亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類非自治共振二階系統(tǒng)的多重周期解

        2015-12-17 08:42:32張環(huán)環(huán)
        吉首大學學報(自然科學版) 2015年5期
        關鍵詞:臨界點共振

        一類非自治共振二階系統(tǒng)的多重周期解

        張環(huán)環(huán)

        (西北民族大學數(shù)學與計算機科學學院,甘肅 蘭州 730030)

        摘要:研究了非自治共振二階系統(tǒng)周期解的存在性問題.在非線性項次線性增長時,將這類系統(tǒng)的周期解轉(zhuǎn)化為定義在一個適當空間上泛函的臨界點,然后利用臨界點理論建立了此類系統(tǒng)周期解的存在性結(jié)果.

        關鍵詞:非自治二階系統(tǒng);臨界點理論;周期解;共振;臨界點

        文章編號:1007-2985(2015)05-0016-05

        收稿日期:2015-01-14

        基金項目:數(shù)學天元基金資助項目(11326100);中央高?;究蒲袠I(yè)務費專項資助項目(31920130010)

        作者簡介:張環(huán)環(huán)(1980—),女,甘肅靜寧人,西北民族大學數(shù)學與計算機科學學院講師,產(chǎn)要從事非線性泛函分析研究.

        中圖分類號:O175.12 文獻標志碼:A

        DOI:10.3969/j.cnki.jdxb.2015.05.004

        DOI:10.3969/j.cnki.jdxb.2015.05.005

        1 問題的提出

        考慮非自治二階系統(tǒng)

        (1)

        其中m為非負整數(shù),F(xiàn)∈C1(R×RN,R),且關于t是2π周期的.

        則φ連續(xù)可微,且

        (F(t,u(t)),v(t))dt.

        許多重要的數(shù)學模型都可以歸結(jié)為非自治二階系統(tǒng)的周期解,利用臨界點理論研究非自治二階系統(tǒng)周期解的存在性一直是人們關注的問題[1-11].文獻[1]中研究了超二次條件下非自治二階系統(tǒng)周期解的存在性;在具有部分周期位勢時,文獻[2-3,9,11]中得到了非自治二階系統(tǒng)多重周期解的存在性;在非線性項F(t,u)有界時,文獻[4]中得到了問題(1)周期解的存在性;在非線性項在無窮遠處線性增長時,文獻[5]中得到了非自治二階系統(tǒng)周期解的存在性.

        次線性條件指[9],存在f,g∈L1(0,T;R+),0≤α<1 ,使得

        |F(t,x)|≤f(t)|x|α+g(t),

        (2)

        對所有x∈RN和a.e.t∈[0,2π]成立.

        稱問題(1)是共振的,指

        (3)

        對t∈[0,2π]一致成立.在(2)式成立時,(3)式也成立,故此時稱問題(1)是共振的.

        當m=0時,在具有次線性非線性項時,文獻[6]中得到了問題(1)周期解的存在性;文獻[7]將文獻[6]中結(jié)果推廣為m不恒等于0的情形;文獻[8]中討論了次線性非自治一階Hamiltonian系統(tǒng)周期解的存在性;文獻[6-8]中均假設核空間上Ahmad-Lazer-Paul型強制性條件成立,即

        筆者將Ahmad-Lazer-Paul型強制性條件推廣為

        (4)

        在此條件下,用臨界點理論研究問題(1)的多重周期解,在非線性項滿足次線性條件時,得到這類周期解個數(shù)的下界估計.

        2 預備知識

        (5)

        對所有u+∈H+和t∈[0,2π]成立.由文獻[12],有

        (6)

        定義1 [9]設X為Banach空間,稱泛函φ∈C1(X,R)滿足(PS)條件是指對任何點列{un}?X,由{φ(un)}有界,φ′(un)→0蘊含{un}有收斂子列.

        利用Z2不變?nèi)褐笜死碚摰玫饺缦屡R界點定理:

        引理1 [13]設φ∈C1(X,R)滿足(PS)條件,又是偶函數(shù),φ(0)=0.

        若m>j,則泛函φ至少有2(m-j)個不同的臨界點.

        3 主要結(jié)果

        定理1設F滿足(2),(4)式,F(xiàn)(t,0)=0且存在常數(shù)δ及整數(shù)k>m+1,使得

        (7)

        下文證明中用c表示常量.

        |φ(un)|≤c,φ′(un)→0n→∞,

        (8)

        由(2),(6)式,有

        由(8)式,有

        從而有

        (9)

        (10)

        由(10)式可以推得

        (11)

        由(9),(11)式,有

        (12)

        同理可證

        (13)

        (14)

        由(12),(14)式,有

        (15)

        反設當n→∞時,‖un‖→∞,并注意到0≤α<1,由(15)式有

        (16)

        由(2),(6),(15)式,有

        2β‖vn‖α‖wn‖+2β‖wn‖α+1+c‖wn‖≤

        (17)

        由(17)式可得

        由(4)式,對?ε>0,存在M>0,使‖vn‖≥M時有

        (18)

        對所有‖vn‖≥M,由(13),(15),(18),(23)式,有

        由ε的任意性及0≤α<1,由(16)式,當n→∞時,φ(un)→-∞,這與(8)式矛盾.

        對所有的a.e.t∈[0,T],|u|≤C-1δ成立,其中C為Sobolev不等式‖u‖∞≤C‖u‖中的正常數(shù).

        從而泛函φ至少有2(k-m-1)個不同的臨界點,因此系統(tǒng)(1)至少有2(k-m-1)個周期解.

        定理2設F滿足(2),(7)式,且

        定理2證明方法與定理1類似,此省略.

        參考文獻:

        [1]OUZengqi,TANGChunlei.PeriodicandSubharmonicSolutionsforaClassofSuperquadraticHamiltonianSystems[J].NonlinearAnalysisTMA,2004,58(3):245-258.

        [2]TANGChunlei.ANoteonPeriodicSolutionsofSecondOrderSystems[J].Proc.Amer.Math.Soc.,2003,132:1 295-1 393.

        [3]ZHANGXingyong,TANGXianhua.PeriodicSolutionsforanOrdinaryp-LaplacianSystem[J].TaiwaneseJournalofMathematics,2011,15(3):1 369-1 396.

        [4]JEANMAWHIN.CriticalPointTheoryandHamiltonianSystems[M].NewYork:SpringerVerlag,1989.

        [5]ZHAOFukun,WUXian.ExistenceofPeriodicSolutionsforNonautonmousSecondOrderSystemswithLinearNonlinearity[J].NonlinearAnal.,2005,60(7):325-335.

        [6]TANGChunlei.PeriodicSolutionsforSecondOrderSystemswithSublinearNonlinearity[J].ProceedingsoftheAmericanMathematicalSociety,1998,126:3 263-3 270.

        [7]韓志清.共振條件下的常微分方程組2π-周期解的存在性[J].數(shù)學學報,2000(4):639-644.

        [8]HANZhiqing.ExistenceofPeriodicSolutionsofLinearHamiltonianSystemswithSublinearPerturbation[J].BoundaryValueProblems,2010,12:123-131.

        [9]張申貴.非自治共振二階離散Hamilton系統(tǒng)的周期解[J].貴州師范大學學報:自然科學版,2013,31(1):48-52.

        [10]孟海霞,郭曉峰.一類共振二階系統(tǒng)的多重周期解[J].華東師范大學學報:自然科學版,2006(1):40-44.

        [11]張申貴.一類非自治二階Hamilton系統(tǒng)的周期解的存在性[J].河北師范大學學報,2012,36(2):115-120.

        [12]TANGXianhua,XIAOLi.HomoclinicSolutionsforaClassofSecondOrderHamiltonianSystems[J].NonlinearAnalsis,2009,71(3):1 140-1 151.

        [13]CHANGKC.InfiniteDimensionalMorseTheoryandMultipleSolutionProblems[M].Boston:Birkh?user,1993.

        Multiplicity of Periodic Solution of a Class of Non-Automous

        Second Order System at Resonance

        ZHANG Huanhuan

        (College of Mathematics and Computer Science,Northwest University for Nationalities,Lanzhou 730030,China)

        Abstract:The existence of periodic solutions for non-automous second order systems at resonance is investigated.With the sub-linear increase of the non-linear term,the periodic solutions of the system are converted into the critical points of a functional defined on a proper space,and the existence of periodic solutions is proved through the critical point theory.

        Key words:non-autonomous second order systems;critical point theory;periodic solutions;resonance;critical point

        (責任編輯向陽潔)

        Article ID:1007-2985(2015)05-0021-06

        Mittag-Leffler Stability of a Class of Fractional

        Order Hopfield Neural Networks

        Received date:2014-11-26

        Biography:LIU Xiaolei(1983—),male,was born in Weifang City,Shandong Province,master of science,lecture;research area are fractional order dynamic systems and neural networks.

        LIU Xiaolei,MA Cuiling,HAO Shuyan

        Abstract:In this paper,we investigate the Mittag-Leffler stability of a class of fractional order Hopfield neural network with Caputo derivative.By using the Mittag-Leffler function,we get some sufficient conditions to guarantee the existence and uniqueness of the equilibrium point and its Mittag-Leffler stability for the fractional order Hopfield neural networks.Finally,we use one numerical simulation example to illustrate the correctness and effectiveness of our results.

        Key words:fractional order neural networks;Mittag-Leffler function;Mittag-Leffler stability

        CLC number:O211.29Document code:A

        1 Introduction

        The subject of fractional calculus was planted over 300 years ago.In recent years,fractional calculus has played a significant role in many areas of science and engineering[1-3].The necessary and sufficient stability conditions for linear fractional differential equations (FDEs) and linear time-delayed FDEs have already been obtained in ref. [4-6].The stability of nonlinear fractional order system for Caputo’s derivative is studied in ref. [7-9].

        Currently,some excellent results about fractional-order neural networks have been investigated[10-13].Particularly,Yu Juan et al[13]studiedα-stability andα-synchronization for fractional-order Hopfield neural networks as follows:

        (1)

        (1)

        where 0<α<1,ncorresponds to the number of units in the neural networks;xi(t) corresponds to the state of theith unit at timet;gj(t) denotes the activation function of thejth neuron;aijdenotes the constant connection weight of thejth neuron on theith neuron;ci>0 represents the rate with which theith neuron will reset its potential to the resting state when disconnected from the network andIidenotes external inputs.

        In this paper,by putting the systems translating into the nonlinear Volterra integral equation of the second kind,and making use of the existence and uniqueness Theorem of FDEs and a weakly singular discrete Gronwall inequality to prove the Mittag-Leffler stability of the Hopfield neural networks,which is the generation of the exponential stability.And when 0<α<1,the asymptotic rate of convergence for the system approaching the equilibrium point is faster than the exponential stability.

        The remained of this paper is organized as follows:in section 2,some necessary definitions and lemmas are presented;in section 3,we give some sufficient conditions to guarantee the existence and uniqueness of the equilibrium point and its Mittag-Leffler stability for a class of fractional order Hopfield neural networks by using the Mittag-Leffler function;in section 4,one example and corresponding numerical simulation are used to illustrate the validity and feasibility of the results obtained in section 3.

        2 Preliminaries

        There are several definitions of a fractional derivative of orderα,which is the extended concept of integer order derivative.The commonly used definitions are Grunwald-Letnikov,Riemann-Liouville,and Caputo definitions.In this section,we will recall the definition of Caputo fractional derivative and the several important lemmas.

        Definition 1[14]The Caputo fractional derivative of orderα∈R+of a functionx(t) is defined as

        Consider the Cauchy problem of the following fractional differential equation:

        (2)

        where x=(x1,x2,…,xn)T∈Rn,0<α<1,and f:[0,+∞)×Rn→Rnis continuous int.

        Definition 2[15]LetB?Rnbe a domain containing the origin.The zero solution of (2) is said to be Mittag-Leffler stable if

        ‖x(t)‖≤(m(x(t0))Eα(-λ(t-t0)α))b,

        Definition 3[16]The constant x*is an equilibrium point of the Caputo fractional dynamic system (2) if and only iff(t,x*)=0 for anyt∈[0,+∞).

        Lemma 1[17]Consider the following equation

        (3)

        The homotopy perturbation technique yields that the initial value problem (3) be equivalent to the nonlinear Volterra integral equation of the second kind

        (4)

        In particular,if 0<α<1,then eq. (4) can be written in the following form

        (5)

        Lemma 2[18]Letx(t) be a continuous and nonnegative function ont∈[0,T].If

        where 0≤α<1 andψ(t) is a nonnegative,monotonic increasing function ont∈[0,T],andMis a constant,then x(t)≤ψ(t)E1-α(MΓ(1-α)t1-α).

        Lemma 3[14]Let 0≤α<1 andf(t,x):[0,+∞)×Rn→Rnbe a function such that,for allt∈[0,+∞) and for allx1,x2∈G?Rn,

        |f(t,x1)-f(t,x2)|≤A|x1-x2|,

        whereA>0 does not depend ont∈[0,+∞),then there exists a unique solution x(t) to the Cauchy problem in theC[0,+∞).

        3 Mittag-Leffler Stability of a Class of Fractional Order Neural Networks

        In this section,we suppose that the fractional order Hopfield neural networks satisfies the following conditions:

        (A1)gj(j=1,2,…,n) are Lipschtiz-continuous on (-∞,+∞) with Lipschtiz constantsLj>0,i.e.,|gj(ξ)-gj(η)|≤Lj|ξ-η|,for allξ,η∈(-∞,+∞);

        Letλ=min{λ1,λ2,…,λn},l=max{l1,l2,…,ln},then we haveλ>0,l<1.

        Theorem 1Under the assumptions (A1) and (A2),system (1) has a unique equilibrium point.

        By the assumptions (A1) and (A2),we have

        It shows that ‖Φ(u)-Φ(v)‖

        So the conclusion of the theorem is correct.

        Theorem 2Under the assumptions (A1) and (A2),the unique equilibrium point of system (1) is Mittag-Leffler stable.

        (6)

        By the lemma 3 and the assumption (A1),the solution of the system (6) exists and is unique.It is easy to see thatei(t)≡0 is a solution of the system (6);therefore we haveei(t)ei(0)>0 fort∈[0,+∞).We divide our discussion into two cases.

        Case 1Ifei(0)>0,thenei(t)>0 fort∈[0,+∞).From (5) in lemma 1,we have

        Case 2Ifei(0)<0,thenei(t)<0 fort∈[0,+∞).It is similar to the case 1,we have

        Therefore,

        From case 1 and case 2,we get the inequality

        By lemma 2,we have

        which shows that the system (1) is Mittag-Leffler stable.

        4 Illustrative Examples

        In the system (1),let

        x(0)=(x1(0),x2(0),x3(0))T=(0.1,0.1,0.1)T,

        thenthesystem(1)satisfiestheconditionsoftheorem1andtheorem2;thereforeithastheuniqueMittag-Lefflerstableequilibriumpoint(seefig. 1).

        a x 1(t) plane

        b x 2(t) plane

        c x 3(t) plane

        Reference:

        [1] IGOR PODLUBNY.Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation[J].Fractional Calculus & Applied Analysis,2002,5(4):367-386.

        [2] J TENREIRO MACHADO,VIRGINIA KIRYAKOVA,FRANCESCO MAINARDI.Recent History of Fractional Calculus[J].Commun. Nonlinear Sci. Numer. Simul.,2011,16:1 140-1 153.

        [3] SAMKO G,KILBAS A A,MARICHEV O I.Fractional Integrals and Derivatives:Theory and Applications[M].Yverdon:Gordon & Breach,1993.

        [4] BONNET C,PARTINGTON J R.Coprime Factorizations and Stability of Fractional Differential Systems[J].Syst. Control Lett.,2000,41:167-174.

        [5] DENG Weihua,LI Changpin,LV Jinhu.Stability Analysis of Linear Fractional Differential System with Multiple Time-Delays[J].Nonlinear Dynamics,2007,48(4):409-416.

        [6] LI Changpin,DENG Weihua.Remarks on Fractional Derivatives[J].Applied Mathematic and Computation,2007,187(2):777-784.

        [7] SADATI S J,BALEANU D,RANJBAR A,et al.Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay[EB/OL].[2014-09-22].http:∥dx.doi.org/10.1155/2010/108651.

        [8] LIU L,ZHONG S.Finite-Time Stability Analysis of Fractional Order with Multi-State Time Delay[J].Word Acad. Sci.,Eng. Technol.,2011,76:874-877.

        [10] AREFEH BOROOMAND,MOHANMMAD B MENHAJ.Fractional-Order Hopfield Neural Networks[J].Lecture Notes in Computer Science,2009,5 506:883-890.

        [11] HADI DELAVARI,DUMITRU BALEANU,JALIL SADATI.Stability Analysis of Caputo Fractional-Order Nonlinear Systems Revisited[J].Nonlinear Dynamics,2012,67(4):2 433-2 439.

        [12] CHEN Liping,CHAI Yi,WU Ranchao,et al.Dynamic Analysis of a Class of Fractional-Order Neural Networks with Delay[J].Neurocomputing,2013,111:190-194.

        [13] YU Juan,HU Cheng,JIANG Haijun.α-Stability andα-Synchronization for Fractional-Order Neural Networks[J].Neural Networks,2012,35:82-87.

        [14] ANATOLY A KILBAS,HARI M SRIVASTAVA,JUAN J TRUJILLO.Theory and Applications of Fractional Differential Equations[M].North-Holland:Elsevier,2006.

        [15] LI Yan,CHEN Yangquan,IGOR PODLUBNY.Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems[J].Automatica,2009,45:1 965-1 969.

        [16] HADI DELAVARI,DUMITRU BALEANU,JALIL SADATI.Stability Analysis of Caputo Fractional-Order Nonlinear Systems Revisited[J].Nonlinear Dynamics,2012,67(4):2 433-2 439.

        [17] K SAYEVAND,A GOLBABAI,AHMET YILDIRIM.Analysis of Differential Equations of Fractional Order[J].Applied Mathematical Modelling,2012,36(9):4 356-4 364.

        [18] J A DIXON,S MCKEE.Weakly Singular Discrete Gronwall Inequalities[J].Journal of Applied Mathematics and Mechanics:Zeitschrift für Angewandte Mathematik und Mechanik,1986,66(11):535-544.

        猜你喜歡
        臨界點共振
        基于臨界點的杭州灣水體富營養(yǎng)化多年變化研究
        海洋通報(2022年4期)2022-10-10 07:41:48
        安然 與時代同頻共振
        選硬人打硬仗——紫陽縣黨建與脫貧同頻共振
        當代陜西(2018年12期)2018-08-04 05:49:22
        一類奇異共振橢圓方程正解的唯一性
        CTA 中紡院+ 化纖聯(lián)盟 強強聯(lián)合 科技共振
        超越生命的臨界點
        政工學刊(2017年2期)2017-02-20 09:05:32
        超越生命的臨界點
        改革是決心和動力的共振
        隨機共振技術在探潛中的應用
        聲學技術(2014年2期)2014-06-21 06:59:10
        人妻中文字幕乱人伦在线| 东京热加勒比日韩精品| 亚洲高清激情一区二区三区| 香蕉久久一区二区不卡无毒影院| 国产顶级熟妇高潮xxxxx| 久久精品国产亚洲vr| av网址大全在线播放| 麻豆最新国产av原创| 亚洲国产精品av在线| 不卡一区二区三区国产| 玩弄人妻少妇精品视频| 久久中文字幕人妻熟av女蜜柚m| 国产亚洲精品不卡在线| 91九色极品探花内射| 手机av男人天堂免费网址| 二区视频在线免费观看| 妺妺窝人体色www看美女| 一本色道久久99一综合| 日韩精品一区二区三区四区视频| 亚洲av迷人一区二区三区| 偷偷色噜狠狠狠狠的777米奇| 欧美日韩亚洲成人| 粗大猛烈进出高潮视频| 国偷自产视频一区二区久| 女同亚洲女同精品| 精品人妻一区二区三区蜜臀在线| 国产一区二区视频免费在| 男人j进女人j啪啪无遮挡| 中文字幕永久免费观看| 中文字幕人妻一区二区二区| 粗大的内捧猛烈进出看视频| 又爽又黄禁片视频1000免费| 中文字幕人成乱码中文乱码| 国内久久婷婷六月综合欲色啪| 国产精品成人观看视频| 日韩av二区三区一区| 免费在线亚洲视频观看| 国产乡下三级全黄三级| 久久er国产精品免费观看8| 97超碰国产一区二区三区| 色偷偷888欧美精品久久久|