亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        面向節(jié)能高效的電弧焊工藝參數(shù)多目標(biāo)優(yōu)化方法

        2015-12-02 01:26:18江志剛
        計算機(jī)集成制造系統(tǒng) 2015年12期
        關(guān)鍵詞:小生境電弧焊焊機(jī)

        鄢 威,張 輝,張 華,江志剛,向 琴

        (武漢科技大學(xué) 機(jī)械制造及自動化學(xué)院,湖北 武漢 430081)

        0 引言

        電弧焊是現(xiàn)代工業(yè)生產(chǎn)中應(yīng)用最廣泛的一種焊接方法,但其加工過程要耗費(fèi)大量的資源和能源,同時產(chǎn)生大量的廢氣、煙塵、光輻射等,造成了嚴(yán)重的環(huán)境影響。據(jù)統(tǒng)計,我國現(xiàn)階段焊接用鋼量已占我國鋼材消費(fèi)量的50%以上,經(jīng)焊接的鋼材總數(shù)已超3億噸,居世界第一[1]。另一方面,電弧焊機(jī)被列為國家12類高能耗產(chǎn)品之一,其單臺額定功率為10 kW~100kW,且近幾年產(chǎn)銷量均為400萬臺/年以上,居各類焊機(jī)之首,總耗電量不容小覷[2]。隨著國家節(jié)能減排戰(zhàn)略的實施及以低碳制造、綠色制造等為代表的一系列關(guān)注制造業(yè)可持續(xù)發(fā)展研究的興起,電弧焊過程的節(jié)能、節(jié)材和減排已成為目前研究的熱點問題。

        隨著焊接技術(shù)的發(fā)展,如自動焊、半自動焊等技術(shù)和以激光為代表的高能束流焊接技術(shù)的發(fā)展與應(yīng)用,焊接過程的能耗與環(huán)境排放已得到了較好的控制[3]。但從文獻(xiàn)[2]中電焊機(jī)行業(yè)的統(tǒng)計數(shù)據(jù)來看,我國手工電弧焊設(shè)備仍占很大比重,近幾年的產(chǎn)銷量均占所有焊接設(shè)備的52%左右,且仍以超過300萬臺/年的速度增長。因此,在這些設(shè)備的基礎(chǔ)上進(jìn)行工藝優(yōu)化控制,實現(xiàn)電弧焊加工過程的電能消耗最小化和熱利用率最大化,具有重要的現(xiàn)實意義。

        目前,國內(nèi)外已有不少專家學(xué)者對焊接參數(shù)優(yōu)化問題展開了研究。例如:Cristiene等[4]基于逆向黃金分割技術(shù),研究了鎢極惰性氣體保護(hù)焊的熱效優(yōu)化方法;Dey等[5]基于遺傳算法,研究了在熔滴滲透最大條件下使焊接區(qū)域最小的焊接參數(shù)優(yōu)化方法;Islam 等[6]以焊接產(chǎn)品質(zhì)量為目標(biāo),利用遺傳算法和有限元分析方法建立了焊接參數(shù)優(yōu)化系統(tǒng);Feng等[7]測量了電流和電壓在一定條件下CO2氣體保護(hù)焊中的焊接速度與熱效率的變化規(guī)律,通過數(shù)據(jù)擬合方法建立了熱效最大的焊接速度優(yōu)化模型;Kumar等[8]利用基于灰度的田口方法研究了激光透射焊中以最大接頭強(qiáng)度和最小焊接寬度為目標(biāo)的焊接參數(shù)優(yōu)化方法;韋智元等[9]利用熱彈塑性有限元法分析了焊接過程耦合殘余應(yīng)力的分布規(guī)律,提出了通過調(diào)節(jié)焊接溫度消除長直焊縫殘余應(yīng)力的工藝方法;王勤等[10]以最大化焊縫強(qiáng)度為目標(biāo),利用灰色關(guān)聯(lián)法對電弧焊工藝參數(shù)優(yōu)化問題進(jìn)行了研究;羅毅等[11]以最小化焊接過程碳排放量為目標(biāo),利用廣義回歸神經(jīng)網(wǎng)絡(luò)(General Regression Neural Network,GRNN)方法對焊接工藝的參數(shù)優(yōu)化問題進(jìn)行了研究;Khan等[12]通過實驗方法建立了基于能量密度的不銹鋼材料焊縫預(yù)測模型,研究了激光電弧焊工藝加工質(zhì)量與能耗的多目標(biāo)優(yōu)化問題;Liu等[13]通過優(yōu)化激光電弧焊的激光運(yùn)行時間和運(yùn)行狀態(tài),對焊接過程的成本和能耗的多目標(biāo)優(yōu)化問題進(jìn)行了研究。上述文獻(xiàn)大部分研究的都是焊接參數(shù)的單目標(biāo)優(yōu)化問題,優(yōu)化目標(biāo)為質(zhì)量、成本、能耗和熱效率等;部分文獻(xiàn)雖然涉及焊接過程的多目標(biāo)優(yōu)化,但是優(yōu)化目標(biāo)均是在質(zhì)量或成本目標(biāo)的基礎(chǔ)上加入能耗、碳排放或熱效目標(biāo),難以同時實現(xiàn)焊接工藝參數(shù)節(jié)能和高效兩方面的優(yōu)化。

        基于以上分析,本文提出一種面向節(jié)能高效的電弧焊工藝參數(shù)多目標(biāo)優(yōu)化方法。在滿足電弧焊加工生產(chǎn)規(guī)范的基礎(chǔ)上,建立了以焊接電流、焊接速度為變量,以電能消耗和熱有效利用率為優(yōu)化目標(biāo),以焊件質(zhì)量、焊接設(shè)備、焊條直徑等對工藝參數(shù)的限制為約束條件的電弧焊加工工藝參數(shù)多目標(biāo)優(yōu)化數(shù)學(xué)模型,并利用自適應(yīng)進(jìn)化梯度小生境遺傳算法對該模型進(jìn)行了求解。最后,通過某截止閥閥座密封面手工電弧焊的實例驗證了模型及方法的可行性和有效性。

        1 電弧焊工藝參數(shù)多目標(biāo)優(yōu)化模型構(gòu)建

        1.1 優(yōu)化變量選取

        電弧焊是一個復(fù)雜的物理化學(xué)過程,存在大量參數(shù)影響加工過程的能耗和熱效率,如焊接電流、電弧電壓、焊接速度、接頭形式、坡口形狀、焊絲直徑和焊機(jī)負(fù)載持續(xù)率等。在我國現(xiàn)行標(biāo)準(zhǔn)GB 10854-89和GB/T 983-1995中,焊接坡口接頭形式、形狀尺寸、焊縫形狀和焊絲直徑的選擇均有統(tǒng)一的規(guī)定,因此,這些參數(shù)可依據(jù)相關(guān)標(biāo)準(zhǔn)選擇。對焊接電流、電弧電壓和焊接速度等參數(shù),現(xiàn)行標(biāo)準(zhǔn)并沒有統(tǒng)一的要求,但在GB15579.1-2004中,提供了對焊機(jī)負(fù)載電弧電壓的計算經(jīng)驗公式,為精簡計算量,將其視為焊接電流的函數(shù)。因此,本文選擇焊接電流及焊接速度兩個參數(shù)對電弧焊加工過程的能耗和熱效進(jìn)行優(yōu)化。

        1.2 優(yōu)化目標(biāo)確定

        本文的優(yōu)化目標(biāo)為電弧焊加工過程的節(jié)能與高效,分別對應(yīng)降低電能消耗和提高熱有效利用率。將焊接質(zhì)量、焊接設(shè)備、焊接方法等焊接參數(shù)的限定作為該優(yōu)化目標(biāo)的約束條件,以避免出現(xiàn)優(yōu)化結(jié)果與焊接質(zhì)量間的矛盾。

        1.2.1 能耗目標(biāo)函數(shù)

        電弧焊加工過程的能耗主要是焊機(jī)產(chǎn)生的電能消耗,其大小與焊機(jī)的運(yùn)行狀態(tài)相關(guān)。為防止加工過程中焊機(jī)過熱,GB/T 8118-2010將焊機(jī)工作時間分為若干工作周期T0,其中焊機(jī)分別處于負(fù)載加工狀態(tài)和空載散熱狀態(tài),不同加工狀態(tài)的持續(xù)時間由負(fù)載持續(xù)率決定。因此,通過計算每個工作周期中的焊機(jī)能耗,可最終建立電弧焊加工過程的能耗目標(biāo)函數(shù)。

        焊機(jī)在一個工作周期內(nèi)的電能消耗可表示為

        式中:E0為焊機(jī)在一個工作周期內(nèi)的電能消耗;P1為焊機(jī)在一個工作周期內(nèi)處于負(fù)載加工狀態(tài)的負(fù)載功率;P0為焊機(jī)在一個工作周期內(nèi)處于空載散熱狀態(tài)的空載功率;k為焊機(jī)負(fù)載持續(xù)率;T0為工作周期的時間,國標(biāo)規(guī)定為10min。

        負(fù)載持續(xù)率k主要與焊機(jī)的負(fù)載電流有關(guān):

        式中:kN和IN分別為焊機(jī)的額定負(fù)載持續(xù)率和額定電流,可在焊機(jī)銘牌上查得;I2為負(fù)載電流。若計算出k≥1,則說明焊機(jī)可在此負(fù)載電流下連續(xù)工作,取k=1。

        焊機(jī)負(fù)載功率

        式中:η2 為焊機(jī)的功率因素;U2為電弧電壓,可記為焊接電流的函數(shù),U2=f(I2),具體計算經(jīng)驗公式可依據(jù)GB15579.1-2004查詢。

        焊接時間可由焊縫長度和焊接速度計算得出,結(jié)合前文對焊機(jī)工作周期的分析,焊接時間

        式中:H為焊縫長度;V為焊接速度;為焊接時間中包含的焊機(jī)工作周期數(shù)。

        由式(1)~式(4)可得電弧焊加工過程能耗目標(biāo)函數(shù):

        1.2.2 熱效優(yōu)化目標(biāo)的確定

        電弧焊加工的熱效有兩種定義:①焊接熱效率ηT,指單位時間內(nèi)焊件吸收的能量(有效熱功率)與電弧總功率的比值;②焊接熔化效率ηm,指單位時間內(nèi)熔化焊縫金屬所需熱量(包括熔化潛熱)與電弧有效熱功率的比值[14]。由于有效熱功率不僅包含單位時間內(nèi)熔化焊縫金屬所需的熱量,還包含單位時間內(nèi)使焊縫金屬處于過熱狀態(tài)的熱焓和向焊縫四周傳導(dǎo)的熱量總和,焊接熱效率并不能反映電弧熔化金屬形成焊縫的實際熱量。有學(xué)者[15]提出熱有效利用率ηTe的概念,即通過單位時間內(nèi)熔化焊縫金屬所需熱量與電弧總功率的比值計算焊接過程的熱效。熱有效利用率能更準(zhǔn)確地反映電弧熔化焊縫金屬的實際熱量,因此本文選取熱有效利用率作為電弧焊加工過程的熱效優(yōu)化目標(biāo)。

        電弧焊加工過程熱有效利用率

        其中焊接熱效率

        式中:Q為有效熱功率,Q0為電弧功率,可根據(jù)焊接電流和焊接電壓計算,

        焊接熔化效率

        式中:Q1為單位時間內(nèi)熔化焊縫金屬所需熱量(包括熔化潛熱);Q2為單位時間內(nèi)使焊縫金屬處于過熱狀態(tài)的熱焓和向焊縫四周傳導(dǎo)熱量的總和;Q=Q1+Q2。

        其中

        式中:S為焊縫橫截面積;γ為被焊材料比重;Sm為單位重量已熔化金屬的熱焓,

        式中:C為材料比熱;Tm為材料熔點;ΔSm為材料熔化的潛熱。

        聯(lián)立式(6)~式(8),可得電弧焊加工過程熱效優(yōu)化目標(biāo)函數(shù):

        1.3 約束條件

        一般而言,電弧焊工藝參數(shù)的選取受到焊接設(shè)備、操作方法、焊材厚度、焊接質(zhì)量等條件的限制,只能在滿足上述限制條件的范圍內(nèi)進(jìn)行取值。本文通過查閱相關(guān)焊接手冊、國家標(biāo)準(zhǔn)等,從焊接質(zhì)量、焊接電流和焊接速度三方面建立電弧焊能耗和熱效優(yōu)化的約束。

        (1)焊接質(zhì)量約束 主要考慮焊接外觀質(zhì)量,依據(jù)工藝手冊選取焊縫熔深、焊縫寬度和焊縫余高三個主要參數(shù)對焊接質(zhì)量進(jìn)行限定,即

        式中:h1為焊縫熔深,b為焊縫寬度,h2為焊縫余高,h1min、h1max、bmin、bmax、h2min和h2max分別為焊縫 熔深、焊縫寬度和焊縫余高的最小值和最大值,其取值范圍依據(jù)GB150.4-2011和GB10854-89。

        (2)焊接電流約束 焊接電流需要滿足兩個約束條件:①焊機(jī)本身的限制,焊機(jī)有明確的最小電流輸出Imin和最大電流輸出Imax;②焊接電流的取值必須與所選焊絲直徑相匹配,焊接手冊中規(guī)定了對應(yīng)焊絲直徑的焊接電流計算系數(shù)Kmin和Kmax。設(shè)焊絲直徑為d,焊接電流約束可表示為:

        (3)焊接速度約束 在焊接過程中,單位時間內(nèi)輸入焊縫的熱量太大將導(dǎo)致焊縫處金屬過熱,太小則導(dǎo)致金屬不能充分熔化,均會影響焊接質(zhì)量。焊接速度與焊接材料允許熱輸入qc、焊接電流和電弧電壓相關(guān),同時也受到焊接設(shè)備的約束。焊接速度的約束可表示為:

        式中:qc為焊接金屬對輸入熱量的限制,q1max為焊機(jī)最大的熱輸入。

        為方便計算,將熱效轉(zhuǎn)換為其倒數(shù),即將求熱有效利用率最大值的優(yōu)化目標(biāo)轉(zhuǎn)化為求其倒數(shù)最小值的優(yōu)化目標(biāo),則電弧焊節(jié)能高效多目標(biāo)優(yōu)化模型為:

        2 基于自適應(yīng)進(jìn)化梯度小生境遺傳算法的電弧焊工藝參數(shù)多目標(biāo)優(yōu)化模型及求解

        小生境遺傳算法是目前解決多目標(biāo)優(yōu)化問題的一種常用方法,它通過設(shè)置個體相似度共享函數(shù)來調(diào)整個體適應(yīng)度,達(dá)到維護(hù)種群多樣性的目的。相比于傳統(tǒng)的遺傳算法(Genetic Algorithm,GA),小生境遺傳算法具有很強(qiáng)的把握搜索空間的能力,更易于找出優(yōu)化問題的所有局部最優(yōu)解和全局最優(yōu)解。但由于小生境共享半徑的取值往往需要預(yù)先知道最優(yōu)解的個數(shù),人為設(shè)定若取值不當(dāng)則會影響個體被選擇的概率及物種的多樣性和分布的合理性,導(dǎo)致計算停滯和局部最優(yōu)性能差等缺陷[15-16]。因此,本文提出一種自適應(yīng)進(jìn)化梯度的小生境遺傳算法(Adaptive and evolutionary Gradient Niche Genetic Algorithm,AGNGA),將進(jìn)化梯度和小生境半徑均作為決策變量的一部分參與染色體的編碼,在對問題進(jìn)行優(yōu)化的同時對個體的小生境半徑進(jìn)行自適應(yīng)調(diào)整;利用進(jìn)化梯度信息調(diào)整個體向更優(yōu)解進(jìn)化,并根據(jù)進(jìn)化代數(shù)自適應(yīng)調(diào)整實數(shù)編碼個體的交叉量和變異量,提高解的精度,加快收斂速度。AGNGA 的流程如圖1所示。

        2.1 編碼及進(jìn)化梯度

        為彌補(bǔ)人為設(shè)定小生境半徑的不足,將進(jìn)化梯度向量與小生境共享半徑均作為決策變量的一部分參與染色體的編碼,最終個體編碼串如下:

        其中:xk∈[Mk,Nk]為目標(biāo)函數(shù)的第k個決策變量,對應(yīng)于焊接電流和焊接速度;G=[g1,g2,…,gn]為進(jìn)化梯度向量,σsh為小生境共享半徑。

        設(shè)目標(biāo)函數(shù)為f(x),其n維梯度向量為▽f,可用目標(biāo)函數(shù)的一階偏微分近似計算:

        式中:ei為單位向量,δ為一足夠小的正實數(shù)。

        梯度向量永遠(yuǎn)指向函數(shù)增大的方向,沿該方向f(x)可取得極大值,即Xt+1=Xt+δ·▽f(x),沿該負(fù)方向f(x)可取得極小值,即Xt+1=Xt-δ·▽f(x)。

        為防止移動量δ·▽f(x)過大造成跳過局部最優(yōu)解、得到一個較小的適應(yīng)度值,可作以下調(diào)整:對種群中的每個個體進(jìn)行梯度算子運(yùn)算,計算種群中所有個體的共享程度,由調(diào)整后的適應(yīng)度函數(shù)計算個體的適應(yīng)度值,若個體適應(yīng)度值小于原來的適應(yīng)度值,則說明移動向量過大,需將個體沿著負(fù)梯度方向移動兩個單位,若個體的適應(yīng)度值大于原來的個體適應(yīng)度值,則說明該個體已經(jīng)進(jìn)行了梯度的優(yōu)化計算。其具體過程如下:

        2.2 選擇算子

        根據(jù)調(diào)整后個體的適應(yīng)度值大小自適應(yīng)選擇,選擇算子

        2.3 交叉算子

        結(jié)合啟發(fā)式交叉算子和自適應(yīng)交叉系數(shù),提出改進(jìn)的自適應(yīng)非均勻算術(shù)交叉算子產(chǎn)生新的個體,計算方法如下:

        2.4 變異算子

        設(shè)變異步長為Δ,第t代的變異點xk的基因取值范圍為,則新基因值

        式中:r為[0,1]范圍內(nèi)的隨機(jī)數(shù),T為種群的最大進(jìn)化代數(shù),b為系統(tǒng)參數(shù)。

        綜上所述,小生境遺傳算法的基本步驟如下:

        步驟1 算法初始化。建立初始群體,設(shè)定遺傳參數(shù)等(小生境半徑的定義域是原決策變量中最大定義域長度的一半。若表示小生境半徑的基因全部初始化為0,則隨機(jī)選取一個基因并將其值置為1)。

        步驟2 完成個體適應(yīng)度計算。

        步驟3 執(zhí)行選擇、交叉、變異等遺傳操作。

        步驟4 進(jìn)行梯度運(yùn)算,計算梯度向量。

        步驟5 完成種群中所有個體共享度的計算。

        步驟6 根據(jù)個體共享度重新計算每個個體的適應(yīng)度。

        步驟7 比較子代和父代個體適應(yīng)度的大小。

        步驟8 用適應(yīng)度大的子代個體替換父代個體,形成新一代種群。若由于交叉或變異算子改變基因值導(dǎo)致某個個體的峰半徑基因全部為0,則隨機(jī)選取一個基因并將其值置為1。

        步驟9 若滿足收斂條件,則算法終止;否則返回步驟3。

        3 實例驗證

        以某加工車間截止閥閥座密封面手工電弧焊過程為例,對上述模型進(jìn)行驗證,閥座密封面簡圖如圖2所示。

        3.1 實例條件及優(yōu)化結(jié)果

        此閥座密封面加工時選用YD-400AT3直流手工電弧焊機(jī),其參數(shù)如表1所示。

        表1 YD-400AT3電弧焊機(jī)參數(shù)

        電弧焊選用D517焊條,直徑4mm,查詢工藝手冊得此焊條直徑下的焊接電流限定范圍為[120,160]A,可由表1和式(14)確定焊接電流的取值范圍;焊接采用單面坡口,查詢GB150得出熔深、焊縫寬度和余高限定范圍;閥座材質(zhì)為碳素鑄鋼ZG230-450,可通過機(jī)械工程材料手冊等查詢得到計算焊接熱有效利用率時需要用到的材料物理性能參數(shù),如表2所示。

        表2 焊件相關(guān)參數(shù)

        將表2數(shù)據(jù)代入式(12),得到焊接速度的取值范圍。測得焊件厚度為7 mm,焊縫長度為94.2 mm,焊縫橫截面積為18mm2。將以上參數(shù)代入優(yōu)化數(shù)學(xué)模型,采用MATLAB 編寫AGNGA 程序,設(shè)群體大小為100,最大迭代次數(shù)為200,交叉概率為0.8,變異概率為0.1。焊接過程電能消耗和熱有效利用率的最終計算結(jié)果如圖3所示,對應(yīng)的最優(yōu)解集如表3所示。

        表3 最優(yōu)解集對應(yīng)的參數(shù)

        續(xù)表3

        3.2 優(yōu)化結(jié)果分析

        3.2.1 AGNGA 優(yōu)化結(jié)果分析

        由圖3可以看出,電弧焊節(jié)能高效多目標(biāo)優(yōu)化運(yùn)算得到的最優(yōu)解集沿Pareto前沿面均勻分布,從而說明了本文選用的AGNGA 的可行性與有效性。同時,表3的最優(yōu)解集表明,隨著焊接電流的不斷增加,與之匹配的焊接速度并非單調(diào)遞增,而是會出現(xiàn)一定程度的波動,其最大取值發(fā)生在焊接電流為160A 時,相應(yīng)的焊接能耗和熱有效利用率也不隨著焊接電流的增加而單調(diào)遞增,其中,能耗最大發(fā)生在焊接電流134.3A 時,熱有效利用率最大發(fā)生在焊接電流160A 時。該優(yōu)化解集提供了一個參數(shù)選擇空間,使得工藝人員可依據(jù)實際加工條件和需求選擇合適的電弧焊工藝參數(shù),從而減少了對工藝人員經(jīng)驗的依賴。

        3.2.2 優(yōu)化結(jié)果與車間實測結(jié)果對比分析

        在優(yōu)化解集中分別選取能耗最小和熱有效利用率最大時的一組最優(yōu)解進(jìn)行實際驗證,并將驗證結(jié)果與當(dāng)前車間參數(shù)的實際加工結(jié)果進(jìn)行比較分析,對比結(jié)果如表4所示。

        表4 優(yōu)化結(jié)果與實際結(jié)果對比

        表4中,焊縫熔深、焊縫寬度和焊縫余高均符合GB150.4-2011和GB10854-89的要求,說明焊接質(zhì)量達(dá)到了要求,表明此多目標(biāo)優(yōu)化約束條件選取的合理性及解的可行性。相比于實際運(yùn)行參數(shù),利用優(yōu)化解集中的焊接能耗最小時對應(yīng)的參數(shù)進(jìn)行加工,可減少電能消耗約23.66%,但熱有效利用率減少約5.59%;而采用熱有效利用率最大的解對應(yīng)的參數(shù)加工時,熱有效利用率提高約16.55%,但焊接過程的能量消耗增加約8.45%。對比結(jié)果表明:電弧焊節(jié)能高效多目標(biāo)優(yōu)化模型的最優(yōu)解集可以有效減少手工電弧焊過程的電能消耗,提高熱有效利用率,降低焊接過程的環(huán)境排放。工藝人員可依據(jù)實際需求在最優(yōu)解集中選取所需的參數(shù)進(jìn)行加工,以達(dá)到節(jié)能和高效焊接的目的。

        3.2.3 AGNGA 與GA 優(yōu)化結(jié)果對比分析

        AGNGA 與傳統(tǒng)GA 的優(yōu)化結(jié)果對比如圖4所示。對比結(jié)果顯示,AGNGA 最優(yōu)解的個數(shù)多于傳統(tǒng)GA,且優(yōu)化結(jié)果能更好地貼合Pareto前沿面,從而說明該算法較好地保持了種群多樣性,且具有更好的全局尋優(yōu)能力和收斂速度,可找出本文提出的多目標(biāo)優(yōu)化問題的局部最優(yōu)解和全局最優(yōu)解。

        4 結(jié)束語

        我國電弧焊設(shè)備量大面廣,在所有焊接設(shè)備中占很大比重,通過調(diào)節(jié)焊接工藝參數(shù)實現(xiàn)節(jié)能高效焊接,有助于減少焊接行業(yè)的總體能量消耗和環(huán)境排放,具有一定的現(xiàn)實意義?;诖耍疚尼槍﹄娀『讣庸み^程電能消耗和熱利用率優(yōu)化問題進(jìn)行研究,建立了以焊接電流和焊接速度為自變量,以焊件質(zhì)量、焊接設(shè)備、焊條直徑等工藝參數(shù)的限制為約束條件的面向節(jié)能(電能消耗最?。┡c高效(熱有效利用率最大)的電弧焊加工過程多目標(biāo)優(yōu)化模型。

        利用MATLAB編寫自適應(yīng)進(jìn)化梯度AGNGA程序,對帶約束的多目標(biāo)優(yōu)化問題進(jìn)行了尋優(yōu)求解,并結(jié)合某閥座密封面手工電弧焊實例對優(yōu)化解進(jìn)行了驗證。結(jié)果表明,在保證焊接質(zhì)量的前提下,該方法能有效減少焊接過程的電能消耗、增加熱有效利用率。同時,將本文所用算法與傳統(tǒng)GA 的計算結(jié)果進(jìn)行了比較分析,結(jié)果表明,本文提出的AGNGA最優(yōu)解的分布更加合理,具有更好的全局尋優(yōu)能力和收斂速度,更易于找出優(yōu)化問題的局部和全局最優(yōu)解。

        本文主要針對電弧焊工藝過程進(jìn)行優(yōu)化建模,而目前以激光—電弧復(fù)合焊接為代表的高能束流焊接技術(shù)已逐步開始應(yīng)用,這將是本領(lǐng)域發(fā)展的重要方向,如何針對新型焊接工藝建立科學(xué)合理的節(jié)能高效優(yōu)化模型,將是下一步的研究重點。

        [1]LI Wushen,TANG Bogang.The problems for steel,welding features and materials development in China[C]//Proceedings of the 12th National Conference on Welding Academic.Beijing:China Machine Press,2008:1-12(in Chinese).[李午申,唐伯鋼.中國鋼材、焊接性與焊接材料發(fā)展及需要關(guān)注的問題[C]//第十二次全國焊接學(xué)術(shù)會議論文集.北京:機(jī)械工業(yè)出版社,2008:1-12.]

        [2]Welding Machine Branch of China Electrical Equipment Industry Association.The 2012economic operation analysis report for electric welding machine industry[J].Electric Welding Machine,2013(8):4-11(in Chinese).[中國電器工業(yè)協(xié)會電焊機(jī)分會.2012年度電焊機(jī)行業(yè)經(jīng)濟(jì)運(yùn)行分析報告[J].電焊機(jī),2013(8):4-11.]

        [3]LI Xiaoyan,WU Chuansong,LI Wushen.Study on the progress of welding science and technology in China[J].Journal of Mechanical Engineering,2012,48(6):19-31(in Chinese).[李曉延,武傳松,李午申.中國焊接制造領(lǐng)域?qū)W科發(fā)展研究[J].機(jī)械工程學(xué)報,2012,48(6):19-31.]

        [4]GON?ALVES C V,CARVALHO S R,GUIMAR?ESG,et al.Application of optimization techniques and the enthalpy method to solve a 3D-inverse problem during a TIG welding process[J].Applied Thermal Engineering,2010,30(16):2396-2402.

        [5]DEY V,PRATIHAR D K,DATTA G L,et al.Optimization of bead geometry in electron beam welding using agenetic algorithm[J].Journal of Materials Processing Technology,2009,209:1151-1157.DOI:10.1016/j.jmatproter.2008.03.019.

        [6]ISLAM M,BUIJK A,RAIS-ROHANI M,et al.Simulationbased numerical optimization of arc welding process for reduced distortion in welded structures[J].Finite Elements in Analysis and Design,2014,84:54-64.

        [7]FENG Jiecai,LI Liqun,CHEN Yanbin,et al.Effects of welding velocity on the impact behavior of droplets in gas metal arc welding[J].Journal of Materials Processing Technology,2012,212(11):2163-2172.

        [8]KUMAR N,RUDRAPATI R,PAL P K.Multi-objective optimization in through laser transmission welding of thermoplastics using grey-based taguchi method[J].Procedia Materials Science,2014(5):2178-2187.

        [9]WEI Zhiyuan,LIU Yujun,LI Rui,et al.Residual stresses evolutions of cutting and welding sequential process based on numerical simulation[J].Computer Integrated Manufacturing Systems,2013,19(9):2244-2250(in Chinese).[韋智元,劉玉君,李 瑞,等.基于數(shù)值計算的切割焊接聯(lián)系加工殘余應(yīng)力演變過程[J].計算機(jī)集成制造系統(tǒng),2013,19(9):2244-2250.]

        [10]WANG Qin,KUANG Lizhong,ZENG Shenbo.Grey relational analysis of the most optimal parameters of welding process based on arc signals[J].Electric Welding Machine,2010(3):75-78(in Chinese).[王 勤,匡立中,曾申波.基于電弧信號的焊接過程最優(yōu)參數(shù)的灰關(guān)聯(lián)分析[J].電焊機(jī),2010(3):75-78.]

        [11]LUO Yi,CAO Huajun,LI Hongcheng,et al.Carbon emission model and parameter optimization of CO2shielded welding based on GRNN[J].China Mechanical Engineering,2013,24(17):2398-3402(in Chinese).[羅 毅,曹華軍,李洪丞,等.基于GRNN 網(wǎng)絡(luò)的CO2氣體保護(hù)焊工藝碳排放建模與參數(shù)優(yōu)化[J].中國機(jī)械工程,2013,24(17):2398-3402.]

        [12]KHAN M M A,ROMOLI L,DINI G,et al.A simplified energy-based model for laser welding of ferritic stainless steels in overlap configurations[J].CIRP Annals-Manufacturing Technology,2011,60(1):215-218.

        [13]LIU Liming,HAO Xinfeng,SONG Gang.A new laser arc hybrid welding technique based on energy conservation[J].Materials Transactions,2006,47(6):1611-1614.

        [14]WU Chuansong.Thermal process and molten pool shape in welding[M].Beijing:China Machine Press,2007(in Chinese).[武傳松.焊接熱過程與熔池形態(tài)[M].北京:機(jī)械工業(yè)出版社,2007.]

        [15]AI Yongyi,KONG Fancong,QIN Jian,et al.The electric energy consumption study of AC and DC arc welding and CO2welding[J].Electric Welding Machine,1983(6):23-26(in Chinese).[艾雍宜,孔凡聰,秦 健,等.交直流手工電弧焊與CO2焊接能耗的研究[J].電焊機(jī),1983(6):23-26.]

        [15]WEI Wei,TAN Jianrong,F(xiàn)ENG Yixiong,et al.Multi-objective optimization method research on flexible job shop scheduling problem[J].Computer Integrated Manufacturing Systems,2009,15(8):1592-1598(in Chinese).[魏 巍,譚健榮,馮毅雄,等.柔性工作車間調(diào)度問題的多目標(biāo)優(yōu)化方法研究[J].計算機(jī)集成制造系統(tǒng),2009,15(8):1592-1598.]

        [16]ZHANG Yan,XIE Juanying.A new niche genetic algorithm based on improved gradient operators[J].Computer Engineering &Science,2009,31(9):71-73(in Chinese).[張 琰,謝娟英.改進(jìn)梯度算子的小生境遺傳算法[J].計算機(jī)工程與科學(xué),2009,31(9):71-73.]

        猜你喜歡
        小生境電弧焊焊機(jī)
        揚(yáng)州首場電弧焊實操考試在江都舉行
        喀斯特小生境與植物物種多樣性的關(guān)系
        ——以貴陽花溪公園為例
        模糊控制技術(shù)在電弧焊焊縫自動跟蹤中的應(yīng)用
        基于小生境遺傳算法的相控陣?yán)走_(dá)任務(wù)調(diào)度
        電弧焊熔池表征與熔透狀態(tài)映射研究
        焊接(2016年10期)2016-02-27 13:05:32
        基于PLC的轍叉閃光焊機(jī)控制系統(tǒng)
        焊接(2016年1期)2016-02-27 12:59:40
        多絲電弧焊技術(shù)及其電弧穩(wěn)定性和焊縫成形
        焊接(2016年1期)2016-02-27 12:51:48
        基于PLC的薄板激光焊機(jī)控制系統(tǒng)
        焊接(2015年10期)2015-07-18 11:04:46
        基于PLC的鋼管TIG焊機(jī)控制系統(tǒng)
        焊接(2015年9期)2015-07-18 11:03:53
        小生境遺傳算法在網(wǎng)絡(luò)編碼優(yōu)化中的應(yīng)用研究
        99久久综合狠狠综合久久一区| 人妻丰满熟妇av无码区| 加勒比东京热一区二区| 日韩人妻少妇一区二区三区| 一区二区三区国产亚洲网站| 一本无码av一区二区三区| 成年女人午夜特黄特色毛片免| 极品少妇人妻一区二区三区| 国产日产亚洲系列最新| 扒开双腿疯狂进出爽爽爽视频| 波多野结衣一区二区三区视频| 男女动态视频99精品| 亚洲精品无码不卡在线播he | 曰日本一级二级三级人人| 深夜福利啪啪片| 天堂网在线最新版www中文网| 69国产成人综合久久精| 精品久久一品二品三品| 亚洲av迷人一区二区三区| 大学生高潮无套内谢视频| 无码人妻一区二区三区免费| 亚洲欧美日韩一区在线观看| 国产高清精品一区二区| 极品少妇一区二区三区四区| 国产午夜精品理论片| 日本高清无卡一区二区三区| 一 级做人爱全视频在线看| 国产大学生粉嫩无套流白浆| 亚洲日本国产乱码va在线观看| 女优av一区二区在线观看| 人妻无码中文字幕| 亚洲v日本v欧美v综合v| 亚洲成人免费久久av| 亚洲 日韩 激情 无码 中出| 野外性史欧美k8播放| 亚洲AV秘 无码一区二区在线| 亚洲国产中文字幕无线乱码| 亚洲色婷婷一区二区三区| 亚洲日产无码中文字幕| 国产精品毛片一区二区三区| 一本一道人人妻人人妻αv|