通用能源供應(yīng)網(wǎng)絡(luò)的熱表現(xiàn)模型。該模型旨在尋找足夠精度和最短中央處理時間之間的平衡。因此,更快速、更簡化的組件被使用。該模擬方法將被應(yīng)用于柏林工業(yè)大學(xué)校園不同案例的分析之中。圖25顯示了校園中所有建筑物的年度耗熱量。
致謝
這個項目是由聯(lián)邦經(jīng)濟和技術(shù)部(BMWi 03ESP409A)提供資金支持。我們感謝相關(guān)部門對我們在資金上的大力支持。
圖24 / Figure 24假設(shè)可能的場景——連接市區(qū)的含水層和吸收式熱變換器集成加熱系統(tǒng)Possible scenario of an integrated heating system of an urban district in connection with an aquifer and an absorption heat converter
圖25 / Figure 25圖中圓圈表示柏林工業(yè)大學(xué)校園2012年建筑物和耗熱量Overview on the University campus Berlin-Charlottenburg showing buildings and heat consumption in 2012 represented by circles
關(guān)鍵可持續(xù)技術(shù)3 – Diamond 3案例分析:關(guān)于德國柏林地區(qū)深層沉淀含水層地?zé)峁┙o情況的評估
Assessment of Geothermal Heat Provision from Deep Sedimentary Aquifers in Berlin Germany: A Case Study
2015世界地?zé)岽髸暮喍贪姹緟R報
2015年4月19日至4月25日,澳大利亞墨爾本
奧利弗·卡斯特納 朱迪思·西佩爾 甘特·齊默爾曼 恩斯特·欣格斯
Oliver Kastner, Judith Sippel, Günter Zimmermann, Ernst Huenges
為降低CO2排放量,熱量供應(yīng)市場需要開發(fā)一種有顯著效益的可再生能源。總體來說,地?zé)嵯到y(tǒng)有著巨大潛力。然而這種潛力由于種種原因而遠遠未被開發(fā):缺少地?zé)釘?shù)據(jù)導(dǎo)致巨大的開發(fā)風(fēng)險,還包括技術(shù)挑戰(zhàn)、高投資、有限的大眾接受度等。這種情況是現(xiàn)實存在的,尤其表現(xiàn)在一些人口稠密的、高需求的城市地區(qū),那里有著眾多復(fù)雜的、需要多樣化供暖的建筑設(shè)施。德國柏林就是這樣一座城市。
柏林巨大的地?zé)釢摿υ谏钐幍某恋硭畬又衃13-14]。從地理方面探究,柏林坐落在德國東北部,這一部分的熱量梯度是平穩(wěn)的,但是可預(yù)測的熱水資源存在于多孔的巖石中,位于1,000~5,000m深處。這一地區(qū)典型的儲油層包括不同厚度組成的砂巖,這些組成中的孔隙充滿不同溫度的房水和鹽分。這種水體可被開發(fā)利用,具備用于水熱工廠系統(tǒng)的散熱潛力:流體可通過生產(chǎn)井和加熱提取后,使用泵加壓送到地面,再由泵加壓通過相應(yīng)的注入井送回,以穩(wěn)定地層壓力(雙峰系統(tǒng))。一份初步評估對柏林地區(qū)的一些供熱廠的熱容量進行了調(diào)查分析,具體選定的位置包括前柏林滕珀爾霍夫機場[15]和柏林技術(shù)大學(xué)校園等[16]。該研究是基于一個大勃蘭登堡地區(qū)的結(jié)構(gòu)模型來進行的[17-19]。柏林城市中這個地區(qū)以外的地區(qū)會被裁剪,如位于聯(lián)邦州勃蘭登堡/德國的中心,并且計算得到的模型會與可用的附加井筒數(shù)據(jù)進行比較來校核[14]。這個柏林地區(qū)的模型解決了地?zé)崴畮斓闹饕纬梢?guī)模,但是忽略體面的復(fù)雜性,產(chǎn)生了一些問題故障或存在不均勻性。柏林位于德國東北部盆地(圖26(a)),這里中生代沉積單元的幾何形狀通常很復(fù)雜,可由其底層二疊紀(jì)鎂灰?guī)r鹽的階段反復(fù)變化透視圖看出。上述鎂灰?guī)r鹽,通常被稱為Buntsandstein,展示了地下層水分包含了鹽石成分,這些成分在地表上體現(xiàn)出多樣的可滲透性。砂巖分數(shù)可以基于已知的全流域的平均值來估算,估算數(shù)據(jù)來源由從1960——1990年期間的油氣勘探活動提供。更多的野外地質(zhì)參數(shù)統(tǒng)計可以從德國東北盆地的特定時間間隔內(nèi)可用字段數(shù)據(jù)中的置信區(qū)間中導(dǎo)出。因此,產(chǎn)生的結(jié)構(gòu)模型的適合原則為平均屬性中誘導(dǎo)缺少的地質(zhì)精細結(jié)構(gòu)的知識不確定性的評估。
我們根據(jù)一個通用的供給方案中設(shè)定的一座理想化熱工廠設(shè)計作為評估地質(zhì)模型。此方案的特點是使用了簡單地?zé)犭p峰工廠設(shè)計,如圖27(a),具備標(biāo)準(zhǔn)承壓含水層的條件和沿管道系統(tǒng)理想化的流體性質(zhì)。熱設(shè)備的操作被設(shè)置為優(yōu)先吸收,其中一個注入井不需要泵來進行加壓處理。我們提供的分析結(jié)果位于柏林技術(shù)大學(xué)校園內(nèi)的位置,在圖中用等高線圖的白色三角“TUB”表示。地?zé)嵯嚓P(guān)的制模工廠產(chǎn)生熱量并由機械動力消耗,來驅(qū)動泵的工作。這些高能量的供給是相關(guān)的地質(zhì)參數(shù)和工廠操作的先決條件,從而設(shè)定了為散熱再注入流體的溫度(這里設(shè)
奧利弗·卡斯特納(德國波鴻魯爾大學(xué))
Oliver Kastner, Ruhr-Universit?t Bochum, Bochum, Germany
朱迪思·西佩爾(亥姆霍茲波茨坦中心德國地學(xué)中心——GFZ)
Judith Sippel, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany
甘特·齊默爾曼(亥姆霍茲波茨坦中心德國地學(xué)中心——GFZ)
Günter Zimmermann, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany
恩斯特·欣格斯(亥姆霍茲波茨坦中心德國地學(xué)中心——GFZ)
Ernst Huenges, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Germany置為45℃),因此產(chǎn)生了一種很重要的技術(shù)邊界條件。
圖27(b)顯示出柏林中部Buntsandstein地區(qū)所產(chǎn)生的加熱功率。其幅度被預(yù)測為一個Berlinwide最大的5.9MW和包含2.9MW的平均值。然而值得注意的是,這些數(shù)字指的是地質(zhì)參數(shù)和油層厚度的預(yù)期值,而在現(xiàn)實中,它必須再被疊加上地質(zhì)模型的不確定性,這些可以在一定范圍內(nèi)進行估計[15,16]。加熱功率的空間分布是通過溫度和滲透率兩個相互制約的數(shù)值支配的。溫度隨深度近似線性地增加,并影響所產(chǎn)生的孔隙流體的比焓。滲透性影響的關(guān)系與泵浦功率和生產(chǎn)通量率。對于位于柏林中東的Buntsandstein,模型預(yù)測的在水熱資源有利區(qū)面積生產(chǎn)通量率為50~150kg/s,與整個大地區(qū)平均56kg相比,生產(chǎn)率指數(shù)與生產(chǎn)通量成反比,這些數(shù)值被預(yù)測有利區(qū)域之間為10~50l/(s·MPa)。生產(chǎn)泵工作在平均100~300kW的指標(biāo)。加熱功率和泵的工作(COP)之間所產(chǎn)生的比率達10~25。
柏林工業(yè)大學(xué)的校園坐落在一個由鹽底辟引起的高層次地貌的坡面上,Buntsandstein位于較淺的深度上。所以,它表現(xiàn)出更高的滲透率但是在局部上更低的溫度(約55℃)。相應(yīng)地,預(yù)期的水庫水力學(xué)允許低焓流體有更高的flx率。因為加熱功率與flx率和溫度的積成正比,基于中部Buntsandstein的水熱廠可以產(chǎn)生更高的能量,其中適合的溫度被升高的flx率補償。平均上,在TUB位置這種雙重系統(tǒng)的加熱功率預(yù)計為4.5MW(假設(shè)在吸收注入良好的條件下,并且重新注射溫度為45℃)。預(yù)計平均生產(chǎn)通量153kg/s,并且雙重設(shè)計假定1,625m的良好隔離。
圖26 / Figure 26柏林是德國的首都,坐落在德國東部(a), 圖中顯示了德國東北部盆地的沉積地質(zhì)結(jié)構(gòu),包括Zechstein鹽底辟構(gòu)造運動時形成的顯著底辟結(jié)構(gòu)地貌。(b)在一個結(jié)合表面和表面物體的真實尺度視角下的柏林工業(yè)大學(xué)校園。簡寫:上層 (UBS) / 中層 (MBS) / 下層 (LBS) Buntsandstein,Zechstein Salt (ZS)。 地表:谷歌地球,柏林參議院城市發(fā)展和環(huán)境部。The city of Berlin is the capital of Germany and located in east Germany. (a) exhibiting the sedimentary geology of the Northeast German Basin. It comprises a landform influenced by mobilized Zechstein Salt forming characteristic diapir structures. The Campus of the Technische Universit?t Berlin. (b) in a true scale perspective representation combining surface and subsurface entities. Abbreviations: Upper (UBS) / Middle (MBS) / Lower (LBS) Buntsandstein, Zechstein Salt (ZS). Surface tile: Google Earth, Berlin Senate Department for Urban Development and Environment.
圖27 / Figure 27(a)水熱模型熱廠的元件;(b)柏林地區(qū)挖掘中部斑砂巖含水層雙水熱系統(tǒng)的建模熱動力(高斯——克呂格坐標(biāo),位于德國DHDN4區(qū)東邊4,571.45km,北邊5,800.3km)。柏林的邊緣通過白線標(biāo)出。柏林工業(yè)大學(xué)的校園通過白色三角形(TUB)標(biāo)出。藍色標(biāo)注降低的熱產(chǎn)生區(qū)域。這些分布在高海拔地區(qū)(在Zechstein鹽底辟構(gòu)造頂上), 儲層溫度達到假定回灌溫度45℃。(a) Components of the hydrothermal model heat plant. (b) Modeled heating power of hydrothermal doublet systems mining Middle Buntsandstein aquifers in the Berlin region (Gauss-Krüger coordinates in km relative to 4,571.45 km easting, 5,800.3km northing, German zone DHDN4. The border of Berlin is indicated by a white line. The campus of the Technical University of Berlin is marked by white triangle “TUB”. The blue-coloured spots identify areas of reduced heat production. These are located at higher altitude level (atop of Zechstein salt diapirs), where the reservoir temperature approaches the assumed reinjection temperature of 45℃.
關(guān)鍵可持續(xù)技術(shù)4 – Diamond 4
廢棄生物質(zhì)和廢水污泥的礦物質(zhì)轉(zhuǎn)化碳:能源生產(chǎn)和(或)碳匯
Conversion of Waste Biomass and Waste Water Sludges to Mineralized Carbon: Energy Generation and/or Carbon Sequestration
馬庫斯·安東涅蒂
Markus Antonietti
馬庫斯·安東涅蒂(德國馬克斯·普朗克膠體與界面研究院)Markus Antonietti, Max Planck Institut für Kolloid- und Grenzfl?chenforschung, Potsdam, Germany
某些低價值的生物質(zhì)有可能是一種非常有價值的原料來源,例如廢水、污泥或者農(nóng)業(yè)副產(chǎn)品等。因此,需要將生物質(zhì)進行穩(wěn)定化和礦化處理。一種被稱為水熱碳化的方法可以用來將材料和能源進行致密化的處理,這同時也是一種消毒、均化、一體化工藝。其產(chǎn)物可以說是從自然界固定碳和資源再生,因此可以認為,它在CO2平衡中起到了碳匯的作用。
1 簡介
目前,我們的工業(yè)社會依賴于穩(wěn)定的化石原油供應(yīng),用于能源生產(chǎn)、運輸和化合物。石油時代的結(jié)束無疑是可以預(yù)見的,在今天人們已經(jīng)能夠感受到石油短缺帶來的經(jīng)濟震蕩。石油經(jīng)濟帶來的一個更深遠的影響是大量的CO2排放。由石油帶來的CO2排放已達125億噸,這同時造成了大氣環(huán)境的影響和極端氣候的出現(xiàn)。那么如何來定義一個實際有效的工具和技術(shù)?有一點很清楚,就是我們需要創(chuàng)造一項技術(shù),轉(zhuǎn)化由于之前發(fā)展帶來的負面影響,來固化早期工業(yè)化過程中排放到大氣中的CO2。我們一方面需要尋找新的碳匯,同時也需要轉(zhuǎn)化一部分工業(yè)或市政產(chǎn)品,使之成為能夠進行碳固化的產(chǎn)品,而不是在其整個生命周期中產(chǎn)生碳排放。最有利的是,如果我們已經(jīng)能夠在城市規(guī)劃或者本地建筑的運行中集成這樣的一種解決方案,那么就能夠在每個城鎮(zhèn)區(qū)或者更大的范圍內(nèi)為碳匯或者消除經(jīng)濟危機做出貢獻。
2 水熱碳化
2.1 廢棄生物質(zhì)的水熱碳化for環(huán)保碳匯
最有效的和免費的CO2收集器就是自然界本身,它能夠?qū)O2轉(zhuǎn)化為一些碳致密的生物質(zhì)。粗略估計,每年陸地生物質(zhì)產(chǎn)量為1,200億噸的干物質(zhì),其中大約有600億噸的固化碳或2,200億噸的等效CO2[20-21]。因此,自然界的CO2循環(huán)量仍然要比人工方式大一個數(shù)據(jù)級。正因如此,自然界能夠在數(shù)億年內(nèi)保持自身的平衡。需要清楚的是,自然界產(chǎn)生的生物質(zhì)只是短期和暫時的CO2收集,因為植物死亡后通過微生物的降解,將會釋放出完全相同數(shù)量的、之前被固化在植物中的CO2。從活躍的生態(tài)系統(tǒng)新生成的生物質(zhì)中,“僅需”8.5%重量的生物質(zhì)就能夠起到完全補償原油產(chǎn)生的CO2排放的作用。盡管如此,也需要另外一個處理過程,來將生物質(zhì)轉(zhuǎn)化為煤炭、焦炭或者碳,這就是被稱為“碳化”的過程,也就是將生物分子轉(zhuǎn)化為富含碳的粉末。
目前的相關(guān)論證表明,不僅存在熱焰碳化,也存在更為有效的“濕”碳化。類似于沼澤較為緩慢的自然過程,生物質(zhì)在微酸環(huán)境中經(jīng)過脫水只生成水和煤。早在1913年,Bergius和Specht就進行過這種“水熱碳化”(HTC)的處理[22-23]。通過使用添加劑,更為現(xiàn)代的處理方法加快了這些過程,同時能夠產(chǎn)生一些有意義的、具有特殊化學(xué)表面的微納米材料。最終以106~109倍的加速使碳化過程的時間縮短到小時的計量尺度,因此使水熱碳化技術(shù)可以集成到一些公共物質(zhì)流的過程中,例如在水的循環(huán)利用中處理廢水污泥或濾液,或者是園林的植被修剪以及周圍的生物圈中。
圖28 / Figure 28橡樹葉經(jīng)過水熱處理生產(chǎn)成的生物質(zhì)型煤的電鏡成像圖。可以很好地觀察到在20~50nm范圍內(nèi)的海綿狀的孔型結(jié)構(gòu)元素。Electron microscopy picture of a biocoal, which was made by hydrothermal treatment of oak leaves. The sponge-like pore structure with structural elements in the 20-50 nm region is nicely seen.
圖29 / Figure 29從生物廢棄物到生物質(zhì)型碳From biowaste to biocoal
圖30 / Figure 30HTC反應(yīng)器HTC reactor
直接與其他生物質(zhì)處理過程相比較,HTC不僅快速,而且簡單有效。一方面,HTC本質(zhì)上可以使用濕的原材料,因為只有在水環(huán)境中才能發(fā)生有效的反應(yīng)。因此不需要進行昂貴的干燥處理過程。另一方面,HTC很容易將生物質(zhì)型煤從廢水中過濾出來,產(chǎn)品的分離是相當(dāng)簡單的。另一個有利的方面是,該反應(yīng)是放熱和自發(fā)的過程,即該過程不依賴過多的能源輸入。盡管對實際的能源輸出目前仍存在爭論,但是根據(jù)反應(yīng)過程和煤的芳構(gòu)化程度,整個過程中能夠釋放出5%~30%燃燒原始熱量。
2.2 “碳負極材料”的HTC
材料化學(xué)家目前在尋找具有潛在十億噸級碳足跡的應(yīng)用材料。在這個尺度上,一種具有吸引力的應(yīng)用是將這種生物質(zhì)型煤用于農(nóng)業(yè)土壤的改良。從化學(xué)層面講,這種技術(shù)相當(dāng)于一個黑土自然生成的復(fù)制過程,而富含腐殖物質(zhì)的土壤屬于地球上最肥沃的土壤。利用化學(xué)調(diào)節(jié)腐殖物質(zhì)特性的生物質(zhì)型煤的發(fā)展,能夠帶來土壤的改良(不需要購買泥炭和有機肥來維護綠色花園或者屋頂花園),即使是在氣候變化的情況下,也有助于農(nóng)業(yè)領(lǐng)域的保護和生產(chǎn)力的提高。地球確實需要數(shù)十億噸的腐殖物質(zhì)。圖28描述了這樣一種由柏林橡樹葉合成的HTC產(chǎn)品的內(nèi)部結(jié)構(gòu)[24]。這種材料結(jié)合了具有最優(yōu)可及性的高性能化學(xué)表面,同時能夠達到非常理想的毛細管吸水和特定的離子束縛效果,就像一個“碳海綿”。
3 討論與結(jié)論
本章闡述了水熱碳化過程以及該項技術(shù)在廢棄生物質(zhì)和廢水污泥處理等方面的多項優(yōu)勢。碳化過程固定了生物質(zhì)中的碳,避免生物質(zhì)進一步自然降解。在本質(zhì)上,通過這一過程固定的碳在CO2平衡中起到了碳匯的作用。這種新技術(shù)的原理如同植物收集大氣中的CO2,并將其轉(zhuǎn)化為固態(tài)碳。如果我們能夠盡可能避免這種工藝的其他處理成本,例如通過使用已有的碳儲存作為腐殖質(zhì)來提升土壤肥力和生物附加值,那么這樣的循環(huán)處理方法將是經(jīng)濟層面上最好的選擇。
關(guān)鍵可持續(xù)技術(shù)5 – Diamond 5
用于在不同溫度層級上存儲和分配熱量的低能耗區(qū)域供熱和供冷技術(shù)
Low-Exergy District Heating and Cooling to Store and Distribute Heat at Different Temperature Levels (LowExTra)
馬丁·克里格爾
Martin Kriegel
馬丁·克里格爾(德國柏林工業(yè)大學(xué))
Martin Kriegel, Technische Universit?t Berlin, Berlin, Germany
LowExTra項目將會調(diào)查和研究一種新穎的、智能的、多層區(qū)域供熱網(wǎng)絡(luò)。其目標(biāo)是建立一種與今天傳統(tǒng)的供回網(wǎng)絡(luò)不同的新型網(wǎng)絡(luò),能夠針對不同的溫度層級實現(xiàn)完全靈活的調(diào)節(jié)。這個過程不僅考慮到供回的方向,還固定了管線中的溫度層級。
被稱為LowExTra的系統(tǒng),平行于任何已有的區(qū)域供熱網(wǎng)絡(luò),有至少4個不同層級的溫度(如15℃、30℃、45℃、60℃),能夠最大限度地使用環(huán)保能源(如太陽能、地?zé)?、地下水、空氣等)和廢物能源。特別是,低溫層級允許能量來源的多元化,其中有些能量來源是以前沒有使用過的。近年來在德國,伴隨著LowExTra系統(tǒng)的應(yīng)用,電力能源系統(tǒng)發(fā)生了翻天覆地的變化,區(qū)域供熱的消費者將變成生產(chǎn)者。
除此之外,多層級網(wǎng)絡(luò)在冬季和夏季都能使用。在低溫層級上(在上面的例子中為15℃),可使用直接供冷系統(tǒng)(如表面供冷系統(tǒng))??傮w來說,LowExTra網(wǎng)絡(luò)類似于建筑中常用的分層蓄熱罐,是一個帶有可變注入和采出量的大型蓄熱系統(tǒng)(見圖31)。
研發(fā)的該網(wǎng)絡(luò)系統(tǒng)需要技術(shù)組件的動態(tài)交互,它強調(diào)將建筑和城市視為一個能源系統(tǒng)組件。這是一個全新的視角。
該技術(shù)的實施成果與德國提出的“能源轉(zhuǎn)型2050”戰(zhàn)略是一致的。該戰(zhàn)略計劃涉及經(jīng)濟、環(huán)境和社會等多個方面,其成果高度依賴于能源系統(tǒng)本身。智能低溫網(wǎng)絡(luò)系統(tǒng)的設(shè)計、實施和成功使用需要技術(shù)、經(jīng)濟、政策和參與等模塊的交互(見圖32)。
整個項目的總體目標(biāo)是從技術(shù)、經(jīng)濟、政策和參與性等各個方面對上述多層級網(wǎng)絡(luò)的可行性進行基礎(chǔ)研究,并在柏林工業(yè)大學(xué)的赫爾曼里切爾學(xué)院實驗室對LowExTra的關(guān)鍵組件進行實驗測試。在這項為期3年的研究項目成功完成之后,將建立一個試驗工廠。
致謝
該研究項目由德國政府資助(Bundesministerium für Wirtschaft und Energie, BMWi, FKZ 03ET1237A)。
圖32 / Figure 32不同觀點的交互Scheme of Interaction of the different views
關(guān)鍵可持續(xù)技術(shù)6 – Diamond 6使用液體干燥劑能源循環(huán)的城市溫室熱能供給
Heat Supply from Urban Greenhouses under Use of a Liquid Desiccant Energy Network
馬丁·布赫茲
Martin Buchholz
馬丁·布赫茲(德國柏林工業(yè)大學(xué)、柏林Watergy GmbH)Martin Buchholz, Technische Universit?t Berlin, Watergy GmbH, Berlin, Germany
在城市很多地區(qū)都存在大量的低溫廢熱。人們希望使用這些廢熱,但是卻缺少合適的臨近集熱器,并且低品質(zhì)廢熱不適合更長距離的運輸。問題的一種解決方法可以是,使用這些廢熱來增加吸濕液體干燥劑的濃度。
基于吸濕鹽溶液的吸收材料可以應(yīng)用于空氣除濕過程或者從工業(yè)及建筑中回收潛熱。在這種情況下,城市太陽能溫室體現(xiàn)出應(yīng)用領(lǐng)域最大的增長潛能。
液體干燥劑的吸水能力來源于鹽溶液的熱化學(xué)特性,并且在運輸和儲存過程中也能保持這樣的熱化學(xué)特性。通過吸收水分,液體干燥劑被稀釋,吸水能力隨之降低。當(dāng)被稀釋到一定程度之后,干燥劑需要再生。在加入廢熱之后,干燥劑近似于釋放水分,部分溶液以水蒸氣的形式被釋放到環(huán)境之中。再生過程中適合使用的廢熱包括:工業(yè)生產(chǎn)或者發(fā)電站冷卻塔及空調(diào)的廢熱、分布式熱電聯(lián)產(chǎn)單元以及太陽能裝置等。冬季中因為室外冷空氣的濕度相應(yīng)較低,再生過程也可以在非常低的溫度(10~25℃)下實現(xiàn)。通過這種方式,含水土層和近地表季節(jié)性蓄熱的蓄水層可以在沒有熱泵的情況下使用,這與傳統(tǒng)系統(tǒng)的需求不同。長達50km的網(wǎng)絡(luò)距離通過液體干燥劑的高能源密度和儲存能力被實現(xiàn),從而使更多的遠距離熱源開采成為可能。
1 液體干燥劑的應(yīng)用
1.1 太陽能溫室
城市溫室提供了一個特殊的應(yīng)用案例。城市溫室濕度很高,隨著溫度的升高,濕空氣可以轉(zhuǎn)換為干空氣并用于供熱?;蛘?,熱量可以被抽取并儲存在干燥劑溶液內(nèi)部。
通過Watergy Absorber Box,屋頂及幕墻溫室可以被用于太陽能蓄熱器。蓄熱能力同時存在于溫室空氣的熱量和濕度中。冬天漫射太陽輻射的溫度已經(jīng)達到15~20℃。通過在Watergy Box中除濕,空氣溫度可以升至20~28℃,然后被送入建筑中。
特別晴朗的天氣中溫度可以達到35℃。液體干燥劑因為從溫室的空氣中吸濕而被加熱,可以達到40℃左右。被存儲的熱量可以用于晚間以及太陽輻射較低時候的建筑加熱。
1.2 建筑熱回收和濕度調(diào)整
建筑中的濕空氣來自于住戶淋浴、餐廚以及洗衣房等設(shè)備。濕度包含潛熱,但往往因為房間通風(fēng)而沒有得到利用。為了提高能源效率和空氣品質(zhì),濕度被液體干燥劑吸取用于再循環(huán)。干燥劑因為排風(fēng)中的濕度而升溫,反過來又被送回送風(fēng)系統(tǒng),對送進樓內(nèi)的空氣進行加熱加濕。濕度的峰值被排風(fēng)帶走,其健康角度效益是空氣的最小濕度得以持續(xù)保持。
1.3 用干燥劑和水為建筑制冷
在夏季,水可以在抽氣單元中蒸發(fā)。水因為蒸發(fā)而降溫。冷水先通過熱交換器,再通過送風(fēng)系統(tǒng)中的干燥劑。干燥劑因而間接冷卻,并可以繼續(xù)在設(shè)定狀態(tài)下給送風(fēng)除濕降溫。
白天被干燥劑帶走的熱量保存在一個蓄熱單元中。這一熱量晚上可以被釋放,而且,被干燥劑吸收的水分也因此再一次蒸發(fā)出來。在濕熱的環(huán)境中,干燥劑循環(huán)網(wǎng)絡(luò)可以提供額外的再生干燥劑。水在抽氣單元中的蒸發(fā)在夜間也在繼續(xù)。這使得冷量可以聚集在同一個蓄熱單元里并用于第二天的制冷。一個蓄熱單元因此同時用于對于熱量(液體干燥劑的再生)和冷量(建筑空氣調(diào)節(jié))的保留。
2 在柏林工業(yè)大學(xué)Climate Campus的原型
根據(jù)柏林工業(yè)大學(xué)已有研究原型的經(jīng)驗,將會建造第一個實際的干燥劑循環(huán)網(wǎng)絡(luò),包括一座作為太陽能熱源的城市屋頂溫室,一座作為熱量消耗的大學(xué)建筑和一座作為干燥劑再生的廢熱源的大型服務(wù)器機房。
3 對于城市熱島效應(yīng)的影響和潛在的CO2減排量
目前,一般覆蓋在幕墻、屋頂、停車場或其他類似地方的溫室可以通過水的相變將太陽輻射轉(zhuǎn)化為潛熱。溫室可以用于夏季表面冷卻,大幅度降低屋頂表面的溫度。空調(diào)的供電系統(tǒng)部分可以被蒸發(fā)冷卻和干燥劑除濕所替代??傮w上來講,這減少了額外過程熱量向環(huán)境的排放。制冷與供熱的節(jié)能、溫室太陽能集成以及之前未被利用的廢熱回收,這些都和CO2的減排潛力息息相關(guān)。
六、全文結(jié)論
在本文闡述的研究項目中,城市設(shè)計者將高效、節(jié)能且低碳的城市街區(qū)作為設(shè)計目標(biāo),這無疑對減輕氣候變化影響、緩解自然資源衰減具有極其重要的價值。但本文同時指出,設(shè)計者們無法只依靠自身的力量來完成這一任務(wù),而是必須與其他專業(yè)人員,尤其是工程師們,進行合作?!傲闾肌背鞘薪謪^(qū)愿景的實現(xiàn),需要一個真正交叉的多專業(yè)途徑。
大學(xué)校園是實現(xiàn)這一愿景最理想的起點和試驗場,因為它們整合了眾多非常有利的前提條件:校園既有最理想的多專業(yè)知識儲備,也有界定明確的校園區(qū)域及管理體系,還有建設(shè)完善的、貫穿社區(qū)各層級的網(wǎng)絡(luò)系統(tǒng),同時,校園還是可以與之共享理念與知識的國際科學(xué)社區(qū)的一部分。
柏林工業(yè)大學(xué)尚處于一個宏大研究發(fā)展項目的起步階段,這一項目將塑造大學(xué)校園的未來,并蘊藏于一個更加廣泛的運動之中,來共同應(yīng)對節(jié)能高效與氣候創(chuàng)新的緊迫問題。
本文開篇詳細地描述了這一歐洲該領(lǐng)域中最為重要的聯(lián)盟組織。
但是,這一泛歐洲校園聯(lián)盟并不是唯一的。例如,幾年前,柏林工業(yè)大學(xué)曾經(jīng)成為世界城市大學(xué)網(wǎng)絡(luò)(WC2)的成員之一。該組織由世界上12所大學(xué)構(gòu)成,成員每6個月召開會議,并輔以定期的視頻會議。其中,有一個名為“生態(tài)校園”的強大工作團隊將其零碳校園的目標(biāo)與大家分享。這展示出,“零碳校園”的課題并不僅局限于歐洲,而是世界范圍的一項運動。
圖33 / Figure 33使用廢熱再生干燥劑并給除濕過程提供熱能的干燥劑循環(huán)Desiccant network using waste heat sources for regeneration and providing thermal energy from dehumidification processes
圖34 / Figure 34干燥劑循環(huán)下吸濕鹽溶液用于建筑制冷和除濕的系統(tǒng)步驟1:冷干燥劑用于除濕和冷卻建筑送風(fēng)步驟2:水蒸發(fā)進入到排風(fēng)中并且可以冷凝蓄熱步驟3:干燥劑帶走冷凝熱,在白天蓄熱用于夜間干燥劑再生System for cooling and dehumidification of buildings under use of hygroscopic salt solutions from a desiccant network (Watergy GmbH)
SUMMARY
This paper shows how university campuses can act as climate innovation engines and become testbeds for eco innovation and low carbon design.
It is well known that the world is suffering from climate change and natural resource depletion. Given that the building sector contributes 30%-40% of global energy related CO2emissions, consumes up to 40% of all energy worldwide and at the same time offers the most cost-effective mitigation potential[1-3], working towards the mitigation of climate change and natural resource depletion becomes an important task for urban designers and architects. However, they cannot do the job by themselves. In order to tackle a problem of such gigantic dimensions it needs an innovative interdisciplinary approach that brings not only the best people from all different disciplines together but also all different sectors of society: governments, public institutions, scientists, companies and the general public. Furthermore, to be successful, such an approach cannot be confined
to country borders but needs the establishment of strong international networks, so that knowledge can be exchanged and shared. Only in this way sustainable development can be accelerated fast enough to impact climate change and natural resource depletion in time.
University campuses are small cities in themselves. They are the perfect environments for a comprehensive interdisciplinary approach because they are not only home to the most brilliant and innovative minds of all disciplines but they are also very well connected with governments, public institutions, companies and other scientists. It is there where the future generation is educated, that will be much more adversely affected by climate change than us and will have to find solutions urgently. On campus this young generation will be involved at an early stage in the most advanced research regarding climate mitigation and learn an entire new level of environmental consciousness that will help them to find urgently needed solutions to counteract climate change and natural resource depletion and to shape a more sustainable future.
In practical terms university campuses also offer
very favorable condition as test beds: They have one homogenous ownership, their own governance, their own facility & and energy management, their own energy supply system, one well addressable user community – students, professors and employees, as well as all the necessary expertise and research capacity on site. They can act as breeding place, living lab, end-user, multiplicator and entrepreneur at the same time and thus become model and leader in climate innovation. The University Campus Berlin will be introduced and its model character as pilot sustainable urban quarter will be explained.
STRUCTURE OF THE PAPER
Networks are crucial to bundle knowledge, spread it and bring it to a higher level. Therefore, part A“A Pan-European Campus Network as Regional Climate Innovation Engines” will introduce one of the most important networks the Technische Universit?t Berlin (TU Berlin) is part of.
Part B describes the campus of the TU-Berlin in more detail including its challenges, goals and sustainable strategies.
A Pan-European Campus Network as Regional Climate Innovation Engines Sustainable Campus: Launching Customer (SCLC)
Francesca Cappellaro, Gertjan de Werk, Jeroen Nagel
Since an interdisciplinary approach is the key to reach maximum impact, not only the urban design challenge, but also some of the main supporting key sustainable technologies that are currently being developed at the TU-Berlin as a first step towards a carbon free campus, will be explained in brief at the end of the paper.
The European Union initiated several Knowledge and Innovation Communities (KIC) around the defined grand societal challenges. One of these challenges is climate change. Therefor the Climate-KIC was founded in 2011 and is now with over 240 organizations Europe’s largest public-private innovation partnership, working together to address the challenge of climate change. Climate-KIC drives innovation in climate change through creative partnerships large and small, local and global, between the private, public and academic sectors. Climate-KIC is organized in three different pillars; Education, Entrepreneurship and Innovation. The Innovation-pillar is divided in eight thematic platforms of which one is Making Transitions Happen (MTH). The platforms send out calls for project proposals to their community to start projects within their themes. The approach is to start with a small “pathfinder” project (approx. one year), which by success can grow to a full innovation project involving more partners and taking more time (2-3 years). Besides this the platforms run several “Flagship” projects, concerning more complex integral challenges involving more parties. This article addresses the first findings of the pathfinder project Sustainable Campus: Launching Customer (SCLC) and shows a more in-depth example of project partner TU Berlin. Thereafter we lift a corner of the veil about the application of the succeeding Innovation project Synergetic University Campuses boosting ClimatE innovationS into Society (SUCCESS), currently under review. Two partners, presented in this paper, are added in this application due to their specific expertise. To find out more about climate-KIC, please take a look at www.climate-kic.org.
1 Background
New challenges are arising for our society in relation to climate change and natural resources depletion. Fossil fuels extraction for energy, no-
renewable resources consumption, green-housegases emissions affect the development of present and future generations. There is the growing need of a radical system innovation in order to transform the un-sustainable activities and behaviors into long-term, well-being and climate-friendly systems. A trans-disciplinary approach is required in order to tackle the complexity of climate-changerelated issues and accelerating the transition to a sustainable society. Clean technologies are increasingly available, however strategies and processes to enhance the transition to economic, environmental and societal change are crucial to get these technologies to market. In this context, a transition engine influencing the direction and pace of societal change dynamics is a key factor in steering towards a low-carbon society.
2 University Campus as Test Bed for Societal Challenges
University campuses have all it takes to invent and develop sustainable system innovation: brilliant minds, international networks with governments, companies and other scientists, sufficient space,access to equipment and future generations to make innovation happen. Moreover, two important other trends are seen. First of all, nowadays universities are supposed to deliver solutions for societal problems by governments and the local community they are part of. Secondly, universities want to optimize their own operations as resources —— energy, water, waste, etc. —— are getting more expensive and government funding is decreasing. Building an effective eco-innovation system helps turning university campuses into regional climate innovation engines playing a key-role in steering towards a low-carbon society. Creating this effective eco-innovation system enhances a serious transition involving adaptations in structure, culture, organization and overall role in society of universities and campuses. Campuses can further accelerate the adoption and propagation of technological innovations into society.
This article presents sustainable transition initiatives developed by several European Campuses in the framework of the European Institute of Innovation & Technology Climate-KIC Programme. The project “Sustainable Campus Launching Customer” for example confirms universities have ambitions to play a key role in climate innovation being a regional climate innovation engine. A known discussion (http://www.sciencedirect.com/science/article/ pii/S0048733312000820) is the effectiveness of a “technology push” versus a “demand pull”innovation model. The current status quo seems to be technology push model, where this project aims to open-up the campus community to work on societal demand as input for research question to be tested in the lab, at campus and subsequently implemented back into city and society, as depicted in Figure 1.
To create an innovation model for universities in the context of the project members we have combined two existing models. A more traditional (business) stage gate decision model, in which the specific actors and processes of the university ecosystem are integrated, and the NASA Technology Readiness Levels indication as shown in Figure 2 and Figure 3.
In Figure 4 the developed Universities innovation funnel is shown.
A the bottem-arrow we introduced stage 0, the active societal demand articulation and stage 10: the widespread of an Innovation via diffusion and adoption in society. The Technology Readyness Levels (TRL) are re-defined in Innovation Readiness Levels (IRL)
The idea is to actively plot the different innovation at the different universities in this funnel, in order to simplify the exchange of knowledge between the projectpartners. A first overview of innovations and innovation-enabling-processes can be found at: www.sustainablecampus.eu/eplanete/diamonds/.
To find out more about the project and its partners, visit our website www.sustainablecampus.eu.
3 Synergetic University Campuses Boosting ClimatE Innovations into Society (SUCCESS)
As stated we would like to lift a corner of the veil about the ideas to be further developed in the innovation project. University campuses can be considered small cities —— they face similar challenges and usually approach them in the same conventional ways cities do. However, on campus the most brilliant minds are present, ready and able to face these challenges.
Our aim is to create a powerful Climate Innovation Engine: a pan-European campus network in which climate innovations are effectively developed within the local campus environments by exchanging knowledge, skills, expertise and means available. We will build the physical and virtual infrastructure to use those minds to their full potential in generating demand-driven climate innovations. This Engine will become a powerful player in the transition to a low carbon society managed by interacting Transition Teams (TTs), based on successful experience in Bologna. Naturally, successful innovations will be sold to the universities as the launching customers creating access to the whole region as potential niche markets. We will develop an innovative Campus Transition Toolkit to get and keep the Innovation Engine running. Key elements of this toolkit will be a potentially ever-expanding database, a benchmark, a dashboard and an assessment tool. See an impression of the Climate Innovation Engine in Figure 5.
The Toolkit will be developed in an interactive web-based tool in order to pick existing examples strategies, products, living lab examples etc. to accelerate the own campus sustainability strategies by fast learning, sharing, combining and optimizing proven climate innovation. See an example mockup in Figure 6.
4 From SCLC to SUCCESS, including University of Bologna and Chalmers University of Technology
A large growth of voluntary sustainability campus programs has been implemented in Europe and worldwide. All these programs help universities to commit themselves to principles of sustainability and give the impulse to start with implementing sustainability into every day processes. Next to research and education, achieving sustainability also encompasses the consideration of the university as an organization. The different and particular ways of how to bring sustainability into action could create a common knowledge that enables universities to involve the numerous actorsbelonging to university community. By pooling this knowledge of best practices, solutions and lessons learned, the transfer of experiences in a vital network becomes substantial for successful transformation of higher education institutions into places of sustainability. There is a lot of potential for further development in this field, both on the technical and the behavioral point of view.
4.1 University of Bologna (Italy): demonstrating transforming the campus into living laboratory One of the biggest Italian higher education institution, University of Bologna, demonstrates the transition approach at the Terracini Campus, underpinning to achieve sustainability at the practical applications level of the transition process. The university had already developed a Sustainability Action Plan for their own University. The adoption of transition approach helps the campus itself to develop a feedback mechanism for teaching and research practices through taking actions and at the same time building a strong sustainability community. An additional advantage of the choice of investigating sustainability initiatives at university level is revealing new considerations and contributions in the field of science of sustainability and also for the theories of sustainable transition. To create this demonstration approach three phased can be defined: Strategic, Tactical and Operational. In the strategic phase the University of Bologna set the scene for Transition Management and explored the dynamics at university level. Therefor a Transition Team was set up to engaged all the university communities: students, administrative staff and faculty. Besides, a combination of top management commitment and staff and student engagement offering the best opportunity both for successful initiation and long-term performance of university sustainability programs. The second phase is the tactical phase, in which the framing of the transition challenges and long-term visions where further developed. Following the third, Operational, phase, which we describe here more in-depth.
4.2 Operational phase in niche-experiments
The operational phase has consisted of actions and practical proposals for developing smallscale sustainable initiatives, all strictly
connected transition experiments to speed up the implementation of University of Bologna’s Sustainability Action Plan. In the transition path small-scale initiatives are called transition experiments, also known as niche-experiments. Niches have potentially path-breaking consequences when they become widely diffused and adopted. Through the conduction of transition experiments is possible to improve the awareness and to reinforce the stakeholders’ engagement. Implementing a Sustainability Plan is a way to facilitate and to connect existing sustainability best practices through the definition of targets, goals and performances on sustainability campus progress. In addition, Sustainability Plan helps to overcome the weaknesses and to improve the strengths and finally it is an opportunity to expand the existing knowledge and to introduce new sustainability issues. An approach to manage campus sustainability worth mentioning is the proposal of the International Sustainable Campus Network and the Global University Leader Forum (GULF) which have developed the Sustainable Campus Charter (International Sustainable Campus Network, ISCN, 2014). With the aim to address sustainability in holistic way, the Charter structures campus commitments about sustainability into a nested hierarchy encompassing individual buildings, campus-wide planning and target setting, and integration of research, teaching, outreach and facilities for sustainability (Figure 7).
As shown in Figure 7, the implementation of a sustainability plan could be a beneficial process which involves the whole university and beyond. Nevertheless the planning process should consist not only in monitoring the sustainability of activities, but also in creating opportunity for involving people from university community to external stakeholders. For that purpose, Terracini Sustainability Action Plan includes both technical measures and complementary actions which help to integrate governance activities in order to increase the transformative capacity of university toward sustainability. These actions comprise educational activities such as the creation of a Transition Laboratory for Students. This is a specific course where students put into practice their technical knowledge focusing on the design of specific actions
for campus sustainability. Another complementary initiatives has been the establishment of an interdisciplinary group of teachers and researchers from various Departments of the University, who share research interests in the sustainability theme. This group is named Alma Low-Carbon Integrated Research Team and involved more than 160 researchers of University of Bologna in order to integrate the multidisciplinary competences in the sustainability thematic area and to promote an interdisciplinary approach and strategic vision promoting scientific excellence.
4.3 Conclusions
We showed the case of Terracini Campus of University of Bologna as a platform for transition experimentation. Terracini campus has revealed the necessity to go beyond improvement of environmental performances and efficiency. The lack of integration of the sustainability initiatives with the real life of the campus is a constraint that limits to reach more connected and longlasting results. According with these intentions, the adoption of Transition Management within Terracini campus in Bologna has been an opportunity for a real transformation toward sustainability. We described the development of transition path which includes sustainability initiatives acting as niche-experiments of sustainability transition. The Transition process has helped to improve the awareness, to engage other stakeholders and to create new networks among different actors. As results a learning process for the improvement the transformative capacity of university toward sustainability is established. All in all, the paper demonstrates that universities can play a key role in generating concrete solutions and strategies to tackle the dynamic, complex factors fueling the sustainability crisis. With the aim to fulfil this expectation, it is essential that education, research, and societal contributions are seamlessly integrated into a combined response that is then promoted and reinforced in the process of institutionalization.
4.4 Chalmers University of Technology (Sweden): experience testing city districts sustainability demands at campus.
Chalmers University of Technology is located in
Gothenburg on the West coast of Sweden. Chalmers has some 12,000 students and 3,000 employees and is located on two campuses. Chalmers is a research intensive university with engineering and architecture education and all Masters programmes positioned internationally. Affiliated to Chalmers is the Johanneberg Science Park where knowledge and innovation go hand in hand with the associated national and international companies, as well as the municipality and region. Johanneberg has been selected as a core district in the Climate KIC Flagship project Smart Sustainable Districts, thus there are very ambitious “factor 10 improvement”envisioned in this district. The campus is an ideal test-bed for front-running innovators.
Chalmers has a sustainable campus process. This is within the Steering Committee for Campus Development led by a Vice-President and in cooperation with the Chalmers environmental office and Chalmers Fastigheter AB (the Chalmers real estate company). Chalmers recently carried out a BREEAM (way to mark the sustainability level of buildings) community beta-test which involved a wide range of stakeholders on the campus. The sustainability goals for Chalmers guide the Campus Development process. A major driving force for the campus development is the Green Travel Plan where the campus will swell with 5000 new employees (many from business and innovation) but no new automobiles.The district factor 10 process, which is ongoing, is very inclusive and involves business and society stakeholders. Within Johanneberg Science Park a number of iconic projects are now underway including Riksbyggen Positive Footprint Housing and HSB Living Lab. In terms of entrepreneurship Chalmers has three organizations dealing with student education and entrepreneurship and innovations to market. Since 2012 Chalmers is environmentally certified according to ISO 14001 with systematic efforts in education, research, innovation and internal environment and actively connecting education, research and the physical campus. Chalmers contributes to the database of ideas, innovations and tools of SUCCESS and links to the Smart Sustainable Districts resourcebox. This systems tool could then be replicated at other universities in the network.
Cooperation on specific themes, such as the low carbon vehicles (with the Swedish Volvo), with dedicated partners like Warwick and Valencia will add value to further develop and test new vehicles.
Energy Efficient University Campus Berlin 2020 SCLC Pilot Technische Universit?t Berlin
Martin Kriegel, Barbara Münch, Claus Steffan, Klaus Zillich
1 Introduction
After the nuclear disaster following the accident at the Fukoshima Nuclear Power Plant in Japan in 2011, the Federal Government of Germany has decided to phasing out nuclear power in the short term and to expanding the renewable energy sector instead. This decision has since been referred to as German “Energiewende” (Turnaround in Energy Policy). The Federal Government of Germany has adopted an ambitious Energy Concept 2020 / 2050 with the aim to mitigate and adapt to climate change:
—— 2020 40% reduction of greenhouse gas emissions compared to 1990 level
—— 2020 20% increase in energy efficiency compared to 2008 level
—— 2020 increase the share of renewable energies to 18% of energy consumption
—— 2050 85%-95% reduction of greenhouse gas emissions compared to 1990 level
—— 2050 80% increase in energy efficiency compared to 2008 level
—— 2050 increase the share of renewable energies to 60% of energy consumption
In order to accelerate the implementation of its targets, the Federal Ministry of Economics & Energy BMWi has launched a research funding program with three main research foci: EnEff: City / EnEff: Campus, EnEff: Heat and EnOB (Energy Optimized Building).
The importance of this program is underpinned by the fact that about 40% of final energy is consumed by the building sector in Germany. At the same time this sector offers the most cost-effective mitigation potential, highlighting the importance of urban designers, architects and engineers in combatting climate change and natural resource depletion.
In Berlin, about 47% of the annual 21.3 million t CO2 emissions in 2010 are caused by the building sector, i.e. this sector is the most important CO2 polluter (see appendix “Climate Neutral Berlin 2050”[4]).
Referring to the Federal Energy Concept 2020 / 2050 the University Campus Berlin (TU Berlin and UdK Berlin) is applying for BMWi funding for the years 2015 – 2020 in order to develop its campus as a model project: Our Energy Efficient Hochschul Campus Berlin Charlottenburg, hereafter EnEff: HCBC Campus, will be developed until 2020 as an ecologically innovative and climate-friendly pioneer Berlin city quarter, but with an even more radical vision than the government program has defined. Referring to the similar goals of e.g. the city of Copenhagen with 100% reduction of CO2 emissions in 2025[4], the EnEff: HCBC Campus is defining its own vision “Climate Kiez 2020”[4]with the following, even more ambitious goals:
100% reduction of greenhouse gas emission, 100% use of renewable energies, 100% increase in energy efficiency.
In March 2014 the TU Berlin has joined the above introduced Pan-European campuses network SCLC Sustainable Campus Launching Customer. Together with TU Delft and Utrecht University, TU Berlin has been appointed as “Pilot University”.
The TU-Berlin is home of two of the most prominent personalities in the field of climate change mitigation and adaption. In 2012, it has appointed Prof. Dr. John Schellnhuber, director of Potsdam Institute of Climate Impact Research (PIK), as Dr. h.c. and member of TU-Berlin.
Prof. Dr. Ottmar Edenhofer, PIK Potsdam and leading member of IPCC (Intergovernmental Panel on Climate Change), is holding the chair“Economics of Climate Change” at TU-Berlin.
2 The HCBC Campus and Its Prominent Location
The HCBC Campus forms one of four Berlin core city hot spots. The Berlin inner city urban fabric is structured by four key traffic junctions defining four main city centers: (1) Zoological Garden / City West, (2) Berlin Central Train Station / Spreebogen (north), (3) Potsdamer Platz / CBD Potsdamer-/ Leipziger Platz (south) and (4) Alexanderplatz / City East. These four Berlin city centers are qualified by four prominent and world renowned political, scientific and cultural institutions of the Capital Berlin:
—— The Sciences & Arts Campus Charlottenburg, City West,
—— The Federal Government Forum Spreebogen,
—— The Cultural Forum near Potsdamer Platz,
—— The Museum Island and the “Governing Mayor’s” Town Hall, City East.
Especially the Campus Charlottenburg is featuring unique urban qualities: HCBC is crossed by the main East-West city axis “Strasse des 17. Juni”. Moreover, the Campus is located right next to the important traffic junction “Zoologischer Garten “that is offering a perfect public transport access to the campus community, with a major long distance train station, the city train S-Bahn, the subway and the central inner Berlin Bus Station all being there. The urban core of “City West” is situated in direct vicinity of the campus, too.
The city axis “Strasse des 17. Juni” with about 120m width is intersecting the whole campus area, cutting it into a northern and southern part. In this way the north and south front of the TU Campus are facing this prominent public space of Capital Berlin, offering ideal qualities for representation and advertising (Figure 8).
Moreover, the HCBC Campus is situated in direct neighborhood of the Berlin inner-city green lungs and recreation areas “Tiergarten” and“Zoologischer Garten” making it an even more attractive location.
Regarding all these specific qualities, the university quarter EnEff: HCBC is offering excellent preconditions regarding a sustainable modernization and urbanization and is perfectly predestined as a pioneer energy-efficient city quarter.
3 The History and Status of HCBC
In 1879 the “K?niglich Technische Hochschule”(Royal College of Technology) was founded by Emperor Wilhelm. II. by merging the famous“Bauakademie” (Building Academy, built in 1799 by Architect K.F. Schinkel) and the Berlin“Business-School “ (founded 1821). In 1884 it moved to a new representative Campus Building at the Charlottenburger Chaussee, today called“Strasse des 17. Juni” (Figure 9). With its focus on sciences, especially on “Mechanical Engineering”and “Electrical Engineering”, it became one of the main pillars of Berlin’s industrialization on its way to famous Berlin “Electropolis” during the last decades of the 19th and the first decades of the 20th century. Although partly destroyed during World War II, the restored building of the old “K?niglich Technische Hochschule” is still used today as the main representative building of TU Berlin hosting the seat of the TU President, the administration, the Audi Max and large campus culture spaces.
Today, the EnEff: HCBC Campus is characterized by a high urban density with its approximately 50 buildings of different size, age and functions, which in total provide a built area of about 600,000 m2 net floor space. The campus is hosting about 50,000 users, 40,000 of which are students.
According to the TU facility management the Campus’ building fabric is currently facing an enormous need of refurbishment, especially with regard to its energy efficiency, amounting to more than 300 Million Euro.
The Campus East, the “backyard” of the TU / UdK Berlin as well as of the City West / Zoologischer Garten, is offering a large potential of about 150,000 m2 for new inner-city sustainable building space. As most of the territory is owned by TU / UdK, the site could perfectly serve as interface between Science and Economy, Research and Start-Ups, Student Living and Business Apartments.
4 The Challenge
“Our Country will be, in the best as well as in the worst case, a Global Model for the Transition from the Fossil-Nuclear to the Efficient-Renewable Economy. But without the largest city of Germany such a Transition will not succeed in a credible way” (Prof. John Schellnhuber)[4].
5 The Goal
The EnEff: HCBC Campus will be developed and promoted as pioneer of German “Energiewende”. The key goals will be a campus that in 2020 is 100% greenhouse gas emission free, covers 100% of its energy consumption by renewable energies and increases energy efficiency by 100%. In order to reach these ambitious goals the EnEff: HCBC Campus will become an “Energy Plus Quarter”, i.e. an energy producer by using an innovative mix of energy efficient plant technology. It will thus become a breeding place, test bed and engine of climate innovation, a prototype Berlin “Climate Kiez”[4].
In practical terms, the campus offers favorable conditions and characteristics to become a model for the development of a sustainable city quarter: the following facts facilitate the implementation of the pilot project: The campus has: one homogenous ownership; one elected scientific presidency; one energy supply system; one facility & energy management; one user community —— students, professors, employees; one knowledge based network of the most brilliant minds and scientists; one science-thirst-based student community.
The following focus areas have been identified to be crucial to reach the above formulated goal:
5.1 Building Fabric
The university campus is offering a high potential for saving energy and reducing CO2emissions through refurbishing the existing building stock in a radical sustainable way. The EnEff: HCBC Campus will use this potential of improving the existing building fabric in a most sustainable way. On the urban scale the eastern part of the campus will be developed as sustainable and innovative urban design including short walking distances, high density and a good connection to public transport systems. All newbuildings will be designed with a focus on energy efficiency and resource conservation.
5.2 Energy Production
As energy producer HCBC Campus will install an innovative mix of energy efficient plant technologies based on using available renewable energies on site, e.g. solar energy, deep geothermal heat, waste heat from computer centers, auditoriums etc., green cut, animal /elephant poo, black water etc.
State of the art references for this radical vision of energy-production by city quarters can be found in: a. The strategic sustainability project “Efficiency Plus” headquarters implemented by the Viessmann Group at its own production campus in Allendorf, Germany[5]; b. The Tangshan / China feasibility study “Transformation of Urban Infrastructure into Urban Public Space” by emhz Architects Berlin / Beijing, 2011[6].
5.3 Change of User Behaviour
As about 25% of energy consumption is due only to wrong user behaviour, there will be developed and tested diverse measures and practises to motivate the campus users —— students, professors, administrative staff —— to engage in acting in a responsible manner.
6 The Implementation Strategy
The main target of EnEff: HCBC Campus is to reach the goals of the German Federal Government for 2050 already in 2020.
In 2013, the final energy consumption of the HCBC Campus summed up to about 100 GWh/. This equals a primary energy consumption of 140 GWh/a.
So far, the HCBC Campus energy department has managed to continuously improve the energy and environment balance of the Campus through their active engagement in sustainable development and the implementation of active energy control systems. It is continuously minimizing its energy consumption, implementing its new “Masterplan Energy”.
As a first step in the implementation-process of the EnEff: HCBC Campus project, we will promote the following interdependent project activities, that will partly be based on currently available technologies, partly on newly developed, innovative technologies, partly on energy-efficient refurbishment of the existing building fabric and energy efficient construction of new buildings as well as on the mobilization of campus users to change their user behavior to save energy and support the sustainable change of their campus:
—— Research & development of prototype-solutions and show-cases of advanced Building-Energy-Systems in combination with energy-efficient and noise-resilient uilding skins / “Soft Sound Climate Envelopes”.
—— Interdisciplinary pilot- and demonstration projects on the levels of campus quarter, building ensembles and single buildings, focusing on“zero energy” refurbishment (e.g. Mathematics Building, Figures 10, 11, 12), energy efficient building stock enlargement (e.g. on the roof top of the main UdK building, Figure 13), and new buildings that produce energy, so called “Energy Plus Buildings” (e.g. Campus East, Figures 14, 15), thus transforming the Campus into a learning-, research- and test-lab for sustainable construction and operation.
—— Certification of outstanding prototypes of energy-saving and “Energy Plus” campus buildings with “BNB” (Federal Certificate for Sustainable Building / Bundeszertifikat für Nachhaltiges Bauen”).
—— Innovative Thermal-Energy-Management for the whole campus, shifting the boundaries of the assessment system from the single building to the area of the HCBC Campus Quarter.
—— Implementation of innovative energy efficient plant technologies on campus, either integrating them in multi-function buildings thus multiplying the use of limited space[6,7]or presenting them as stand-alone show cases (Figure 16).
—— Green Campus student activities, e.g.:
Student initiative DAEJAYON[8]: Implementation of a Bonus Model for energy saving on HCBC Campus, promotion of a GREEN CODEX for all campus users.
International student exchange and cooperation programs in order to exchange knowledge and promote awareness of climate issues.
7 Partnerships
The successful implementation of EnEff: HCBC as pioneer campus of Capital Berlin needs strong comprehensive partnerships and cooperations. Therefore, the cooperation of university, research institutes, Federal Government (BMWi), the City of Berlin and private companies is essential and promising.
Cooperating Partners from Science & Business
—— PIK Potsdam Institute of Climate Impact Research
—— GFZ Geo Research Centre Potsdam / Reservoir technologies / Deep Geothermal Energy
—— MPIKG Max Planck Institute for Colloid and Interfaces Research
—— Priedemann fa?ade lab Gro?beeren
—— GASAG Berlin
—— Herrenknecht AG, Department for research on deep drilling
8 Key Sustainable Technologies (Diamonds)
As mentioned above, an interdisciplinary, strongly integrated approach is needed in order to reach the ambitious goals of 100% reduction of greenhouse gas emission, 100% use of renewable energies, 100% increase in energy efficiency the HCBCCampus project has set itself. A key issue is to identify and tap new sources of renewable energies that are locally available on site, such as solar energy, geothermal energy, biomass (green cut of campus / park, dung of the neighboring zoo), waste heat from computer centers, laboratories, auditoriums etc. At the same time new advanced technologies have to be developed to increase the efficiency of the conversion, storage and distribution of the available renewables on site.
In the following “close look”, we will describe in more detail six selected key technologies, so called diamonds. All these key sustainable technologies are TU & TU-Partner research projects and will be part of the overall EnEff: HCBC Campus 2020 strategy:
—— Absorption Chillers for Combined Heating, Cooling and Power
—— ATES: Aquifer Thermal Energy Storage
—— Deep Geothermal Energy
—— HTC: Hydrothermal Carbonization
—— LowExTra (Low Exergy District Heating / Cooling)
—— Watergy: Heat Supply from Urban Green Houses
Key Sustainable Technology 1 – DIAMOND 1 Absorption Chillers for Combined Heating, Cooling and Power
Stefan Petersen, Felix Ziegler
More than 25% of the space heating demand in some European countries as Germany, Sweden, Denmark or Finland is covered by district heat. Some cities in northern Europe even reach a ratio of more than 70%[9]. In summer months, most of the district heating systems in Europe are running on low capacity. On the other hand, there is an increasing demand of cooling supply for A/ C. Sorption chillers working with low driving temperatures are especially suitable for using district heat in summer to meet the demands of cooling loads. This way, the efficiency of district heating networks is improved, the provider of the heating networks encounters new key markets and the operator of the chiller obtains a cheap, reliable and ecologically worthwhile driving energy[10,11]. Sorption cooling technologies are well known as best practice energy efficient cooling supplying apparatus where heat as driving source is delivered by waste heat, trigeneration systems, solar thermal plants, etc.
A research, development and dissemination project was performed by TU Berlin with the assistance of ZAE Bayern and cooperation of Vattenfall Europe, sponsored by the German Ministry of Economics and Technology with the aim to set up high efficient absorption chillers in the range of 50-320kW. The project is continued by TU Berlin with the aid of the German associations AGFW and BTGA, TU Dresden and ILK Dresden, and again sponsored by the German Ministry for Economics and Energy.
The focus was set on an efficient system for the whole cooling generation process, including heat rejection, hydraulic components (together with parasitic energy demand) and control. An expedient capacity range was seen in 50-320kW cooling power. This is suitable for average sized residential blocks. So, in a first step a 50kW chiller was designed, built and installed in several demonstration sites. In a later step, a 160kW machine is being developed. The two types (named Bee and Bumble-Bee) are now in a field test at 16 sites in Germany.
The chiller which has been developed operates between 25% and 140% of nominal load at thermal COP’s in the range of up to 0.80 and it can deliver cold down to a part load of 5% in steady state operation. While driving heat can be used from 55°C up to 110°C at the inlet (standard operation point is at 90/72°C in/out), reject heat inlet temperatures up to 45°C are feasible for normal operation mode. The thermophysical characteristics of the first 50 kW model have been described in 2011[12].
Another important concept of the new development has been the combination with dry reject heat systems. New benchmarks in reject heat temperatures have been reached and no crystallisation problems appear at high reject heat temperatures. In part load there is a theoretical potential of saving pump energy in the reject heat cycle (see Figure 18). As defined in the European Seasonal Energy Efficiency Ratio (ESEER), around 40% of load hours are at 50% of installed capacity. Reducing the cooling water flow rate will save up to 98.5% of electric consumption of the pump if efficiency of the pump keeps constant. In addition, lowering the fan speed simultaneously can lead to parasitic energy savings of 80%-90% compared to full load if control strategies are adapted according to the findings of TU Berlin.
Adapting and enhancing the heat exchanger concept of the 50 kW model, the 160 kW concept was established. Main goals were to keep the weight of the chiller or the chiller modules below 1000 kg (stair up- and downward transportability) and size limits below 1.9m×1.6m×0.88m (floor transfer bottlenecks as doors and corner sizes). Finally, the new concept converged to figures given in Figure 21. As shown in Figures 18-20 the concept allows to divide the chiller into 2 main modules consisting each of 2 main heat exchangers, the low pressure part of evaporator, absorber, solution heat exchanger, pumps and base frame and the upper pressure vessel hosting desorber and condenser.
In Figure 21 the new chiller is compared to top market available chillers. Even as one complete system it is lighter and smaller than “one vessel”market products which are pooled in the circle. One vessel chillers are not divisible, not in weight and not in size. As a compact and complete chiller it is with only 0,86m width the slimmest chiller in this capacity range and the first one passing through doorways. Moreover, first economic analyses propose system costs to be 50%-70% lower than available by now.
In Figure 21 geometrical data of the new absorption chillers are summarized. Figure 22 gives an overview to nominal conditions of the two models.
The development described in this paper shows the potential for modernization of a seemingly mature cooling technology. Sorption cooling or heat pump systems have been a niche-market during electrification period. Within the recent discussion on energy end-use efficiency, solar power usage and combined heat and power, sorption cooling systems offer the possibility to make use of heat during summer season, and by this increase the use of cogeneration and reduce additional electric loads caused by compression cooling systems.
Acknowledgement
The authors wish to thank the German Federal Ministry of Economics and Energy represented by Project Management Jülich (PTJ) for sponsorship.
Key Sustainable Technology 2 – DIAMOND 2
Efficiency and Reliability of Energy Systems in Urban Districts with Seasonal Energy Storage in Aquifers (Aquifer Thermal Energy Storage - ATES)
Stefan Kranz, Ali Saadat, Alexander Inderfurth, Falk Cudok
Future energy systems for urban areas or urban districts require the use of energy efficient technologies and an increasing share of renewable energies. For tapping the full energy saving potential, storage of energy at different time scales is essential for compensating the time differences between energy demand and energy availability. For urban districts with high building densities, storages with large storage capacity are favorable. Especially water bearing layers (aquifers) in the underground are very suitable storages. They have been intensively proven for relatively low temperatures (10-40°C), for example in the Netherlands, and for higher temperatures up to 80°C in few individual pilot projects (e.g. Germany).
In order to make further progress on the learning curve of this technology, a new R&D project was initiated with the main objective to develop a design method leading to more reliable and efficient ATES for existing or future urban district energy systems. This project involves partners with expertise in energetic performance of buildings and urban districts from Universit?t der Künste Berlin, energy conversion technology and hydrogeology from Technische Universit?t Berlin and in geothermal technology and underground thermal energy storage technology from International Centre for Geothermal Research ICGR at the GFZ German Research Centre for Geosciences. The main example case of this project is the University Campus in Berlin-Charlottenburg (Figure 23). The campus comprises a total of 49 buildings utilized as offices, lecture halls and laboratories with construction dates spanning more than one century starting from 1883.
1 How Aquifer Thermal Energy Storages work
In ATES systems water bearing sandstones are used as storage medium for thermal energy. The groundwater serves likewise as heat transfer medium and storage medium. Common ATES systems consist of two wells or well groups (Figure 23), a“cold” well (blue) and a “warm” well (red). ATES systems are used to store thermal energy seasonally, mainly for heating and cooling of buildings. When charging the ATES system with heat, the groundwater is produced from the cold well, heated at the surface and injected into the aquifer via the warm well. During discharging the flow direction is reversed and the warm groundwater is produced from the warm well, cooled off while using the heat and injected again into the aquifer via the cold well.
2 Storage Integration and Energy System Analysis
The main objective in designing energy supply systems with seasonal energy storages is the optimal interaction of demand side, energy supply technology and storage system considering a reliable and safe operation. When developing a storage design, several influencing factors have to be taken into account. On one side, most relevant aspects are geological structure, fluid chemistry, microbiology and hydraulic and thermal properties of the storage aquifer. On the other side, there are factors determined by the surface energy systems such as the amount of energy that can be charged/ discharged, circulated groundwater volumes, temperatures and temporal behaviour of system components and demand side.
For the optimal integration of ATES into district energy systems, a design and planning method will be developed considering buildings, energy conversion technology and ATES.
3 Geochemical Aspects of ATES
The utilization of deep groundwater aquifers as energy storage is associated with possible chemical and/or microbiological interactions which may lead to a reduced storage performance. These reactions can be triggered by changing temperatures or groundwater contact with atmospheric oxygen. In order to reduce the risk of storage-misperformance, the aquifer properties and the solute transport will be investigated and characterized considering possible operating conditions. Based on these results, the effect of temperature changes on hydraulic conductivity can be qualified and temperature limits for operation can be specified. The investigations are carried out in laboratory and field experiments and supported by numerical simulations. The results are essential for a sustainable and reliable storage operation.
4 Energy Conversion Technology
In this work package energy conversion devices like cogeneration unit, compression chiller, compression heat pump, absorption heat pump, absorption chiller and absorption heat transformer are investigated. Special focus is on absorption heat converter technology. Here a new component will be developed, build up and experimentally analyzed. The absorption heat converter (heat pump type II) can be operated as absorption heat pump, absorption chiller and absorption heat transformer. Because of its large variability the heat converter is a promising technology for integrated heat and cold supply systems in urban districts.
Figure 24 illustrates a possible application for an urban district heating and cooling system with ATES. In summertime the transformer operates in absorption chiller mode and the ATES serves as energy sink to store surplus heat. In wintertime, the heat pump operation mode or heat transformer mode is active; the ATES might serve as heat source.
5 Buildings and Urban District
This work package develops a universally applicable simulation method to model the thermal behavior of an entire district consisting of numerous buildings and a versatile energy supply network. The modelling focus lies in an adequate balance of sufficient accuracy and short CPU times. Therefore, fast and simplified components are used. The simulation method will be applied to analyze different scenarios of the Campus Berlin-Charlottenburg. Figure 25 shows all buildings of the campus including the annual heat consumption.
Acknowledgement
This project is funded by the Federal Ministry of Economics and Technology (BMWi 03ESP409A). We thank the Ministry for the financial support.
Key Sustainable Technology 3 – DIAMOND 3 Assessment of Geothermal Heat Provision from Deep Sedimentary Aquifers in Berlin Germany: A Case Study
Oliver Kastner, Judith Sippel, Günter Zimmermann, Ernst Huenges
To meet the interest of carbon dioxide emission reductions, the heat supply market has to develop a significant share from renewable resources. Geothermal systems have the potential to contribute in principle, however, this potential is largely undeveloped for different reasons: Limited geological data inducing development risks, technological challenges, high invest and limited public reception. This situation is true especially for densely populated urban regions comprising high demand and complex, heterogeneous supply structures. The city of Berlin/Germany represents a prime example of this.
An enormous potential (heat in place) of the deep sedimentary aquifers in Berlin’s underground has been demonstrated[13,14]. Geologically, Berlin is situated in the Northeast German Basin, Figure 26. The thermal gradient in this region is moderate, but promising hydrothermal reservoirs are expected in porous rock formations predicted at elevated depths between 1,000 and 5,000 meters. Typical reservoir formations in the region consist of sandstone units of variable thicknesses. The pore space of these units contains aqueous fluids characterized by depthrelated temperature and salinity; this water body may be developed to utilize the heat potential by hydrothermal plant systems: The fluid is pumped to the surface through production wells and after heat extraction pumped back through corresponding injection wells to stabilize the formation pressure (doublet system). A preliminary assessment of the thermal capacities of such heat plants in Berlin has been investigated and analyzed for selected locations in Berlin, such as the former airfield Berlin Tempelhof[15]and the campus of the Technical University of Berlin[16]. The studies are based on a structural model of the larger Brandenburg area[17-19]. Out of this area, the Berlin region, located in the center of the federal state Brandenburg / Germany, was cropped and the resulting model was calibrated against additional well-bore data available[14]. The Berlin model resolves geothermal reservoirs at main formation scale, hence neglecting decent complexities like faults or present inhomogeneities at the scale of their subunits. Berlin is geologically located in the Northeast German Basin where the geometries of Mesozoic sedimentary units are typically complex because of recurrent phases of mobilization of the underlying Permian Zechstein Salt; Figure 26(a) provides a perspective view of this. The adjacent unit above the Zechstein Salt, the Buntsandstein, exhibits hydrothermal aquifers comprising sandstone sequences which are variably permeable according to the local facies. The sandstone fraction may be estimated based on the basin-wide average values known from the hydrocarbon exploration campaigns during 1960-1990. Further geological field parameters are derived statistically from available field data of the Northeast German Basin within specific intervals of confidence. The resulting structural model therefore is suited for the assessment of the principle average properties within uncertainties induced by missing knowledge of the geological fine structure.
An idealized heat plant design based on a generic supply scenario is considered in order to evaluate the geological model. This scenario is characterized by the simple geothermal doublet plant design, Figure 27(a), standard confined aquifer conditions and idealized fluid properties along the pipe system. The operation point of the heat plant is selected so as to prevail absorbing conditions in the injection well, where an injection pump is not required. Here we provide the results for the location of the campus of the Technical University of Berlin, indicated by the white triangle “TUB” in the contour map of Figure 27(b). The hydrothermal model plant produces heat and consumes mechanical power to drive the production pump. These energetic quantities are related to the geological parameters and the operation conditions of the plant. The thermal capacity is also influenced by the technical specifications of the heat supply network, which sets the temperature of the re-injected fluid after heat extraction (here: 45°C), thus imposing an important technical boundary condition.
Figure 27(b) shows the resulting heating power of hydrothermal doublet systems fed from Middel Buntsandstein reservoirs in Berlin. The magnitudes are predicted up to a Berlinwide maximum of 5.9MW and comprise a mean value of 2.9MW. Note these figures refer to the expectation values of the geological parameters and pay zone thicknesses; in reality it must be expected that these values are super-imposed by geological model uncertainties, which can be estimated within bounds[15,16]. The spatial distribution of the heating power is dominated by the interplay of two competing tendencies of temperature and permeability. Temperature increases approximately linearly with depth and affects the specific enthalpy of the produced porefluid. The permeability affects the relation between pumping power and production flux rate. For the Middle Buntsandstein in Berlin, the model predicts area production flux rates of 50-150kg s-1 in hydrothermally favorable areas, with an areawide mean value of 56kg·s-1. The productivity index, related inversely to the production flux, is predicted between 10 and 50L·s-1·MPa-1in favourable areas. The production pump working is in the order of 100-300kW on average. The resulting ratio between the heating power and the pump working (COP) amounts to 10-25.
The campus of the Technical University of Berlin is geologically situated at the slope of a salt-diapirinduced high-level landform, where the Buntsandstein is found at comparatively shallow depth. Therefore, it exhibits higher permeabilities but lower temperature (ca. 55°C) locally. Accordingly, the expected reservoir hydraulics allow high flux rates of low-enthalpic fluid. Since the heating power is proportional to the product of flux rate and temperature, a hydrothermal plant fed from the Middle Buntsandstein can reach significant power, where a moderate temperature level is compensated by elevated production flux. On average, the heating power of such doublet system at the TUB site is predicted at 4.5MW (under the assumption of absorbing injection well conditions and a re-injection temperature of 45°C). The predicted average production mass flux is 153kg·s-1and the doublet design assumes a well separation of 1,625m.
Key Sustainable Technology 4 – DIAMOND 4 Conversion of Waste Biomass and Waste Water Sludges to Mineralized Carbon: Energy Generation and/or Carbon Sequestration
Markus Antonietti
Low value biomass, e.g. from waste streams, sludges or agricultural side products, is a potentially very valuable raw material source. For that, biomass has to be stabilized and mineralized, and a process called hydrothermal carbonization can be used for densification of the material and energy content, but also as a disinfection, homogenization, and unification technology. As the resulting products can be understood as bound carbon from natural, regrowing resources, they can be counted in CO2-balance sheets on the favourable, carbon negative side.
1 Introduction
Our industrial society currently depends on a stable support of fossil crude oil, all for energy generation, transportation, and the generation of chemical platform chemicals. The end of the “oil age” is however foreseeable, and economic earthquakes preceding oil shortage are sensed already today. A further backside of oil economy is the liberation of largest amounts of CO2, and from oil alone 12.5 billion tons (Gt) of CO2are generated, with the known implications on climate and weather extremes. How could a real useful instrument or technology be defined? It is very clear that we need to create processes that are able to invert the previous developments, to bind also the atmospheric CO2of the early industrialization. We describe the search for new carbon deposits, and a part of our industrial or municipal products has to be turned into products which bind carbon rather than they generate it throughout their life cycle. Most favorably, if we could integrate such an solution already in city planning or more local building operations, each township or bigger infrastructural entity could contribute to a carbon neutral or negative economy.
2 Hydrothermal Carbonization
2.1 HTC of Biomass Waste for Environmentally Friendly Carbon Sequestration
The most effective and cost-free CO2collector is Mother Nature herself, turning it into some densified carbon species, biomass. A rough estimate of the terrestrial biomass production amounts to 120 Gt/year as dry matter, these are around 60 Gt bound carbon or 220 Gt sequestered CO2, per year[20,21]. The natural CO2-cycle is therefore still one order of magnitude larger than the anthropogenic one, just that Nature is—— for hundred millions of years —— in equilibrium with herself. It must be understood that the generated biomass is just a short term, temporal sink of CO2, as the microbial degradation after plant death liberates exactly the amount of CO2which was previously bound in the plant material. Locking away “just”8.5 wt% of the freshly produced biomass from the active ecosystem would indeed compensate for the complete CO2generation from crude oil. For all that, we need another processing step to turn biomass into coal, coke, or carbon, and “carbonization”, i.e. the conversion of soft biomolecules into a carbon rich powder, is the name for this process.
Relevant for the present line of arguments, there exists not only the hot flame carbonization, , but also a more effective “wet” carbonization. Similar to the slower natural processes in swamps, biomass is dehydrated under slightly acidic conditions creating water and coal, only. This “hydrothermal carbonization” (HTC) was performed by Bergius and Specht as early as 1913[22,23]. More modern versions accelerate those processes by additives and allow the generation of meaningful micro- and nano-structures with special surface chemistry. The finally described acceleration of coalification by factors of 106-109 down to the hour scale makes hydrothermal carbonization a technique which is worth considering to be integrated in communal mass stream, such as treating wast water sludges/ filtrates in water recycling, or for the local green cut of gardens and the surrounding biosphere.
HTC is —— in direct comparison to other biomassprocesses- not only fast, but also simple and effective. On the one hand, it inherently can use wet starting products, as the reaction only effectively takes place in a water environment. Costly drying therefore is not demanded. On the other, biocoal can be easily filtered off from the wastewater stream; the product isolation is rather simple. Another beneficial aspect is that the reaction is exothermic and spontaneous, i.e. the process does not rely on excessive energy input. The real energy output is still under debate, but depending on reaction scheme and degree of aromatization of the coal, between 5%-30% of the original heat of combustion are liberated throughout the process.
2.2 HTC for “Carbon Negative Materials”
Material chemists now look for such applied materials with potential Gt footprint. An attractive application of that scale is the use of such biocoals for the improvement of agricultural soils. Chemistrywise, this technology corresponds to a replication of the natural processes of black soils, and highly humic matter containing soils belong to the most fertile soils on earth. The development of biocoals with chemically adjusted humic matter profiles could bring soil improvement (no peat nor fertizler has to be shopped to support green or rooftop gardens) and contribute to the preservation and productivity of agricultural areas, even under altered climate conditions. The need for humic matter on this planet is indeed measured in many Gts. Figure 28 depicts the inner structure of such an HTC product, which was synthesized from Berlin oak leaves[24]. The material combines optimal accessibility with a highly functional surface chemistry and is ideally suited for the capillary binding of water and specific ion binding, a “carbon sponge” in figurative language.
3 Discussion and Conclusion
In this article the HTC process was delineated, with its many advantages to take care of waste biomass and wastewater sludges, for instance. As carbonization stabilizes biomass against the naturally occurring degradation, all carbon fixed like that is essentially on the negative side of the CO2-balance, i.e. atmospheric CO2is collected by plants and turned into solid carbon by an added technology. If we can avoid otherwise occurring disposal costs, say by using the stored carbon as humic matter to bring fertility and biological added value, such a communal cycle might even turn economically to the best choice.
Key Sustainable Technology 5 – DIAMOND 5 Low-Exergy District Heating and Cooling to Store and Distribute Heat at Different Temperature Levels (LowExTra)
Martin Kriegel
During the presented research project LowExTra a novel, intelligent, democratic multi-layer district heating network will be investigated and developed. The goal is to build a network that, in contrast to today’s classic supply and return networks completely flexible concerning different temperature levels. Not just the direction (supply or return) is dissolved in the process, but also a fixed temperature level in the pipelines.
With at least minimum four different levels (e.g. 15°C, 30°C, 45°C and 60°C), the so called LowExTra —— Low Exergy Trassen (engl. Pipelines), parallel to any existing district heating network, the use of environmental energy (solar thermal, geothermal, groundwater, air) and waste energy are maximized. In particular, the low temperature level enable to provide a plurality of power sources that were previously unused. After principle, drastic changes in the electrical energy system in recent years in Germany, with the LowExTra now also the customers of the district heating will become procurers.
In addition, the multi-level network provides summer and winter use. Due to the lowtemperature level (in the above example, 15°C) a direct cooling (e.g. over surface cooling system) is applicable. Overall, the LowExTra network is a large heat storage with variable injection and withdrawl, in analogy to the well-known stratified heat storage used in buildings (see Figure 31).
The developed democratic network requires a dynamic interaction of technological components and highlights the building and cities as an energetic system component. This is a completely new perspective.
The consequences of the implementation corresponding to the German “Energiewende 2050”in terms of economic, environmental and social aspects are highly dependent on the energy system itself. Design, implementation and successful use of “smart” low temperature networks with the possibility of decentralized supply of LowEx heat sources require the interaction of technical, economic, political and participatory blocks (see Figure 32).
The overall objectives of the whole project are the fundamental study of the feasibility of the above democratic multi-level networks from all four perspectives (technical, economic, political and participatory) and the experimental test of the crucial LowExTra components in the labs of Hermann-Rietschel-Institute of TU Berlin. After the successful completion of the three-year research project, a pilot plant will be constructed in the field.
Acknowledgement
The research project is financed by German government (Bundesministerium für Wirtschaft und Energie, BMWi, FKZ 03ET1237A).
Key Sustainable Technology 6 – DIAMOND 6 Heat Supply from Urban Greenhouses under Use of a Liquid Desiccant Energy Network
Martin Buchholz
There is a great amount of low temperature waste heat available at many urban locations. The will to use this heat exists but there is a lack of appropriate neighboured heat sinks and low tempered heat is not qualified for longer transport. The solution to this problem can be found by using the heat to increase concentrations in hygroscopic liquid desiccants.
Absorption materials based on hygroscopic salt solutions can be utilized for air dehumidifying processes and for applications to recover latent heat from industry and buildings. In this context, urban solar greenhouses represent the field of application with the greatest potential for growth.
The ability of the liquid desiccant to absorb water uses the thermo-chemical characteristics of the salt solution, which is maintained during transport and storage. Through the absorption of humidity, the liquid desiccant is diluted. The ability to absorb water thereby decreases. When a certain level of dilution is reached the desiccant needs regeneration. Under use of waste heat, it is “desorbed”, parts of the solution is released to the environment as water vapor. Industrial processes or the cooling towers of power plants, waste heat from air conditioners, decentralized co-generation units and solar power installations are suitable for the regeneration process. In winter, regeneration can also be carried out at very low temperatures (10-25°C) as the humidity of the cold outside air is correspondingly low. In this way aquifer and near-surface ground stores with seasonally stored heat can also be utilized without
the need for heat pumps as required in conventional systems. Network distances of up to 50 km are made possible by high energetic density and storability of liquid desiccant, thus allowing the exploitation of more remote heat sources.
1 Applications Using Liquid Desiccants
1.1 Solar Greenhouses
A specific application is given by urban greenhouses, as here humidity is high and humid air can be transferred to dry air with increased temperatures, allowing its use for space heating. Alternatively, heat can be withdrawn and accumulated within the desiccant solution.
With help of the Watergy Absorber Box, rooftop orfa?ade greenhouses can be used as a solar thermal collector. Thermal capacities are present in both, heat and humidity of greenhouse air. During winter, temperatures reach 15-20°C already at diffuse solar radiation. By dehumidifying the air in the Watergy Box, temperature is increased to 20-28°C and then is directed into the building.
On really sunny days, temperatures reach up to 35°C. The liquid desiccant heats up as it takes up humidity from the air in the greenhouse, and reaches temperatures of around 40°C. This stored heat can then be used for heating the building during night or on days with low radiation.
1.2 Heat Recovery and Humidity Regulation in Buildings
Humid air in buildings occurs from showering, cooking, drying laundry as from inhabitants and houseplants. Humidity holds latent heat energy that is usually lost when airing the rooms of the building. In order to improve energy efficiency and air quality the humidity is taken up by the liquid desiccant in a recirculation or extraction unit. The desiccant is heated by humidity uptake in the exhaust air stream and is transported back to the air supply unit to heat and humidify the air flowing into the building. Humidity peaks are thus taken up by the exhaust air, while in the interests of health a minimum humidity is always maintained.
1.3 Cooling Buildings with Desiccants and Water
During summer water can be evaporated in the air extraction unit. Due to the evaporation the water is cooled. The cold water is conveyed over a heat exchanger and thus to the desiccant in the air supply unit. It is thereby indirectly cooled and can dehumidify and cool the supply air in a targeted manner.
Heat taken up by the desiccant during the day is retained in a storage unit. This heat can be during night and water taken up by the liquid desiccant is thereby once again evaporated. Within humid and hot environments, additional regenerated desiccant is supplied by a desiccant network. The evaporation of water in the extraction unit also continues during night. This allows cold to be accumulated in the same storage unit for use in cooling the building the next day. One storage unit is thus employed for the simultaneous retention of heat (regeneration of the liquid desiccant) and of cold (for air conditioning of the building).
2 Prototype at TU Berlin, Climate Campus Based on the experience from existing research prototypes at TU Berlin, a desiccant network, consisting of an urban roof greenhouse (as solar heat source), a university building (as heat consumer) and a large server room (as waste heat source for desiccant regeneration) will be installed as a first real built example of this kind of energy network.
3 Impact on Urban Heat Island Effect and Potential CO2Savings
Greenhouses on previously covered areas like fa?ades, rooftops, above parking facilities or alike can convert solar radiation into latent heat due to the phase change of water. Greenhouses can be used in summer for surface cooling, strongly reducing the roof surface temperature. The electric operation of air conditioning devices can be partially replaced by evaporative cooling and desiccant based dehumidification. This in total diminishes the rejection of additional process heat to the environment. The potential for CO2savings relates to the reduction of energy consumptions during space cooling and heating, the integration of solar energy from greenhouses and the valorisation of previously unused waste heat.
CONCLUSION
The paper has highlightened the importance for urban designers to design energy efficient and low carbon urban quarters to mitigate climate change and natural resource depletion. However, it has also shown that they cannot do that by themselves but have to join forces with other disciplines especially engineers. A truly interdisciplinary approach is needed to make the vision of carbon free city quarters happening.
University campuses are the ideal starting point and test-beds for implementing this vison, because they combine a large set of very favorable preconditions: the have the best interdisciplinary expertise on site, a well-defined campus area with well-defined governance, very good established networks through all levels of society, and are part of the international science community, they can share ideas and knowledge with.
The TU-Berlin is just at the beginning of a very big research and development program that will shape the future of the campus. However, it is embedded in a much wider movement that addresses jointly the urgent issues of energy efficiency and climate innovation.
One of the most important European networks in this field has been described in detail at the beginning of the article.
However, it is not the only one. There exist many more. For example, since several years, the TU-Berlin has been member of the World City Universities Network WC2, a network of twelve universities all around the world, which meet every six months and have regular video-conferences. In this network there is a strong working group called “Eco-Campus” that shares the objectives of a carbon free campus. This shows that the topic“carbon free campus” is not only a European movement, but a world-wide one.
注釋與參考文獻
Notes and References
[1] Building Performance Network. Policy Paper 2013 [OL]. http://www.gbpn.org/sites/default/files/06. BuildingsForOurFurture_Low.pdf.
[2] Buildings and Climate Chance. Summary for Decision Makers, United Nations Environment Programme 2009 [OL]. http://www.unep.org/sbci/ pdfs/SBCI-BCCSummary.pdf.
[3] International Energy Agency. Transition to Sustainable Buildings, Strategies and Opportunities to 2050, Executive Summary [OL]. OECD/IEA 2013, http://www.iea.org/Textbase/ npsum/building2013SUM.pdf.
[4] Reusswig F, Hirschl B, Lass W. Climate Neutral Berlin 2050, Results of a Feasibility Study [OL]. Potsdam Institute for Climate Impact Research PIK, Senate Berlin, Department for Urban Development and the Environment, March 2014. http://www.stadtentwicklung.berlin.de/umwelt/ klimaschutz/studie_klimaneutrales_berlin/ download/Machbarkeitsstudie_Berlin2050_ EN.pdf.
[5] 在阿倫多夫菲斯曼集團總部及其生產(chǎn)性校園實施的戰(zhàn)略性可持續(xù)項目“能源增值”(Effizienz Plus),在2013年已完成了德國聯(lián)邦政府所制定的2050年能源與氣候目標(biāo)。
Strategic sustainability project “Effizienz Plus” implemented on the own headquarters and production campus of Viessmann Group in Allendorf, reaching the energy and climate goals 2050 of Federal Government already in 2013.
[6]“Transformation of Urban Infrastructure into Urban Public Space”, Berlin/Beijing 2011. Feasibility study of transformation of Tangshan Beijiao Sewage Plant into Tangshan Eco Civic Centre (TECC). Client: Tangshan City Municipality, Planning Office; Architects: Engel, Meier-Hartmann, Zhang, Zillich; Berlin / Beijing. (Proceedings 1. Chinese-German Forum for Cyclical Economy CICExpo, Qingdao, China, 08. June 2012).
[7] “The City Core as Power Plant and Civic Centre”A new dirstrict centre of “Franz?sisch-Buchholz Nord” (Berlin-Pankow), with an innovative mix of a BHKW Block-type Thermal Power Plant, shopping, restaurants, “stacked” row houses, appartments and penthouses. Realization 2001; Client: Ottremba Berlin, and Pandion, K?ln; Architects: Engel und Zillich. (published in “Solarstadt”, Norbert Fisch, Brunow M?ws, Jürgen Zieger; 2001, Stuttgart, Berlin, K?ln; W.Kohlhammer GmbH)
[8] DAEJAYON是一個韓國的學(xué)生倡議,在全球范圍推進“自然母親”(Mother Nature)行動。三個工作主題已被確立,包括“綠色學(xué)校”(Green School)、“綠色校園”(Green Campus)和“綠色世界”(Green World)。DAEJAYON在柏林工業(yè)大學(xué)校園內(nèi)建有一個網(wǎng)絡(luò)系統(tǒng):http://www.deajayon.de。
DAEJAYON is a South-Korean student initiative, acting worldwide engaging in “Mother Nature”. Three work topics have been established: “Green School”, “Green Campus” and “Green World”. DAEJAYON has a network on the TU Campus; http://www.deajayon.de.
[9] Randl?v P. Fernw?rmehandbuch [M]. Fredericia: European District Heating Pipe Manufacturers Association, 1997.
[10] Na? S, Lanser W, Petersen S, Ziegler F. Einfluss thermischer K?lteerzeugung auf den Einsatz von KWK-Anlagen in Fernw?rmenetzen, 11 [C]: Symposium Energieinnovationen, Graz, Austria, 2010.
[11] Zegenhagen T, et al. Best Practice: Data Center Cooling using CHCP Technology [C]: Sustainable Refrigeration and Heat Pump Technology, Stockholm, Sweden, 2010.
[12] Petersen, et al. Development of a 50kW absorption chiller [C]: Proceedings 23th ICR, Prague, Czech Republic, 2011.
[13] Kastner O, Sippel J, Scheck-Wenderoth M, Huenges E. The Deep Geothermal Potential of the Berlin Area [J]. Environ. Earth Sciences, 2013, 70(8): 3567-3584.
[14] Sippel J, Fuchs S, Cacace M, Kastner O, Huenges E, Scheck-Wenderoth M. Deep 3D Thermal Modelling for the City of Berlin (Germany) [J]. Environ. Earth Sciences, 2013, 70(8): 3545-3566.
[15] Kastner O, Sippel J, Zimmermann G. Reginalscale Assessment of Hydrothermal Heat Plant Capacities Fed from Deep Sedimentary Aquifers in Berlin/Germany [J]. Geothermics, 2015(53): 353-367.
[16] Kastner O, Sippel J, Zimmermann G, Huenges E. Assessment of Geothermal Heat Provision from Deep Sedimentary Aquifers in Berlin/Germany: A Case Study [C]: Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19-25 April 2015.
[17] Noack V, Cherubini Y, Scheck-Wenderoth M, Lewerenz B, Hoding T, Simon A, Moeck I. Assessment of the Present-day Thermal Field (NE German Basin) – Inferences from 3D Modelling [J]. Chemie der Erde, 2010, 70(S3): 47-62.
[18] Cacace M, Kaiser B.O, Lewerenz B, Scheck-Wenderoth M. Geothermal Energy in Sedimentary Basins: What We can Learn from Reginal Numerics Models [J]. Chemie der Erde, 2010, 70(S3): 3- 46.
[19] Jaroch A. Stratifizierung des Hydrogeologischen 3D Modells von Berlin unter Berücksichtigung Qualifizierter Bohrungsinformationen [D]. Berlin: Technical University of Berlin, 2006.
[20] Lieth H, Whittaker R H. Primary Productivity of the Biosphere [M]. Berlin: Springer, 1975: 205-206.
[21] Bobleter O. Hydrothermal Degradation of Polymers Derived from Plants [J]. Prog. Polym. Sci. 1994(19): 797-841.
[22] Bergius F, Specht H. Die Anwendung hoher Drücke bei chemischen Vorg?ngen [M]. Halle: Wilhelm Knapp, 1913.
[23] Bergius F. Beitr?ge zur Theorie der Kohleentstehung [J].Naturwissenschaften, 1928(16): 1-10.
[24] Titirici M M, Thomas A, Yu SH, Antonietti M. A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization [J]. Chemistry of Materials, 2007(19): 4205-4212.
Martin Kriegel, Barbara Münch, Claus Steffan, Klaus Zillich
Translated by LIN Borong, ZHENG Xiaodi, ZENG Ying, LI Siyao
Towards a Carbon Free Campus A Pan-European Campus Network with Focus on Technische Universit?t Berlin
2015年2月27日