李婷婷,張慧芳,晉高偉,姜 楊,勵(lì)建榮,*
(1.大連民族學(xué)院生命科學(xué)學(xué)院,遼寧大連116600;2.渤海大學(xué)食品科學(xué)研究院,遼寧省食品安全重點(diǎn)實(shí)驗(yàn)室,遼寧錦州121013)
魚類體表粘液抗菌肽的研究進(jìn)展
李婷婷1,張慧芳2,晉高偉2,姜楊2,勵(lì)建榮2,*
(1.大連民族學(xué)院生命科學(xué)學(xué)院,遼寧大連116600;2.渤海大學(xué)食品科學(xué)研究院,遼寧省食品安全重點(diǎn)實(shí)驗(yàn)室,遼寧錦州121013)
魚類體表粘液中的抗菌肽是對細(xì)菌起直接抑制作用的一類重要物質(zhì),是魚體天然免疫的重要組成部分,它具有抗細(xì)菌、真菌、病毒和腫瘤作用,且不易產(chǎn)生抗藥性,具有廣闊的應(yīng)用前景。本文綜述了魚類體表粘液抗菌肽的抑菌活性、分離純化、基因工程、作用機(jī)理及其在食品方面的應(yīng)用前景。
魚類體表粘液抗菌肽,抑菌活性,抑菌機(jī)制,應(yīng)用前景
魚類的皮膚與水環(huán)境直接接觸,皮膚上覆蓋著一層由上皮細(xì)胞和表皮杯狀細(xì)胞分泌的粘液,作為魚類第一道免疫防線,具有滲透壓調(diào)節(jié)器、天然潤滑劑、魚類種內(nèi)化學(xué)信息傳遞介質(zhì)等多種重要的生理作用。此外,魚類體表粘液還具有免疫學(xué)功能[1-2]。近十多年來,對魚類粘液成分的研究已經(jīng)取得了一定的進(jìn)展,例如,對細(xì)菌起間接抑制作用的補(bǔ)體、干擾素,對細(xì)菌起直接抑制作用的凝集素、溶菌酶,非特異性免疫因子和抗菌肽的成分、分子結(jié)構(gòu)、功能等方面[3-5],其中魚類體表粘液中的抗菌肽是對細(xì)菌起直接抑制作用的重要物質(zhì)。魚類體表粘液抗菌肽分子量一般在2~10ku之間,多為兩親性分子屬于陽離子肽,pI大多大于10,其結(jié)構(gòu)與組成復(fù)雜多樣[6-8]。迄今為止,已分離純化了幾種魚類體表粘液抗菌肽。分析已報(bào)道的魚類體表粘液抗菌肽氨基酸序列,它們的同源性并不是很高,但結(jié)構(gòu)上存在一定的共同特征,如含有較多使分子帶正電的精氨酸或賴氨酸;含有較多可使分子折疊成疏水或雙親性α螺旋結(jié)構(gòu)的疏水氨基酸等[9-10]。它們的抗菌作用機(jī)制相近,但對于不同魚類,其分子結(jié)構(gòu)和作用機(jī)制的差異比較大。本文就魚類表皮粘液抗菌肽的抑菌活性、分離純化、基因工程、抑菌機(jī)制和應(yīng)用前景等方面進(jìn)行綜述。
國外已經(jīng)對一些魚類抗菌肽的抗菌活性進(jìn)行了一些研究,主要涉及人和動(dòng)物的一些常見菌、水產(chǎn)養(yǎng)殖中常見的魚類致病菌和腐敗菌等,最小抑菌濃度多在毫摩爾水平(表1)。人和動(dòng)物常見菌有金黃色葡萄球菌(Staphylococcus aureus)、大腸桿菌(Escherichiacoli)、枯草芽胞桿菌(Bacillus subtilis)、醋酸鈣不動(dòng)桿菌(Acinetobacter calcoaceticus)、綠膿桿菌(Pseudomonas aeruginosa)、巨大芽孢桿菌(Bacillus megaterium)、藤黃微球菌(Micrococcus luteus)、綠色氣球菌(Aerococcus viridans)、檸檬色運(yùn)動(dòng)球菌(Planococcus citreus)、鼠傷寒沙門氏菌(Salmonella typ himurium);水產(chǎn)養(yǎng)殖中常見魚類致病菌:副溶血弧菌(Vibrio parahaemolyticus)、腐敗希瓦菌(Shewanella putrefaciens)、嗜水汽單胞菌(Aeromonas hydrophila)、鮭腎桿菌(Renibacterium salmoninarum)、殺鮭氣單胞菌(Aeromonassalmonicida)、惡臭假單胞菌(Pseudomonas putida)、鰻弧菌(Vibrio anguillarium);真菌:白色念珠球菌(Canidia albicans)、啤酒酵母菌(Saccharom ycescerevisiae)、光滑假絲酵母(Candida glabrata)、葡萄假絲酵母(Candida lusitania)、熱帶假絲酵母(Candida tropicalis)、新型隱球菌(Cryptococcus Neoformans)。Austin&McIntosh[11]早在1988年就報(bào)道了虹鱒魚(Oncorhynchus mykiss)體表粘液具有較好的抗菌特性。Kanno[12]、Fouz等[13]發(fā)現(xiàn)將香魚(Plecoglossus altivelis)和大菱鲆(Scophthalmus maximus)的表皮粘液去除后會(huì)導(dǎo)致其迅速死亡。Lema?tre等[14]研究表明鯉魚(Cyprinus carpio)體表粘液去除后易遭受細(xì)菌的侵染從而導(dǎo)致其迅速腐敗。Claire Hellio等[15]用水、乙醇和三氯甲烷分別提取13種魚類的魚皮和體表粘液,共78種提取物,15種被檢出有抑菌活性,其中三分之一為皮膚提取物,其余為皮膚粘液提取物。Subramanian[16]、Hellio等[17]報(bào)道了紅點(diǎn)鮭魚(Salvelinus alpinus)、河鱒魚(S.fontinalis)、鯉魚(Cyprinus carpio sub sp.Koi)、條斑鱸魚(Morone saxatilis)、鱈魚(Melanogrammus aeglefinus)、八目鰻魚(Myxine glutinosa)等多種魚的體表粘液具有較廣的抗菌活性。同時(shí),許多學(xué)者對魚表皮粘液的抗菌成分進(jìn)行了深入研究,Kitani等[18]分離到巖魚(S.schlegeli)體表的抗菌蛋白SSAP,研究了其分子結(jié)構(gòu)及抗菌機(jī)理,發(fā)現(xiàn)SSAP抗菌肽具有廣譜抗菌性,可以同時(shí)抑制G+以及G-細(xì)菌。Takahashi[19]、Smith[20]從黃鰭短須石首魚(Seriola quinqueradiata)、鯉魚(carpio)及虹鱒魚(O.mykiss)的體表粘液中提取的抗菌肽對巴斯德氏菌屬(Pasteurella piscicida)、鰻利斯頓氏菌(Listonella anguillarum)、胞壁微球菌(Micrococcus lysodeikticus)、藤黃微球菌(Micrococcus luteus)等均具有明顯的抑制效應(yīng)。有些抗菌肽對真菌也有抑制效果,如美洲擬鰈(Pleuronectes americanus)體表分泌的具有25個(gè)氨基酸殘基的抗菌肽Pleurocidin,可抑制真菌生長[21]。大多抗菌肽沒有溶血活性,Jung-Kil Seo[22]從金槍魚(Thunnus albacares)皮膚中分離出一種抗菌肽(YFGAP),可抑制G+以及G-細(xì)菌,最小抑菌濃度分別為1.2~17.0mg/mL和3.1~12.0mg/mL,沒有明顯的溶血活性。國內(nèi)在魚類體表粘液抗菌肽方面,卻鮮有報(bào)道。然而,從自然源分離抗菌肽成本高、資源有限,且只對天然肽有用;化學(xué)合成能生產(chǎn)抗菌肽,但成本高、安全性低;抗菌肽開發(fā)利用所面臨的巨大挑戰(zhàn)是如何降低生產(chǎn)成本、提高抗菌肽的產(chǎn)量和純度,同時(shí)提高安全性。
表1 魚類體表粘液抗菌肽的抗菌譜Tabel 1 The antibacterial activity of the antibacterial peptides from fish mucus for Microorganism
隨著對抗菌肽研究的深入,抗菌肽的廣譜抗菌和巨大抗菌潛能被不斷發(fā)掘,但在應(yīng)用上仍受到很大限制。目前,提取抗菌肽主要包括生物體直接提取純化、人工合成和基因克隆三種方法。生物體直接提取路線的設(shè)計(jì)都基于抗菌肽帶正電荷的短肽。目前已有不少學(xué)者通過分離純化手段獲得魚類體表粘液抗菌肽(表2)??焖侔l(fā)展的基因工程技術(shù)則為抗菌肽開發(fā)利用提供了更有希望的途徑,而其中以細(xì)菌為宿主表達(dá)抗菌肽是最為經(jīng)濟(jì)有效的方法。Y.Nagashima[23]通過凝膠層析和凝膠電泳從巖魚(Sebastes schlegeli)皮膚分泌液中獲得一個(gè)抗菌肽,分子量為75ku,pI為4.5,具有α-螺旋結(jié)構(gòu),含有唾液酸成分,可結(jié)合甘露糖。Chan Bae Park[24]利用親和色譜和反相-高效液相色譜從泥鰍(Mudfish)皮膚中獲得一種抗菌肽(misgurin),分子量為2502u,由21個(gè)氨基酸殘基構(gòu)成,其中含有5個(gè)精氨酸和4個(gè)賴氨酸殘基,屬于強(qiáng)陽離子抗菌肽。董先智[25]從泥鰍(Mudfish)皮膚中獲得一種分子量為9.8ku、富含Cys且耐熱、具有α-螺旋結(jié)構(gòu)的抗菌肽。Nami Sugiyama[26]利用凝膠層析和反相-高效液相層析技術(shù)從六線黑鱸(Grammistes sexlineatus)中分離出4中不同的抗菌肽,均具有α-螺旋結(jié)構(gòu),對馬紅細(xì)胞具有溶血活。從美洲黃蓋鰈(Pleuronectes americanus)[27]、雜交條紋鱸(Moronesaxatilis)[28]、鯰魚(Parasilurus asotus)[29]、大西洋鮭魚(Salmo salar)[30]等中獲得的抗菌肽,均具有α-螺旋結(jié)構(gòu),多為陽離子肽。然而,Birkemo GA[31]從大西洋庸鰈(Hippoglossus hippoglossu shipposin)中獲得的抗菌肽,N-末端乙酰化,pI為12.33,具有兩親性。Fernandes JM[32-33]從虹鱒魚(Ncorhynchus mykisson corhyncin)中獲得兩種抗菌肽,分子量分別為7.2、6.7ku,沒有明顯溶血活性,疑似蛋白片段。雖然已經(jīng)從上述魚類的表皮粘液中分離到幾十種的抗菌蛋白和肽,但是還未見到魚類表皮粘液抗菌肽專利的報(bào)道,對魚類表皮粘液抗菌蛋白或肽的進(jìn)一步分離純化并克隆基因,將彌補(bǔ)這方面的空白。
表2 抗菌肽的特征Tabel 2 The main characteristics of antibacterial peptides
目前,直接從生物體提取分離粘液抗菌肽存在成本高、效率低等缺點(diǎn)。同時(shí)由于天然抗菌肽的產(chǎn)量低,而且從機(jī)體中提取步驟復(fù)雜、產(chǎn)率低,不足以進(jìn)行科學(xué)研究和臨床應(yīng)用,故人工合成和基因工程法成為獲得抗菌肽的主要手段。Kitani Y等[34-35]從巖魚(Sebastes schlegeli)分離得到的抑菌活性物質(zhì)SSAP對嗜水氣單胞菌(Aeromonas hydrophila),殺蛙氣單胞菌(Aeromonas salmonicida),發(fā)光桿菌(Photobacterium damselae subsp)和副溶血性弧菌(Vibrio parahaemolyticus)均有顯著作用,SSAP mRNA成功在皮膚和腮上表達(dá)。已有報(bào)道,確定了12種包括雜交條紋鱸魚(hybrid striped bass)[36]、大西洋蛙魚(winter flounder,Atlantic salmon)[37]、斑馬魚(zebrafish)[38]、虹鱒魚(rainbow trout)[39]、牙鲆(Japanese flounder)[40]、扁口魚(olive flounder)[41]、斑點(diǎn)叉尾鮰(channel catfish)[42]、真鯛(red sea bream)[43]、日本鱸魚(Japan sea bass)[44]、美黑鱸(sea bass)[45]和凍黑鯛(black porgy)[46]等十幾種魚類抗菌肽的cDNA和基因組cDNA。Cole等[47]從美洲黃蓋鰈(Pleuronectes ferruginea)皮膚cDNA文庫及精巢基因組文庫分別得到長為317bp和1601bp的pleurocidin cDNA片段及上游啟動(dòng)子序列。該基因由4個(gè)外顯子和3個(gè)內(nèi)含子組成,與哺乳動(dòng)物抗菌肽PR239的結(jié)構(gòu)十分相似,成熟肽序列有25個(gè)氨基酸,含有4個(gè)賴氨酸殘基,表現(xiàn)出顯著的陽離子特性。Douglas等[48]克隆了4個(gè)Pleurodidin基因(WF1-WF4),發(fā)現(xiàn)該基因家族內(nèi)含子數(shù)目、位置和各外顯子的編碼情況與Cole等報(bào)道相似,同時(shí)還發(fā)現(xiàn),在Pleurocidin家族中,信號肽和酸性羧基端片段的序列高度保守,成熟肽的序列雖不很保守,但都能形成雙親性α-螺旋結(jié)構(gòu)。近年來,在基因工程方面的報(bào)道主要集中在對一種魚類肝臟特異表達(dá)抗菌肽(hepcidin)的研究[49],對魚類體表粘液抗菌肽的研究報(bào)道較少。
目前,魚類抗菌肽的作用機(jī)制主要集中在對pardaxin及其類似物的研究。且關(guān)于魚類抗菌肽的作用機(jī)制仍未形成一致的觀點(diǎn),特別是針對抗菌肽抑菌的作用位點(diǎn)始終存有爭議。一種觀點(diǎn)認(rèn)為抗菌肽是通過靜電作用吸附到細(xì)胞膜上,破壞外膜的分子結(jié)構(gòu),然后通過疏水作用于膜脂雙層分子作用,導(dǎo)致膜脂雙層改變;當(dāng)達(dá)到一定閾值,聚合形成“桶”狀結(jié)構(gòu),抗菌肽外圍疏水基團(tuán)與膜脂肪酸鏈相結(jié)合;而親水殘基排列在螺旋束內(nèi)側(cè)組成內(nèi)孔,形成一種類似離子通道的結(jié)構(gòu),破壞膜電勢,引起胞內(nèi)水溶性物質(zhì)大量外漏,導(dǎo)致細(xì)菌死亡,達(dá)到抑菌效果,即“桶-桶板(barrel-stave)”模型。Oren[50]研究發(fā)現(xiàn)pardaxin分子的第7~11位和14~26位均為α-螺旋結(jié)構(gòu)的氨基酸片段,在12~13位處連接兩個(gè)α螺旋并形成“L”形的“螺旋-轉(zhuǎn)角-螺旋”結(jié)構(gòu),許多抗菌肽中都存在pardaxin的這種結(jié)構(gòu),α-螺旋結(jié)構(gòu)的存在與抗菌肽的生物學(xué)活性有著重要聯(lián)系。此外,Oren等還設(shè)計(jì)了一系列pardaxin的類似物,表明了若破壞pardaxin的α-螺旋結(jié)構(gòu),其溶血作用顯著下降,而對抗菌活性并未影響。但是也有人對上述模型提出了質(zhì)疑,有些研究表明,部分抗菌肽在最小抑菌濃度時(shí),細(xì)菌胞膜完全溶解但無通道形成,Shai等[51]研究表明,未形成跨膜通道、不含α-螺旋結(jié)構(gòu)的pardaxin類似物,仍具有殺菌活性。這些結(jié)果提示,抗菌肽的抗菌機(jī)理除了通道假說外,可能還存在其他的機(jī)制。Pouny等[52]對dermaseptinS及其熒光標(biāo)記類似物的研究,提出了“地毯”式結(jié)構(gòu)模型,即某些具有雙親性α-螺旋結(jié)構(gòu)的抗菌肽與雙親性磷脂分子相互作用,像地毯樣展開平行排列在細(xì)胞膜表面擾亂脂膜分子排列,最終裂解細(xì)胞膜,達(dá)到殺菌效果。Paul等[53]還發(fā)現(xiàn)?;蟮膒ardaxin可以穿透細(xì)胞膜進(jìn)入細(xì)胞并聚集在核仁中,與細(xì)胞內(nèi)DNA或RNA結(jié)合,通過破壞細(xì)胞正常功能而殺菌。由此說明,抗菌肽可能還存在更為復(fù)雜的抗菌機(jī)制。魚類抗菌肽的作用機(jī)理還不是很清楚,魚類體表粘液抗菌肽的抗菌機(jī)制更是鮮有研究,有待深入研究。
抗菌肽對食品中的多種革蘭陽性及陰性細(xì)菌均有較強(qiáng)的殺滅作用,對一些惡性腫瘤病毒也能發(fā)揮作用,而且抗菌機(jī)制獨(dú)特,不易產(chǎn)生抗性。因此,抗菌肽不僅在工業(yè)、農(nóng)業(yè)、畜牧業(yè)及醫(yī)藥等方面可以發(fā)揮重要作用,在食品工業(yè)方面也具有廣闊的應(yīng)用前景。由于生物保鮮劑直接來源于生物體的自身組成成分或其代謝產(chǎn)物,具有安全無毒等優(yōu)點(diǎn),且易發(fā)生降解,造成二次污染較小,因此,生物保鮮劑的開發(fā)和應(yīng)用已經(jīng)成為水產(chǎn)品保鮮領(lǐng)域研究的熱點(diǎn)和發(fā)展趨勢。
目前應(yīng)用于水產(chǎn)品、肉制品、果蔬、乳制品等食品的貯運(yùn)、加工等過程中的保鮮劑主要以綠色生物保鮮技術(shù)為主[54]。生物保鮮劑按其來源主要可以分為植物源、動(dòng)物源以及微生物源等。植物源保鮮劑主要包括茶多酚、迷迭香、大蒜素等,Li等[55]研究表明,茶多酚和迷迭香提取物可以延長花鯽魚的貨架期。動(dòng)物源保鮮劑主要包括殼聚糖、蜂膠、溶菌酶等,李婷婷等[56]采用不同濃度的殼聚糖對美國紅魚片涂膜后于4℃冷藏,其中殼聚糖涂膜濃度為2%時(shí),保鮮效果最佳,能夠延長美國紅魚片的貨架期4~6d。微生物源保鮮劑主要包括可以在食物中定向保存有益菌群(如乳酸菌)和防止有害菌群的乳酸鏈球菌素(Nisin)和乳酸菌發(fā)酵液等[57]。邱芳萍等[58]發(fā)現(xiàn)從吉林林蛙中提取的抗菌肽對香腸、草莓均具有較好的防腐保鮮效果,在香腸中可以部分替代亞硝酸鈉,可以全部或部分替代山梨酸鉀。研究表明,噴灑了吉林林蛙抗菌肽的草莓能夠保存120h不腐爛,對照組僅能保存72h。魚類體表粘液抗菌肽對微生物有抑制作用,人、畜食后易被體內(nèi)蛋白酶水解消化且無毒副作用,溶解性好,性質(zhì)穩(wěn)定。因此,應(yīng)用抗菌肽延長食品的貨架期可能會(huì)成為食品研究領(lǐng)域的一個(gè)熱點(diǎn)。
[1]LemaitreiC,Orange N,Sagli P,et al.Characterization and ion channel activities of novel antibacterialp roteins from the skin mucosa of carp(Cyprinus carpio)[J].Eur J Biochem,1996,240:143-149.
[2]Ottesen OH,Olafsen JA.On togenetic development and composition of the mucous cells and the occurrence of saccular cells in the epidermis of Atlantichalibut[J].J Fish Biol,1997,50:620-633.
[3]聶品.魚類非特異性免疫研究的新進(jìn)展[J].水產(chǎn)學(xué)報(bào),1997,21(1):69-73.
[4]唐玫,馬廣智,徐軍.魚類免疫學(xué)研究進(jìn)展[J].免疫學(xué)雜志,2002,18(3):112-116.
[5]儲衛(wèi)華.魚類免疫學(xué)基礎(chǔ)及其應(yīng)用[J].水利漁業(yè),1999,19(4):4-6.
[6]Boman H G,Nilsson-Faye I,Paul K,et al.Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia Cynthia pupae[J].Infect Immun,1974,10:136-145.
[7]Bly J,Clem W.Temperature-mediated processes in teleostimmunity:in vitro immunosupression induced by in vivo low temperature in channel catfish[J].Vet Immunol Immunopathol,1991,28:365-377.
[8]Ellis A E.Innate host defense mechanisms of fish against viruses and bacteria[J].Dev Comp Immunol,2001a,25:827-839.
[9]Wang Q,Wang Y,Xu P,et al.NK-lysin of channel catfish:Gene triplication,sequence variation,and expression analysis[J]. Mol Immunol,2006,43(10):1676-1686.
[10]張書劍.幾種魚類抗菌肽的研究進(jìn)展[J].水生動(dòng)物營養(yǎng),2007,12:58-61.
[11]Austin B,McIntosh D.Natural antibacterial compounds on the surface of rainbow trout,Salmo gairdneri Richardson[J]. Journal of Fish Diseases,1988,11:275-277.
[12]Kanno T,Nakai T,Muroga K.Mode of transmission of vibriosis amongayu Plecoglossus altivelis[J].Journa of Aquatic Animal Health,1989,1:2-6.
[13]Fouz B,Devesa S,Gravningen K,et al.Antibacterial action of the mucus of turbot[J].Bull Eur Assoc Fish Pathol,1990,10:56-59.
[14]Lema?tre C,Orange N,Saglio P,et al.Characterization and ion channel activities of novel antimicrobial proteins from the skin mucosa of carp(Cyprinus carpio)[J].European Journal of Biochemistry,1996,240:143-149.
[15]Claire H,Anne M P,Claude B,et al.Antibacterial,antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus[J].Antimicrobial Agents,2002,20:214-219.
[16]Subramanian S,Ross N W,Mackinnon S L.Comparison of antimicrobial activity in the epidermal mucus extracts of fish[J]. Comparative Biochemistry and Physiology,Part B,2008,150:85-92.
[17]Hellio C,Pons A M,Beaupoil C,et al.Antibacterial,antifungal and cytotoxic activities of extracts from fish epidermis and epidermal mucus[J].International Journal of Antimicrobial Agents,2002,20:214-219.
[18]Kitani Y,Tsukamoto C,Zhang G H,et al.Identification of an antibacterial protein as L-amino acid oxidase in the skin mucus of rockfish Sebastes schlegeli[J].FEBS Journal,2007,274:125-136.
[19]Takahashi Y,Kajiwaki T,Itami T,et al.Enzymatic properties of the bacteriolytic substances in the skin mucus of yellowtail[J]. Bulletin of the Japanese Society of Scientific Fisheries,1987,53:425-431.
[20]Smith V J,F(xiàn)ernandes J M O,Jones S J,et al.Antibacterial proteins in rainbow trout Oncorhynchus mykiss[J].Fish&Shellfish Immunology,2000(10):243-260.
[21]Jung H J,Park Y,Sung W S,et al.Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance[J].Biochimicaet Biophysica Acta-Biomembranes,2007,1768:1400-1405.
[22]Seo J K,Lee M J,Go H J,et al.Purification and characterization of YFGAP,a GAPDH-related novel antimicrobial peptide,from the skin of yellowfin tuna,Thunnus albacares[J]. Fish&Shellfish Immunology,2012,33:743-752.
[23]Nagashima Y,Kikuchi N,Shimakura K,et al.Purification and characterization of an antibacterial protein in the skin secretionofrockfishSebastesschlegeli[J].Comparative Biochemistry and Physiology Part C,2003,136:63-71.
[24]Chan Bae Parka,Jae Hyun Leea,In Yup Park.A novel antimicrobial peptide from the loach,Misgurnus anguillicaudatus[J].FEBS Letters,1997,411:173-178.
[25]董先智.泥鰍抗菌蛋白MAAP的分離、純化、表征及生物活性研究[D].武漢:華中科技大學(xué),2002.
[26]Nami Sugiyama,Mika Araki,Masami Ishida.Further isolation and characterization of grammistins from the skin[J].Toxicon,2005,45:595-601.
[27]Cole A M,Weis P,Diamond G.Isolation and characterization of pleurocidin,anantimicrobial peptide in the skin secretion s of winter flounder[J].J Biol Chem,1997,272:12008-12013.
[28]Lauth X,Shike H,Burus J C,et al.Discovery and characterization of two isoforms of m oronecid in,a novel antimicrobial peptides from hybrid striped bass[J].J Biol Chem,2002,277:5030-5039.
[29]Park I Y,Park C B,Kim M S,et al.Parasin I,anantimicrobial peptide derived from histoneH 2A in the catfish Parasilurus asotus[J].FEBS Lett,1998,437:258-262.
[30]Lders T,Birkemo G A,N issen-Meyer J,et al.Proline conformation-dependent antimicrob ial activity of a proline-rich histone H 1 N-terminal peptide fragment isolated from the skin mucus of atlantic salmon[J].Antimicrob Agents Chemother,2005,49:2399-2406.
[31]Birkemo G A,Lders T,Andersen,et al.Hippos in,a histone derived antimicrobial peptide in Atlantich alibut(Hippoglossus hippog lossus L.)[J].Biochim B iophys Acta,2003,1646(1-2):207-215.
[32]Fernandes J M,Molle M G,Kemp G D,et a l.Isolation and characterization of on corhyncin II,a histone H1-derived antim -icrobialpeptidefromskinsecretionsofrainbowtrout,Oncorhynchusm ykiss[J].Dev Comp Immunol,2004,28(2):127-138.
[33]Fernandes J M,Saint N,Kemp G D,et al.Oncorhyncin III a potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout,Oncorhynchus mykiss[J].Biochem J,2003,373:621-628.
[34]Kitani Y,Mori T,Nagai H,et al.Gene expression and distribution of antibacterial L-amino acid oxidase in the rockfish Sebastes schlegeli[J].Fish Shellfish Immunol,2007b,23:1178-1186.
[35]Kitani Y,Kikuchi N,Zhang G H,et al.Antibacterial action of L-amino acid oxidase from the skin mucus of rockfish Sebastes schlegelii[J].Comp Biochem Physiol,2008,B 149:394-400.
[36]Shike H,Lauth X,Westerman M E,et al.Bass hepcidin is a novel antimicrobial peptide induced by bacterial challenge[J]. Eur J Biochem,2002,269:2232-2237.
[37]Douglas S E,Gallant J W,Liebscher R S,et al.Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish[J].Dev Comp Immunol,2003,27:589-601.
[38]Shike H,Shimizu C,Luth X,et al.Organization and expression analysis of the zebrafish hepcidin gene,an antimicrobial peptide gene conserved among vertebrates[J].Dev Comp Immunol,2004,28:747-754.
[39]Zhang Y A,Zou J,Cn C I,et al.Discovery and characterization of two types of liver-expressed antimicrobial peptide 2(LEAP-2)genes in rainbow trout[J].Vet Immunol Immunopathol,2004,101:259-269.
[40]Kim Y O,Hong S,Na B,et al.Molecular cloning and expression analysis of two hepcidin genes from olive flounder Paralichthys olivaceus[J].Biosci Biotechnol Biochem,2005,69:1411-1414.
[41]Hirono I,Hwang J Y,Ono Y,et al.Two different types of hepcidins from the Japanese flounder Paralichthys olivaceus[J]. FEBS J,2005,272:5257-5264.
[42]Bao B,Peatman E,Li P,et al.Catfish hepcidin gene is expressed in a wide range of tissues and exhibits tissue-specific upregulation after bacterial infection[J].Dev Comp Immunol,2005,29:939-950.
[43]Chen S L,Xu M Y,Ji X S,et al.Cloning,Characterization,and expression analysis of hepcidin gene from Red Sea Bream(Chrysophrys major)[J].Anti Agen Chem,2005,49(4):1608-1612.
[44]Ren H L,Wang K J,Zhou H L,et al.Cloning and organisation analysis of a hepcidin-like gene and cDNA from Japan sea bass Lateolabrax japonicus[J].Fish Shellfish Immunol,2006,21:221-227.
[45]Rodrigues P N,Vazquez-Dorado S,Neves J V,et al.Dual function of fish hepcidin:response to experimental iron overload and bacterial infection in seabass(Dicentrarchus labrax)[J].Dev Comp Immunol,2006,30:1156-1167.
[46]Yang M,Wang K J,Chen J H,et al.Genomic organization and tissuespecific expression analysis of hepcidin-like genes from black porgy(Acanthopagrus schlegelii B.)[J].Fish Shellfish Immunol,2007,23:1060-1071.
[47]Cole A M,Darouiche R O,Legarda D,et al.Characterization of a fish antimicrobioal peptide:gene expression,subcellular localization and spectrum of activity[J].Antimicrob Agents CH,2000,44(8):2039-2045.
[48]Douglas S E,Gallant J W,Gong Z,et al.Cloning and developmentalexpressionofafamilyofpleurocidin-like antimicrobialpeptidesfromwinterflounder,Pleuronectes americanus(walbaum)[J].Dev Comp Immunol,2001,25(2):137-147.
[49]Ren H L,Wang K J,Zhou H L,et al.Cloning and organisation analysis of a hepcidin-like gene and cDNA from Japan seabass,Lateolabrax japonicus[J].Fish Shellfish Immun ol,2006,21(3):221-227.
[50]Oren Z,Shai Y.A class of highly potent antibacterial peptides derived from pardaxin:a pore forming peptide isolated from moses sole fish Pardachirus marmoratus[J].Eur J Biochem,1996,237(1):303-310.
[51]Shai Y.Pardaxin:channel formation by a shark repellant peptide from fish[J].Toxicology,1994,87(13):109-129.
[52]Pouny Y,Rapaport D,Mor A,et al.Interaction of antimicrobial dermaseptinanditsfluorescentlylabeledanalogueswith phospholipid membranes[J].Biochemistry,1992,31(49):12416-12423.
[53]Paul Y,Kassebaum C,Lazarovici P,et al.Translocation of acylated pardaxininto cells[J].Febs Lett,1998,440(122):131-134.
[54]藍(lán)蔚青,謝晶.生物保鮮劑對水產(chǎn)品保鮮效果影響的研究進(jìn)展[J].山西農(nóng)業(yè)科學(xué),2009,37(6):75-78.
[55]Li T T,Li J R,Hu W Z,et al.Shelf-life extension on crucian carp(Carassius auratus)using natural preservatives during chilled storage[J].Food Chemistry,2012,135,140-145.
[56]李婷婷,勵(lì)建榮,趙威.殼聚糖涂膜對冷藏美國紅魚品質(zhì)的影響[J].食品科學(xué),2013,34(10):299-303.
[57]De Arauz L J,Jozala A F,Mazzola P G,et al.Nisin biotechnological production and application:A review[J].Trends in Food Science&Technology,2009,20:146-154.
[58]邱芳萍,周杰,李向暉,等.天然食品保鮮防腐劑——林蛙皮抗菌肽[J].食品科學(xué),2002,23(8):279-282.
Progress research on fish epidermal mucus antimicrobial peptides
LI Ting-ting1,ZHANG Hui-fang2,JIN Gao-wei2,JIANG Yang2,LI Jian-rong2,*
(1.College of Life Science,Dalian Nationality of University,Dalian 116600,China;2.Food Science Research Institute of Bohai University,F(xiàn)ood Safety Key Lab of Liaoning Province,Jinzhou 121013,China)
The research on fish epidermal mucus ingredients had made certain progress in recent years,such as complement and interferon against bacteria indirectly,as well as lectins,lysozyme and non-specific immune factors against bacteria directly.However,the research on fish epidermal mucus antimicrobial peptides was less.Fish epidermal mucus antimicrobial peptides were important parts of innate immunity to bacterial invasion. Except for broad-spectrum antibacterial activity,epidermal mucus antimicrobial peptides have more biological activities on the resistance of fungi,virus,parasite and tumor,but scarcely induce drug resistance,which shows an obvious application prospect.It was summarized progress of antimicrobial peptides on antibacterial activity,purification,gene engineering,mechanism of action and application prospect on the food industry.
fish epidermal mucus antimicrobial peptides;antibacterial activity;mechanism of action;application prospect
TS254.9
A
1002-0306(2015)12-0358-06
10.13386/j.issn1002-0306.2015.12.068
2014-09-11
李婷婷(1978-),女,博士,副教授,主要從事水產(chǎn)品貯藏加工及質(zhì)量安全控制方面的研究。
勵(lì)建榮(1964-),男,博士,教授,主要從事水產(chǎn)品和果蔬貯藏加工及質(zhì)量安全控制方面的研究。
國家自然科學(xué)基金(31301572,31471639);中國博士后科學(xué)基金(2014M552302);“十二五”國家科技支撐計(jì)劃(2012BAD29B06);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(優(yōu)先發(fā)展領(lǐng)域)(20113326130001)。