朱春花,李云霞,陳蘭明*
(上海海洋大學(xué)食品學(xué)院,上 海 201306)
副溶血性弧菌整合接合元件核心基因表達(dá)對溫度變化的響應(yīng)
朱春花,李云霞,陳蘭明*
(上海海洋大學(xué)食品學(xué)院,上 海 201306)
采用實(shí)時(shí)熒光定量聚合酶 鏈?zhǔn)椒磻?yīng)方法分析在15~42 ℃溫度范圍內(nèi)副溶血性弧菌(Vibrio paraha emolyticus)CHN25整合接合元件(integrative and conjugative elements,ICEs)ICEVpaChn1核心基因表達(dá)對溫度變化的響應(yīng)。結(jié)果表明:溫度介導(dǎo)ICEVpaChn1元件保守模塊核心基因表達(dá)發(fā)生顯著變化,其中,編碼進(jìn)入排斥蛋白Eex(entry exclusion)的基因?qū)囟茸兓顬槊舾?,低于或高?7 ℃的溫度條件均強(qiáng)烈抑制eex基因表達(dá)(>10 倍)。此外,在15~37 ℃范圍內(nèi),溫度的升高顯著激活編碼整合酶Int(integrase)、接合轉(zhuǎn)移蛋白TraI(transfer protein I)和TraG、DNA修復(fù)蛋白RumA基因的表達(dá),且在37 ℃達(dá)到最大值;與其他檢測基因明顯不同,溫度升高抑制轉(zhuǎn)錄抑制子SetR基因的表達(dá),促進(jìn)int等基因轉(zhuǎn)錄激活子SetC和SetD的積累,進(jìn)而刺激切離,促進(jìn)ICEVpaChn1元件的接合轉(zhuǎn)移。實(shí)驗(yàn)結(jié)果揭示了環(huán)境溫度對ICEs元件核心基因表達(dá)的影響,發(fā)現(xiàn)低溫(<15 ℃)和高溫(>37 ℃)條件均可能阻遏ICEVpaChn1元件及其攜帶基因信息在不同種屬細(xì)菌間的接合轉(zhuǎn)移。
副溶血性弧菌;整合接合元件;實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng);基因表達(dá)
整合接合元件(integrative and conjugative elements,ICEs)是一類具有自主轉(zhuǎn)移活性的可移動(dòng)遺傳性元件,攜帶大量基因信息,介導(dǎo)遺傳物質(zhì)的橫向(水平)基因轉(zhuǎn)移(lateral/horizontal gene transfer,LGT/HGT),在細(xì)菌基因組進(jìn)化和生物多樣性形成中發(fā)揮重要作用[1]。SXT/R391家族ICEs于1992年從印度分離的霍亂弧菌臨床分離菌株(Vibrio cholerae O139)中最初被發(fā)現(xiàn)[2],攜帶氯霉素、鏈霉素、新諾明和甲氧氨芐嘧啶抗性基因[3]。迄今為止,已在弧菌屬(Vibrio)[4-6]、變形菌屬(Proteus)[7-8]、葡萄球?qū)伲⊿taphylococcus)[9-10]、鏈球菌屬(Streptococcus)[11-12]等革蘭氏陰性(G-)和革蘭氏陽性(G+)細(xì)菌中發(fā)現(xiàn)了該家族ICEs元件,它們均含有3 個(gè)高度保守的功能模塊(modules),包括整合與切離(integration and excision)、接合(conj ugation)和調(diào)控(regulation)模塊[13]。
近年來,有研究報(bào)道顯示,不同的環(huán)境應(yīng)激壓力影響大腸桿菌(Escherichia coli)、嗜熱鏈球菌(Streptococcus thermophilus)和枯草芽孢桿菌(Bacillus subtilis)攜帶的ICEs元件的切離轉(zhuǎn)移,例如紫外照射[14]、絲裂霉素C處理[15]、異丙基硫代半乳糖苷(isopropyl thiogalactoside,IPTG)誘導(dǎo)RapI(regulator aspartate phosphatase I)蛋白過量表達(dá)[16]等。本實(shí)驗(yàn)運(yùn)用實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(real-ti me polymerase chain reaction,real-time PCR)方法分析副溶血性弧菌CHN25攜帶的整合接合元件ICEVpaChn1[17]保守功能模塊核心基因?qū)囟茸兓捻憫?yīng),包括接合轉(zhuǎn)移相關(guān)蛋白基因traI(transfer protein I)和traG、整合酶基因int(integrase)、整合接合調(diào)控蛋白基因setR、進(jìn)入排斥相關(guān)蛋白基因eex(entry ex clusion)和DNA修復(fù)蛋白基因rumA,以探索ICEs元件的環(huán)境應(yīng)激反應(yīng)機(jī)制。
1.1菌株與試劑
副溶血性弧菌CHN25菌株由上海海洋大學(xué)食品學(xué)院陳蘭明教授實(shí)驗(yàn)室分離、鑒定和保存[17]。
FastStart Universal SYBR Green Master 瑞士Roche公司;Trizol試劑 生工生物工程(上海)股份有限公司;PrimeScriptTMRT Reagent Kit with gDNA Eraser(Perfect Real time) 日本TaKaRa公司;LB(Luria-Bertani)培養(yǎng)基 北京陸橋技術(shù)有限責(zé)任公司。
1.2儀器與設(shè)備
小型高速冷凍離心機(jī) 德國Eppendorf公司;實(shí)時(shí)熒光定量PCR儀 美國Applied Biosystems公司;BioTek Synergy? 2多模塊微板讀數(shù)儀 美國BioTek公司;電泳儀、凝膠成像系統(tǒng) 美國Bio-Rad公司。
1.3副溶血性弧菌總RNA提取和cDNA合成
挑取在LB瓊脂平板(pH 8.0~8.5、3% NaCl)上生長良好的副溶血性弧菌單菌落接種于5 mL LB液體培養(yǎng)基中,分別于15、20、25、30、37、42 ℃條件下180 r/min振蕩培養(yǎng)。采用多模塊微板讀數(shù)儀測定副溶血性弧菌的生長曲線。分別收集不同培養(yǎng)溫度條件下對數(shù)生長中期的菌液1 mL,4 ℃、12 000×g離心5 min,棄上清液,收集菌體沉淀。根據(jù)Trizol試劑盒說明書的操作步驟,提取菌體總RNA,置于-80 ℃保存?zhèn)溆?。采用PrimeScriptTMRT Reagent Kit with gDNA Eraser(Perfect Real time)試劑盒去除RNA樣品中的基因組DNA并進(jìn)行反轉(zhuǎn)錄反應(yīng),合成cDNA。
1.4ICEs保守模塊核心基因的引物設(shè)計(jì)與合成
采用Primer 5軟件(http://www.PremierBiosoft.com),基于霍亂弧菌SXT元件DNA序列(GenBank登錄號:AY055428.1)設(shè)計(jì)int、setR、traI、eex和rumA基因的引物,traG基因的引物序列設(shè)計(jì)參考Song Yuze等[17]的研究。寡核苷酸引物(表1)由生工生物工程(上海)股份有限公司合成。
表1 寡核苷酸引物堿基序列Table1 Oligonucleotide primers used in this study
1.5Real-time PCR反應(yīng)體系及其優(yōu)化
Real-time PCR反應(yīng)總體系為20 μL,包括10 μL SYBR Green、1.5 μL上游/下游引物、2 μL cDNA、5 μL無菌水。反應(yīng)條件為95 ℃ 10 min;95 ℃ 15 s,60 ℃ 1 min,40 次循環(huán)。利用實(shí)時(shí)熒光定量PCR儀完成Real-time PCR反應(yīng)。
根據(jù)趙玉華等[18]的報(bào)道,分別對Real-time PCR反應(yīng)體系中的引物濃度和cDNA模板量進(jìn)行優(yōu)化,其中上游和下游引物終濃度分別設(shè)計(jì)為0.4、0.6、0.8 μmol/L,模板量分別設(shè)計(jì)為每20 μL體系添加1 000、200、20、2、0.2 ng。選擇pvuA和pvsA基因作為Real-time PCR反應(yīng)的內(nèi)參基因[19]。
1.6熔解曲線分析
鑒于SYBR Green可以結(jié)合所有雙鏈DNA,因此引物二聚體、單鏈二級結(jié)構(gòu)及錯(cuò)誤擴(kuò)增產(chǎn)物的出現(xiàn)均會(huì)增加熒光值,進(jìn)而影響Real-time PCR反應(yīng)中基因表達(dá)量檢測的準(zhǔn)確性。通過熔解曲線(melting curves)分析產(chǎn)物的均一性,有助于提高SYBR Green法獲得檢測結(jié)果的準(zhǔn)確性[20]。熔解曲線的設(shè)置在整個(gè)Real-time PCR反應(yīng)完成后進(jìn)行,當(dāng)溫度從60 ℃升至95 ℃,實(shí)時(shí)熒光定量PCR儀以0.5 ℃/s的速率自動(dòng)收集熒光信號,隨著溫度的升高,雙鏈DNA解鏈,熒光信號不斷降低,且在退火溫度時(shí)下降速率最快,用熒光信號值改變的一次導(dǎo)數(shù)的相反數(shù)與溫度作圖,即得到相應(yīng)的熔解曲線。
2.1不同培養(yǎng)溫度條件下副溶血性弧菌CHN25細(xì)胞總RNA的制備
收集副溶血性弧菌CHN25在15、20、25、30、37、42 ℃培養(yǎng)溫度下生長至對數(shù)生長中期的細(xì)胞,采用Trizol法分別提取菌體總RNA,取2 μL RNA樣品進(jìn)行1%瓊脂糖凝膠電泳檢測,電泳圖譜顯示有3 條RNA條帶,分別對應(yīng)于23S rRNA、16S rRNA和5S rRNA(圖1)。其中,23S rRNA和16S rRNA條帶明亮清晰,23S rRNA條帶的亮度約為16S rRNA條帶的2 倍,表明本研究制備的總RNA樣品完整性好、無降解(圖1)。利用多模塊微板讀數(shù)儀測定總RNA樣品的濃度,結(jié)果顯示均高于800 ng/μL,OD260nm/OD280nm值約為2.0,表明提取的總RNA質(zhì)量較高,符合Real-time PCR反應(yīng)要求。
圖1 不同培養(yǎng)溫度下副溶血性弧菌CHN25總RNA瓊脂糖凝膠電泳檢測結(jié)果Fig.1 Agarose gel electrophoresis analysis of total RNA isolated from V. parahaemolyticus CHN25 incubated at different temperatures
2.2Real-time PCR反應(yīng)條件的優(yōu)化
采用終濃度為0.4、0.6、0.8 μmol/L的引物進(jìn)行Real-time PCR反應(yīng),結(jié)果表明,擴(kuò)增產(chǎn)物無明顯差異(文中未給出相應(yīng)圖片結(jié)果)。為避免檢測中因引物添加量過少或過多而影響擴(kuò)增效果,故選取Real-time PCR反應(yīng)引物終濃度為0.6 μmol/L。此外,在20 μL反應(yīng)體系中添加1 000、200、20、2、0.2 ng的cDNA模板進(jìn)行Real-time PCR反應(yīng),結(jié)果顯示,當(dāng)模板添加量為20 ng時(shí),擴(kuò)增效率較高,因此,將待測樣品的RNA質(zhì)量濃度均稀釋為200 ng/μL。
2.3ICEs保守模塊核心基因的Real-time PCR擴(kuò)增
基于2.2節(jié)得到優(yōu)化的Real-time PCR反應(yīng)條件,本研究對15~42 ℃培養(yǎng)條件下的副溶血性弧菌CHN25攜帶的ICEVpaChn1元件核心基因traI、traG、int、setR、eex和rumA分別進(jìn)行了Real-time PCR擴(kuò)增(引物見表1)。如圖2所示,ICEVpaChn1元件各核心基因的擴(kuò)增曲線無非特異性產(chǎn)物的擴(kuò)增,擴(kuò)增曲線呈現(xiàn)明顯的“S”型,且具有較好的重復(fù)性,實(shí)驗(yàn)結(jié)果具有較高的可靠性和穩(wěn)定性,可用作下一步分析。
圖2 不同培養(yǎng)溫度下ICEVV ppaaChn1元件核心基因Real-ttiimmee PCR擴(kuò)增曲線Fig.2 Amplification plots of real time PCR products derived from ICEVpaChn1 of V. parahaemolyticus CHN25 grown at different temperatures
2.4熔解曲線分析
采用優(yōu)化的Real-time PCR反應(yīng)體系,獲得在15~42 ℃培養(yǎng)溫度下,獲得ICEVpaChn1保守模塊各核心基因rumA、int、eex、setR、traG和traI的熔解曲線。如圖3所示,除空白對照,各核心基因熔解曲線均為單峰型,表明Real-time PCR擴(kuò)增特異性良好,無明顯的引物二聚體和錯(cuò)誤擴(kuò)增產(chǎn)物的出現(xiàn),該實(shí)驗(yàn)結(jié)果可作為下一步分析的依據(jù)。
圖3 副溶血性弧菌CHN25在不同培養(yǎng)溫度下VICpEaChn1元件核心基因Real-time PCR熔解曲線Fig.3 Melting curves of real-time PCR with core genes of ICEVpaChn1 in V. parahaemolyticus CHN25 grown at different temperatures
2.5ICEs保守模塊核心基因的Real-time PCR分析
圖4 副溶血性弧菌CHN25在不同培養(yǎng)溫度下ICEVV ppaaChn1元件核心基因表達(dá)量Fig.4 Expression of core genes of ICEVpaChn1 in V. parahaemolyticus CHN25 grown at different temperatures
基于上述優(yōu)化的反應(yīng)條件,運(yùn)用Real-time PCR技術(shù)檢測副溶血性弧菌CHN25在不同培養(yǎng)溫度下ICEVpaChn1元件保守模塊核心基因的表達(dá)量,結(jié)果如圖4所示。鑒于副溶血性弧菌最適生長溫度為37 ℃,故數(shù)據(jù)分析時(shí)將該條件下的基因表達(dá)量設(shè)為1(作為對照)。結(jié)果顯示,副溶血性弧菌在37 ℃條件下,ICEVpaChn1元件的int和traI基因的表達(dá)水平均達(dá)到最大值,而處于<15 ℃和>42 ℃培養(yǎng)條件下則被強(qiáng)烈抑制。int基因編碼整合與切離模塊必需的整合酶,而traI基因編碼的單鏈釋放因子,在接合轉(zhuǎn)移模塊接合轉(zhuǎn)移初期催化SXT元件斷裂形成單鏈DNA[21]。本研究結(jié)果表明,在15~37 ℃條件下,溫度的升高很可能促進(jìn)ICEVpaChn1元件接合轉(zhuǎn)移。SXT/R391家族的進(jìn)入排斥系統(tǒng)能夠特異性阻止同一類型基因元件在細(xì)菌間重復(fù)傳遞[1]。研究發(fā)現(xiàn),雖然SXT和R391擁有幾乎相同的接合轉(zhuǎn)移基因,但它們之間并不相互排斥,這歸因于eex和traG基因編碼的介導(dǎo)R/S進(jìn)入排斥系統(tǒng)的蛋白Eex和TraG[22]。在副溶血性弧菌CHN25中,Eex和TraG介導(dǎo)ICEVpaChn1元件的R型進(jìn)入排斥系統(tǒng),eex基因表達(dá)水平在低于或高于37 ℃條件下均顯著下降10 倍以上,而在20~37 ℃條件下,traG基因表達(dá)水平僅少許被抑制(<2.5 倍),表明表達(dá)于供體菌中的Eex對溫度變化的響應(yīng)更為敏感,推測有利于ICEs的進(jìn)入,相關(guān)分子機(jī)制有待于進(jìn)一步的研究。rumA和rumB基因與大腸桿菌(Escherichia coli)的umuDC基因在系統(tǒng)發(fā)育上具有同源性,在損傷或誘變所致的突變DNA修復(fù)中發(fā)揮作用[23]。研究表明,一些ICEs的rumAB基因簇還是抗菌素抗性基因的插入熱點(diǎn)[24]。可是,Song Yuze等[17]研究發(fā)現(xiàn)ICEVpaChn1元件rumAB基因簇完整,其間并無插入序列。本研究結(jié)果顯示,<25 ℃或>42 ℃的溫度條件顯著抑制rumA基因的表達(dá),提示不利的生長溫度并未啟動(dòng)rumA的DNA損傷修復(fù)功能,推測它在ICEVpaChn1中可能有未知的生物學(xué)功能。此外,setR基因編碼的轉(zhuǎn)錄抑制子SetR能夠抑制int等基因轉(zhuǎn)錄激活子setC和setD的表達(dá),從而抑制接合轉(zhuǎn)移過程,使SXT在細(xì)菌內(nèi)呈現(xiàn)不活化狀態(tài)[24]。本研究結(jié)果顯示,與其他檢測基因明顯不同,setR基因表達(dá)隨溫度的升高而降低,從而激活setC和setD基因以啟動(dòng)int和tra基因的表達(dá),刺激切離,促進(jìn)ICEVpaChn1元件在不同宿主菌間水平橫向傳播[14,25]。
獲得高質(zhì)量的RNA是應(yīng)用Real-time PCR方法檢測不同培養(yǎng)溫度下ICEVpaChn1元件核心基因表達(dá)的關(guān)鍵之一,本研究通過預(yù)實(shí)驗(yàn)并結(jié)合該菌株自身特性,采用Trizol法提取菌體總RNA并獲得了完整、無明顯降解的RNA樣品。另外,運(yùn)用SYBR Green法進(jìn)行Real-time PCR反應(yīng),熒光染料SYBR Green與雙鏈DNA微槽結(jié)合后,其熒光強(qiáng)度增加100 倍,有效地提高了檢測的靈敏度。同時(shí),所需設(shè)計(jì)的引物較簡單,成本較低。此外,為了精確測定ICEVpaChn1元件核心基因的表達(dá)量,本研究對Real-time PCR反應(yīng)體系的引物濃度和cDNA模板添加量分別進(jìn)行了優(yōu)化,確定了最佳反應(yīng)體系;每組Real-time PCR反應(yīng)均設(shè)置空白對照,避免假陽性結(jié)果;并根據(jù)Real-time PCR反應(yīng)獲得的熔解曲線進(jìn)行反應(yīng)體系特異性評定。
基于優(yōu)化的Real-time PCR反應(yīng)體系,本實(shí)驗(yàn)研究了不同溫度對ICEs保守模塊核心基因表達(dá)的影響,結(jié)果表明,低于或高于37℃的溫度應(yīng)激條件很可能阻遏ICEVpaChn1元件及其攜帶基因信息在不同種屬細(xì)菌間的接合轉(zhuǎn)移,為進(jìn)一步探討可移動(dòng)遺傳元件的環(huán)境應(yīng)激反應(yīng)機(jī)制奠定了基礎(chǔ)。
[1] WOZNIAK R A, WALDOR M K. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow[J]. Nature Reviews Microbiology, 2010, 8(8): 552-563.
[2] WALDOR M K, TSCHAPE H, MEKALANOS J J. A new type of conjugative transposon encodes resistance to sulfamethoxazole,trimethoprim, and streptomycin in Vibrio cholerae O139[J]. Journal of Bacteriology, 1996, 178(14): 4157-4165.
[3] HOCHHUT B, LOTFI Y, MAZEL D, et al. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins[J]. Antimicrobial Agents and Chemotherapy, 2001,45(11): 2991-3000.
[4] SPAGNOLETTI M, CECCARELLI D, RIEUX A, et al. Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage[J]. mBio, 2014, 5(4):e01356-14. doi: 10.1128/mBio.01356-14.
[5] RODRIGUEZ-BLANCO A, LEMOS M L, OSORIO C R. Integrating conjugative elements as vectors of antibiotic, mercury, and quaternary ammonium compound resistance in marine aquaculture environments[J]. Antimicrobial Agents and Chemotherapy, 2012,56(5): 2619-2626.
[6] TAVIANI E, CECCARELLI D, LAZARO N, et al. Environmental Vibrio spp., isolated in Mozambique, contain a polymorphic group of integrative conjugative elements and class 1 integrons[J]. FEMS Microbiology Ecology, 2008, 64(1): 45-54.
[7] DACCORD A, MURSELL M, POULIN-LAPRADE D, et al. Dynamics of the SetCD-regulated integration and excision of genomic islands mobilized by integrating conjugative elements of the SXT/ R391 family[J]. Journal of Bacteriology, 2012, 194(21): 5794-5802.
[8] MATA C, NAVARRO F, MIRO E, et al. Prevalence of SXT/R391-like integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis[J]. The Journal of Antimicrobial Chemotherapy,2011, 66(10): 2266-2270.
[9] SCHIJFFELEN M J, BOEL C H, VAN STRIJP J A, et al. Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis[J]. BMC Genomics, 2010, 11: 376. doi: 10.1186/1471-2164-11-376.
[10] de VRIES L E, CHRISTENSEN H, SKOV R L, et al. Diversity of the tetracycline resistance gene tet(M) and identification of Tn916- and Tn5801-like (Tn6014) transposons in Staphylococcus aureus from humans and animals[J]. The Journal of Antimicrobial Chemotherapy,2009, 64(3): 490-500.
[11] CHUZEVILLE S, PUYMEGE A, MADEC J Y, et al. Characterization of a new CAMP factor carried by an integrative and conjugative element in Streptococcus agalactiae and spreading in Streptococci[J]. PLoS ONE, 2012, 7(11): e48918. doi: 10.1371/journal.pone.0048918.
[12] MINGOIA M, TILI E, MANSO E, et al. Heterogeneity of Tn5253-like composite elements in clinical Streptococcus pneumoniae isolates[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(4): 1453-1459.
[13] BI D, XU Z, HARRISON EM, et al. ICEberg: a web-based resource for integrative and conjugative elements found in bacteria[J]. Nucleic Acids Research, 2012, 40: D621-D626.
[14] ARMSHAW P, PEMBROKE J T. Control of expression of the ICE R391 encoded UV-inducible cell-sensitising function[J]. BMC Microbiology, 2013, 13: 195. doi: 10.1186/1471-2180-13-195.
[15] CARRARO N, LIBANTE V, MOREL C, et al. Differential regulation of two closely related integrative and conjugative elements from Streptococcus thermophilus[J]. BMC Microbiology, 2011, 11: 238.doi: 10.1186/1471-2180-11-238.
[16] AUCHTUNG J M, LEE C A, MONSON R E, et al. Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2005,102(35): 12554-12559.
[17] SONG Yuze, YU Pan, LI Bailin, et al. The mosaic accessory gene structures of the SXT/R391-like integrative and conjugative elements derived from Vibrio spp. isolated from aquatic products and environment in the Yangtze River Estuary, China[J]. BMC Microbiology, 2013, 13: 214. doi: 10.1186/1471-2180-13-214.
[18] 趙玉華, 王加啟. 利用實(shí)時(shí)定量PCR對瘤胃甲酸甲烷桿菌定量方法的建立與應(yīng)用[J]. 中國農(nóng)業(yè)科學(xué), 2006, 39(1): 161-169.
[19] COUTARD F, LOZACH S, POMMEPUY M, et al. Real-time reverse transcription-PCR for transcriptional expression analysis of virulence and housekeeping genes in viable but nonculturable Vibrio parahaemolyticus after recovery of culturability[J]. Applied and Environmental Microbiology, 2007, 73(16): 5183-5189.
[20] LIN C Z, RASKIN L, DA S. Mirobial community soucture in gastrointestinai tracts of domestic animais: comparative analyses using rRNA-targeted oligonucleotide probes[J]. FEMS Microbiology Ecology, 1997, 22: 281-294.
[21] BURRUS V, MARRERO J, WALDOR M K. The current ICE age: biology and evolution of SXT-related integrating conjugative elements[J]. Plasmid, 2006, 55(3): 173-183.
[22] MARRERO J, WALDOR M K. Determinants of entry exclusion within Eex and TraG are cytoplasmic[J]. Journal of Bacteriology,2007, 189(17): 6469-6473.
[23] KULAEVA O I, WOOTTON J C, LEVINE A S, et al. Characterization of the umu-complementing operon from R391[J]. Journal of Bacteriology, 1995, 177(10): 2737-2743.
[24] BEABER J W, HOCHHUT B, WALDOR M K. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae[J]. Journal of Bacteriology, 2002, 184(15): 4259-4269.
[25] BEABER J W, WALDOR M K. Identification of operators and promoters that control SXT conjugative transfer[J]. Journal of Bacteriology, 2004, 186(17): 5945-5949.
Effect of Temperature on the Expression of Core Genes of Integrative and Conjugative Elements in Vibrio parahaemolyticus
ZHU Chunhua, LI Yunxia, CHEN Lanming*
(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China)
In this study, for the first time, we investigated the effect of temperature (15-42 ℃) on the expression of core genes of the integrative and conjugative element (ICE, ICEVpaChn1) in Vibrio parahaemolyticus CHN25 using real time polymerase chain reaction (real-time PCR). The results revealed distinct expression patterns of the tested genes. The eex gene involved in the entry exclusion system was strongly inhibited by m ore than 10 folds when the bacterium was incubated at the temperatures below or above 37 ℃. Along with increasi ng temperature in the range of 15-37 ℃, the expression of int, traI, rumA, and traG genes was enhanced, and reached the highest level at 37 ℃ as the optimal growth temperature for V. parahaemolyticus CHN25. In contrast, increasing temperature could significantly repress the expression of the gene encoding a repress or protein SetR that can stimulate the activators of the int gene (SetC and SetD) and promote the conjugation and transfer of ICEVpaChn1. In addition, self-transmissible activity of the ICE was likely inhibited when the bacterium was grown at temperatures lower than 15 ℃ or above 37 ℃. The results of this study will facilitate better understanding of the molecular mechanism underlying the effects of environment stresses on the conjugative transfer of ICEs.
Vibr io parahaemolyticus; integrative and conjugative elements; real-time polymerase chain reaction; gene expression
Q933
A
1002-6630(2015)13-0101-06
10.7506/spkx1002-6630-201513020
2015-02-11
國家自然科學(xué)基金面上項(xiàng)目(31271830)
朱春花(1990—),女,碩士,研究方向?yàn)槭称焚|(zhì)量與安全。E-mail:m120250549@st.shou.edu.cn
陳蘭明(1965—),女,教授,博士,研究方向?yàn)槭称钒踩c質(zhì)量控制。E-mail:lmchen@shou.edu.cn