亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A NEW PROOF OF THE DELTA INEQUALITY?

        2015-11-21 07:12:20YiQI漆毅FeiSONG宋飛
        關(guān)鍵詞:圓錐圓柱半徑

        Yi QI(漆毅)Fei SONG(宋飛)

        School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

        A NEW PROOF OF THE DELTA INEQUALITY?

        Yi QI(漆毅)Fei SONG(宋飛)

        School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

        E-mail:yiqi@buaa.edu.cn;songfei19860810@163.com

        The purpose of this paper is to give a relatively elementary and direct proof of the Delta Inequality,which plays a very important role in the study of the extremal problem of quasiconformal mappings.

        Delta Inequality;Teichm¨uller space;quasiconformal mappings

        2010 MR Subject Classification 30F60;32G15

        1 Introduction

        Let X be a Riemann surface whose universal covering surface is conformally equivalent to the unit disc D={z:|z|<1}on the complex plane C.By Bel(X)we denote the Banach space of Beltrami differentialsμ=μ(z)dz/dz on X with L∞-norms.

        Let M(X)be the open unit ball in Bel(X).For everyμ∈M(X),there is a quasiconformal mapping fμof X onto fμ(X),such that its Beltrami coefficient isμ.

        Two elementsμand ν in M(X)are said to be Teichm¨uller equivalent,denoted byμ~ν,if there is a conformal mapping ? of fμ(X)onto fν(X)such that(fν)-1???fμis homotopic to the identity of X(Mod?X).

        The Teichm¨uller space T(X)is defined as the quotient space M(X)/~,or equivalently,T(X)is the space of Teichm¨uller equivalence classes[μ]ofμ∈M(X).

        As usual,Q(X)stands for the Banach space of integrable holomorphic quadratic differentials φ=φ(z)dz2on X with L1-norms

        In the study of the extremal problem of quasiconformal mappings,the delta inequality plays a very important role([5],[1]and[6],or see[3]also).

        Theorem A (Delta inequality)[3]Ifμand ν∈M(X)are in the same Teichm¨uller equivalent class with‖ν‖∞≤‖μ‖∞,then

        for all φ∈Q(X)with‖φ‖=1,where M is a constant depends only on‖μ‖∞andμ1and ν1are the Beltrami coefficients of(fμ)-1and(fν)-1,respectively.

        The above form of delta inequality was first appeared in[1],which was used to solve the famous uniqueness problem of quasiconformal mappings.Recently,a generalized delta inequality is given in[4]as an application of the generalized main inequality of Reich-Strebel,which implies the delta inequality(1.1)in case of‖μ‖∞=‖ν‖∞.

        The goal of this paper is to give a new and simple proof of the delta inequality(1.1)in general case directly from the main inequality of Reich-Strebel[7-9],which is inspired by[4].

        Theorem B(the main inequality)[3]Suppose bothμand ν are two elements of M(X)andμ~ν.Then for any φ∈Q(X)with‖φ‖=1,we have

        where ν1is the Beltrami coefficient of(fν)-1and

        For the main inequality of Reich-Strebel we also refer[2]and[3].

        The paper is organized as follows.We give a lemma in§2 first and then we prove the Delta inequality in§3.

        2 A Lemma

        To prove Theorem A,we need the following lemma.

        Lemma 2.1 has been appeared in[4]with constant 16 as the numerator in the right.For the sake of completeness and emphasizing the simplicity of our proof of the delta inequality,we give another proof of Lemma 2.1 here,which is more simple than the proof in[4].

        Proof A simple computation shows

        which implies(2.1)directly.

        3 Proof of the Delta Inequality

        Since

        it is clear that the delta inequality(1.1)is equivalent to the following inequality

        Since‖ν‖∞≤‖μ‖∞,we have

        So,in oder to get the delta inequality(1.1),we only need to prove

        where C is a constant depending only on‖μ‖∞.

        生:第一幅圖旋轉(zhuǎn)后得到圖形是一個底面半徑為6cm、高為12cm的圓柱挖去了一個底面半徑6cm、高4cm的圓錐。

        Proof Sinceμ~ν,by Theorem B,the main inequality(1.2)holds.

        A simple computation shows

        where Kμ=(1+‖μ‖∞)/(1-‖μ‖∞).

        Similarly,

        where Kν=(1+‖ν‖∞)/(1-‖ν‖∞).

        Then it follows from(1.2),(3.4)and(3.5)that

        where

        and

        Noting the fact that both Lμand Λνare non-negative,it follows from(3.6)that

        Putting(3.7)and(3.8)into(3.9),we have

        and consequently,

        Thus,

        As‖ν‖∞≤‖μ‖∞,so it is easy to check that the algebraic sum of the first 3 tems in the right hand of(3.11)is nonpositive.Thus,by(3.11),we get

        Since

        so we have Z

        By the definition of ?μ,it is clear that

        So

        By Lemma 2.1,we have

        As‖ν‖∞≤‖μ‖∞,

        Therefore,(3.3)can be deduced from(3.13)-(3.16)and(3.12).This completes the proof of the delta inequality.

        [1]Boˇzin V,Lakic N,Markovi′c V,et al.Unique extremality.Journal d'Analyse Math′ematique,1998,75(1): 299-338

        [2]Gardiner F P.Teichm¨uller Theory and Quadratic Differentials.New York:John Wiley&Sons,1987

        [3]Gardiner F P,Lakic N.Quasiconformal Teichm¨uller Theory.Amer Math Soc,2000

        [4]Li Z,Qi Y.Fundamental inequalities of Reich-Strebel and triangles in a Teichm¨uller space.Contem Math,2012,575:283-297

        [5]Reich E.On criteria for unique extremality of Teichm¨uller mappings.Ann Acad Sci Fenn Series A I Math,1981,(6):289-301

        [6]Reich E.The unique extremality counterexample.Journal d'Analyse Math′ematique,1998,75(1):339-347

        [7]Reich E,Strebel K.On quasiconformal mappings which keep the boundary points fixed.Trans Amer Math Soc,1969:211-222

        [8]Reich E,Strebel K.Extremal plane quasiconformal mappings with given boundary values.Bull Amer Math Soc,1973,79(2):488-490

        [9]Strebel K.On quasiconformal mappings of open Riemann surfaces.Commentarii Mathematici Helvetici,1978,53(1):301-321

        ?Received November 18,2013.The research is partially supported by the National Natural Science Foundation of China(10971008 and 11371045).

        猜你喜歡
        圓錐圓柱半徑
        工程學(xué)和圓柱
        圓錐擺模型的探究與拓展
        圓柱的體積計算
        圓錐截線與玫瑰線
        “圓柱與圓錐”復(fù)習(xí)指導(dǎo)
        計算法在圓錐保持架收縮模組合沖頭設(shè)計中的應(yīng)用
        哈爾濱軸承(2021年4期)2021-03-08 01:00:50
        連續(xù)展成磨削小半徑齒頂圓角的多刀逼近法
        一些圖的無符號拉普拉斯譜半徑
        削法不同 體積有異
        熱采水平井加熱半徑計算新模型
        精品视频在线观看免费无码| 国产精品无码无卡无需播放器| 国产熟妇按摩3p高潮大叫| 久久免费视频国产| 久久综合给合久久97色| 久久久中文字幕日韩精品| 日韩放荡少妇无码视频| 在线综合网| 精品一区二区中文字幕| 有坂深雪中文字幕亚洲中文| 狠狠躁夜夜躁人人躁婷婷视频| 伊人久久综合影院首页| 国产麻豆剧传媒精品国产av蜜桃| 大量漂亮人妻被中出中文字幕| 欧美老熟妇喷水| 日本午夜福利| 国产精品丝袜美腿诱惑| 国产 一二三四五六| 精品亚洲国产成人av| 欧美性xxx久久| 久久久精品国产亚洲av网麻豆 | 女同在线视频一区二区| 中国女人内谢69xxxxxa片| 国产无遮挡a片又黄又爽| 亚洲欧美香港在线观看三级片| 日本不卡视频一区二区| 国产成人精品午夜视频| 99热这里只有精品4| 亚洲一区二区三区麻豆| 亚洲自偷精品视频自拍| 国产成人无码精品午夜福利a| 亚洲AV秘 无码一区二区在线| 97精品人妻一区二区三区在线| 亚洲色成人网站www永久四虎| 日本高清中文字幕一区二区三区| 日本免费一区二区在线| 曰本女人与公拘交酡| 看黄网站在线| 麻豆国产成人av高清在线| 亚洲日韩精品一区二区三区无码 | 手机看片福利一区二区三区|