姜海洋,高福平,臧志鵬
(中國科學(xué)院力學(xué)研究所,北京 100190)
立管系統(tǒng)是連接浮式海洋平臺與水下生產(chǎn)系統(tǒng)的輸送油氣的海工結(jié)構(gòu)。隨著海洋油氣開發(fā)由淺水向深水發(fā)展,鋼懸鏈線立管(steel catenary riser,簡稱SCR)以其成本低、無需頂張力補(bǔ)償、對浮體漂移和升沉運(yùn)動(dòng)的容度大等優(yōu)點(diǎn)成為深水油田油氣輸送和注水管線經(jīng)濟(jì)有效的選擇之一[1-2]。在海洋工程環(huán)境中,SCR立管頂端通過柔性接頭懸掛于海洋平臺,平臺的漂移和垂蕩引起立管的往復(fù)運(yùn)動(dòng),引起立管觸地段(touchdown zone,TDZ)形狀不斷改變,觸地點(diǎn)(touch-down point,TDP)不斷移動(dòng),使立管應(yīng)變產(chǎn)生周期性變化。同時(shí),由于立管與土體的相互作用及水流沖刷,床面產(chǎn)生溝槽,改變立管形狀;這將使得立管局部應(yīng)力分布發(fā)生變化,進(jìn)而影響立管的疲勞壽命。已有研究表明,TDZ是鋼懸鏈線立管較易發(fā)生疲勞破壞的區(qū)域[3]。
SCR立管在TDZ的往復(fù)運(yùn)動(dòng)會使立管正下方床面形成沿立管軸向的狹長溝槽,溝槽的形成與土體塑性變形及立管運(yùn)動(dòng)產(chǎn)生的水流使床面土體沖刷密切相關(guān)[4-7]。數(shù)值模擬計(jì)算則通常假設(shè)溝槽由土體的塑性變形產(chǎn)生[8-10],但研究未反映水流荷載對溝槽沖刷作用。已有模型實(shí)驗(yàn)表明,當(dāng)加載端運(yùn)動(dòng)頻率較小時(shí),彎矩幅值隨立管與土體拍擊作用的發(fā)展而減小;而當(dāng)頻率較大時(shí),幅值有增大趨勢[11]。也有研究者采用數(shù)值模擬方法,研究了立管彎矩幅值隨溝槽發(fā)展的規(guī)律[3,12]。但在以上關(guān)于立管與土體作用的研究均未考慮海底水流荷載的影響。Li等人[13]開展了SCR立管觸地段沖刷實(shí)驗(yàn)研究,提出了最大沖刷深度的經(jīng)驗(yàn)公式,卻未考慮沖刷過程中立管彎矩幅值的變化。立管觸地段的床面變形可影響立管結(jié)構(gòu)的應(yīng)力分布,進(jìn)而對立管疲勞壽命產(chǎn)生影響[14]。可見,平臺升沉運(yùn)動(dòng)以及海流沖刷等復(fù)雜條件引起的立管彎矩幅值變化規(guī)律有待于深入研究。
基于量綱分析理論和水槽模型實(shí)驗(yàn),對典型工況下立管觸地段的結(jié)構(gòu)應(yīng)變響應(yīng)進(jìn)行了物理模擬與分析,重點(diǎn)研究觸地段床面形狀變化對結(jié)構(gòu)應(yīng)變響應(yīng)特性的影響。
SCR立管觸地段的結(jié)構(gòu)循環(huán)應(yīng)變響應(yīng),涉及立管、海床以及海流之間的復(fù)雜的流固土動(dòng)力耦合作用過程。立管循環(huán)應(yīng)變幅值(εp)與立管、海流、海床的主要特征參量相關(guān):
其中,各符號的物理含義及量綱,參見表1所示。
表1 SCR立管觸地段的結(jié)構(gòu)循環(huán)應(yīng)變響應(yīng)的主要特征參量Tab.1 Main influential parameters for cyclic strain responses of a SCR at its touch-down zone
選擇D,g,ρw為基本參量,基于量綱分析理論,式(1)可表示為如下無量綱量的函數(shù)關(guān)系:
表2 主要物理量的相似關(guān)系Tab.2 Similarity relationship of the main physical quantities
專門設(shè)計(jì)了SCR立管與土體相互作用的實(shí)驗(yàn)?zāi)M裝置,搭建于流固土耦合水槽內(nèi)(如圖1所示)。該裝置可模擬浮式平臺升沉運(yùn)動(dòng)誘導(dǎo)的SCR立管TDP往復(fù)運(yùn)動(dòng)及其與水流和土體的動(dòng)力耦合作用,并實(shí)現(xiàn)對流固土多物理參數(shù)的同步測量。流固土耦合水槽的雙向造流系統(tǒng)可產(chǎn)生方向可調(diào)的水流。水槽中間試驗(yàn)段布置有長5.0 m、深0.5 m的土槽。鑒于SCR立管長徑比通常較大,本實(shí)驗(yàn)研究采用截?cái)嘣囼?yàn)?zāi)M方法:將原型立管在TDZ上方截?cái)啵⒗脵C(jī)械加載裝置對截?cái)帱c(diǎn)進(jìn)行位移控制,以簡化模擬浮式平臺升沉運(yùn)動(dòng)誘導(dǎo)的立管運(yùn)動(dòng)。模型立管安裝于土槽一端,通過墊板厚度調(diào)整立管水平段的預(yù)埋深度;立管的另一端則鉸接于豎向往復(fù)運(yùn)動(dòng)機(jī)構(gòu),可自動(dòng)調(diào)節(jié)立管垂向運(yùn)動(dòng)的振幅和周期,實(shí)現(xiàn)模型立管上端的豎向正弦循環(huán)往復(fù)運(yùn)動(dòng)。
圖1 SCR立管觸地段與土體相互作用裝置Fig.1 Experiment facility for SCR riser-soil interaction at touch-down zone
利用聲學(xué)多普勒流速儀ADV測量立管特征點(diǎn)水平位置的(本實(shí)驗(yàn)中,立管特征點(diǎn)選取為立管中軸線上距床面1.0倍管徑高度處)垂向4.5 cm和34.5 cm處及其上游2 m處的流速;利用非接觸式運(yùn)動(dòng)測量系統(tǒng)測量立管特征點(diǎn)的運(yùn)動(dòng);立管正上方外表面布有8個(gè)光纖測點(diǎn),沿立管軸向均勻分布,間隔為0.5 m。每組實(shí)驗(yàn)開始前,使加載端立管的下表面與海床接觸,將各測點(diǎn)應(yīng)變設(shè)置為零。
表3 系列水槽模型實(shí)驗(yàn)參數(shù)Tab.3 Test conditions for a series of flume experiments
實(shí)驗(yàn)現(xiàn)象顯示,對于無水流荷載的情況(U=0),僅在運(yùn)動(dòng)立管拍擊作用下,立管下方土體形成的溝槽較淺,溝槽最大深度約為0.09倍管徑。圖2給出了e0/D=0.16,KC=6.28,β=1.54×103,F(xiàn)rc=0.12(正向流)等參數(shù)條件下立管觸地周圍的沖刷地形情況。可見,在水流載荷下,運(yùn)動(dòng)立管下方溝槽則明顯加劇:溝槽最大深度約為0.3倍管徑;溝槽寬度由加載端到固定端逐漸減小,溝槽深度沿立管軸向分布呈現(xiàn)中部較大、兩端較小的變化規(guī)律(見圖2、圖3),這與現(xiàn)場觀測到的溝槽形狀相符[17]。立管觸地段的繞流流場特性實(shí)驗(yàn)表明,觸地段除受到海床附近的底流作用外,立管結(jié)構(gòu)的往復(fù)運(yùn)動(dòng)可產(chǎn)生周期性變化的二次振蕩繞流,兩者疊加使得立管觸地段附近土體更易發(fā)生局部沖刷。
圖2 沖刷前后立管正下方溝槽深度的變化(e0/D=0.16,KC=6.28,β =1.54×103,F(xiàn)rc=0.12,正向流)Fig.2 Variation of the trench depth vertically below the SCR before and after scour(e0/D=0.16,KC=6.28,β=1.54 × 103,F(xiàn)rc=0.12,forward current)
圖3 沖刷結(jié)束后特征點(diǎn)附近床面照片(e0/D=0.16,KC=6.28,β =1.54× 103,F(xiàn)rc=0.12,正向流)Fig.3 The photograph of the soil near the feature point after scour(e0/D=0.16,KC=6.28,β =1.54× 103,F(xiàn)rc=0.12,forward current)
光纖應(yīng)變傳感器安裝固定在模型立管上表面,加載端在最高點(diǎn)時(shí)立管上緣受壓(應(yīng)變?yōu)樨?fù)值),在最低點(diǎn)時(shí)應(yīng)變?yōu)檎?。圖4(a)給出了實(shí)驗(yàn)組SCD01中應(yīng)變幅值最大測點(diǎn)FBG02的應(yīng)變隨時(shí)間變化。正、負(fù)循環(huán)應(yīng)變極值分別用ε+、ε-表示,循環(huán)應(yīng)變幅值用εp表示,即εp= ε+-ε-( )/2,如圖4(b)所示??梢?,F(xiàn)BG02的應(yīng)變幅值隨沖刷發(fā)展而逐步增大。
圖4 應(yīng)變幅值最大測點(diǎn)(FBG02)應(yīng)變隨時(shí)間變化(e0/D=0.16,KC=6.28,β=1.54×103,F(xiàn)rc=0.12,逆向流)Fig.4 Variation of the maximum strain amplitude(FBG02)of the SCR versus time(e0/D=0.16,KC=6.28,β =1.54×103,F(xiàn)rc=0.12,reverse current)
圖5給出了沖刷過程中所有測點(diǎn)的應(yīng)變幅值變化??梢钥闯?,εp最大值所在位置不隨沖刷而改變(位于測點(diǎn)FBG02),各測點(diǎn)的εp隨沖刷發(fā)展逐漸增大。在其它工況下,立管應(yīng)變幅值呈現(xiàn)相同特征,局部沖刷使立管εp最大值有不同程度增大。圖6給出了無水流荷載的運(yùn)動(dòng)立管和水流中運(yùn)動(dòng)立管應(yīng)變幅值最大值(測點(diǎn)FBG02)隨時(shí)間的變化情況??梢?,無水流荷載的運(yùn)動(dòng)立管應(yīng)變幅值更早趨于穩(wěn)定值,且εp最大值小于水流中運(yùn)動(dòng)立管的工況。
圖5 立管應(yīng)變幅值分布隨時(shí)間的變化(e0/D=0.16,KC=6.28,β =1.54×103,F(xiàn)rc=0.12,逆向流)Fig.5 Variation of the strain amplitude of the SCR versus time(e0/D=0.16,KC=6.28,β =1.54× 103,F(xiàn)rc=0.12,reverse current)
圖6 立管最大應(yīng)變幅值隨時(shí)間的變化(e0/D=0.16,KC=6.28,β =1.54 × 103,F(xiàn)BG02)Fig.6 Variation of the maximum strain amplitude along the SCR versus time(e0/D=0.16,KC=6.28,β =1.54×103,No.02 fiber bragg grating)
圖7分別給出了每隔10 min FBG02的正負(fù)應(yīng)變極值的變化。由圖7可看出,沖刷后ε+增大268 με,ε-增大40 με,但小于ε+的增幅。因此,幅值εp隨沖刷增大的主要原因是ε+的增大。圖8給出了實(shí)驗(yàn)組沖刷初期和沖刷2 h后一個(gè)運(yùn)動(dòng)周期內(nèi)FBG02的應(yīng)變變化,以分析ε+隨沖刷增大的原因;圖9則對比了沖刷2 h后與圖8同時(shí)刻的其它測點(diǎn)的應(yīng)變響應(yīng)情況。
從圖8可看出,在立管運(yùn)動(dòng)的典型周期內(nèi),立管上部的拉應(yīng)變幅值先逐漸減小;經(jīng)歷中間過渡區(qū)后,繼而拉應(yīng)變逐漸增大。沖刷2 h后的應(yīng)變振蕩幅值大于沖刷初期的幅值。受沖刷變形影響的立管應(yīng)變突增幅值明顯大于沖刷初期的應(yīng)變振蕩幅值。在接近沖刷變形最大處的立管(測點(diǎn)FBG02)拉應(yīng)變突增程度最大,向兩側(cè)則逐漸減小(見圖9):即距固定端越近(測點(diǎn)編號越小),則應(yīng)變振蕩幅值越小;距離加載端較近的測點(diǎn)(FBG05)的應(yīng)變突增現(xiàn)象不明顯。實(shí)驗(yàn)觀察到的立管運(yùn)動(dòng)與實(shí)時(shí)應(yīng)變數(shù)據(jù)對比表明,立管上緣拉應(yīng)變突增發(fā)生在從立管觸地段由最低點(diǎn)加速上升的瞬間。拉應(yīng)變的突增幅度決定了正循環(huán)應(yīng)變極值ε+的大小。與有水流荷載的工況相比,無水流荷載的運(yùn)動(dòng)立管實(shí)驗(yàn)結(jié)束后床面形狀變化小,固定端附近管床間距小,因而最終的εp小于加載水流中運(yùn)動(dòng)立管情況。在本實(shí)驗(yàn)中,與沖刷初始階段相比,沖刷2 h后的應(yīng)變幅值的最大增幅可達(dá)25.9%??梢姡谄谠O(shè)計(jì)時(shí)若不考慮沖刷或溝槽對立管應(yīng)變幅值的影響,則可能偏于危險(xiǎn)。
圖7 正應(yīng)變極值和負(fù)應(yīng)變極值隨沖刷的變化(e0/D=0.16,KC=6.28,β=1.54×103,F(xiàn)rc=0.19,逆向流,F(xiàn)BG02)Fig.7 Variation of the extreme positive and negative strain in the development of scour(e0/D=0.16,KC=6.28,β=1.54×103,F(xiàn)rc=0.19,reverse current,No.02 fiber bragg grating)
圖8 沖刷初期與沖刷2 h后的應(yīng)變變化(e0/D=0.16,KC=6.28,β=1.54×103,F(xiàn)rc=0.12,逆向流,F(xiàn)BG02)Fig.8 Variation of the strain at the beginning and 2 hours later of scour(e0/D=0.16,KC=6.28,β =1.54×103,F(xiàn)rc=0.12,reverse current,No.02 fiber bragg grating)
圖9 沖刷2 h后各測點(diǎn)的應(yīng)變變化(e0/D=0.16,KC=6.28,β=1.54×103,F(xiàn)rc=0.12,逆向流)Fig.9 Variation of the strain at fiber Bragg gratings for two hours duration of scouring(e0/D=0.16,KC=6.28,β =1.54×103,F(xiàn)rc=0.12,reverse current)
1)設(shè)計(jì)了鋼懸鏈線立管與海床動(dòng)力耦合模擬裝置。該裝置搭建于流固土耦合波流水槽,可模擬浮式平臺升沉運(yùn)動(dòng)誘導(dǎo)的SCR立管觸地段往復(fù)運(yùn)動(dòng)及其與水流和土體沖刷的動(dòng)力相互作用,并實(shí)現(xiàn)對流固土多物理參數(shù)的同步測試分析。
2)立管往復(fù)運(yùn)動(dòng)可產(chǎn)生周期性變化的二次振蕩繞流,它與加載水流相疊加使得立管觸地段附近土體更易發(fā)生局部沖刷;相應(yīng)地,可引起SCR立管結(jié)構(gòu)應(yīng)力最大幅值的增大。
3)隨著管土拍擊作用和局部沖刷變形的發(fā)展,SCR立管觸地段結(jié)構(gòu)的循環(huán)應(yīng)變幅值逐漸增大并趨于穩(wěn)定值。由于固定端附近管段的懸跨及慣性,在立管脫離床面的瞬間觀測到立管上緣的拉應(yīng)變值突增現(xiàn)象。隨著床面沖刷變形的發(fā)展,立管結(jié)構(gòu)循環(huán)應(yīng)變的變化幅值將逐漸增加。
[1] SONG R,STANTON P.Advances in deepwater steel catenary riser technology state-of-the-art:Part I-design[C]//Proceedings of 26th International Conference on Offshore Mechanics and Arctic Engineering.American Society of Mechanical Engineers,2007:331-344.
[2] 白勇,龔順風(fēng),白強(qiáng),等.水下生產(chǎn)系統(tǒng)手冊[M].哈爾濱:哈爾濱工程大學(xué)出版社,2012.(BAI Yong,GONG Shunfeng,BAI Qiang,et al.Manual for subsea production systems[M].Harbin:Harbin Engineering University Press,2012.(in Chinese))
[3] NAKHAEE A,ZHANG J.Trenching effects on dynamic behavior of a steel catenary riser[J].Ocean Engineering,2010,37(2):277-288.
[4] HU H J E,LEUNG C F,CHOW Y K,et al.Centrifuge modelling of SCR vertical motion at touchdown zone[J].Ocean Engineering,2011,38(7):888-899.
[5] WANG L,ZHANG J,YUAN F,et al.Interaction between catenary riser and soft seabed:Large-scale indoor tests[J].Applied Ocean Research,2014,45:10-21.
[6] BRIDGE C,HOWELLS H,TOY N,et al.Full-scale model tests of a steel catenary riser[J].Advances in Fluid Mechanics,2003,36:107-116.
[7] HODDER M S,BYRNE B W.3D experiments investigating the interaction of a model SCR with the seabed[J].Applied Ocean Research,2010,32(2):146-157.
[8] AUBENY C,BISCONTIN G.Interaction model for steel compliant riser on soft seabed[C]//Offshore Technology Conference.2008:paper No,194193.
[9] AUBENY C P,SHI H,MURFF J D.Collapse loads for a cylinder embedded in trench in cohesive soil[J].International Journal of Geomechanics,2005,5(4):320-325.
[10] GAO F P,WANG N,ZHAO B.Ultimate bearing capacity of a pipeline on clayey soils:Slip-line field solution and FEM simulation[J].Ocean Engineering,2013,73:159-167.
[11] ELLIOTT B J,ZAKERI A,BARRETT J,et al.Centrifuge modeling of steel catenary risers at touchdown zone part II:Assessment of centrifuge test results using kaolin clay[J].Ocean Engineering,2013,60:208-218.
[12]WANG K P,XUE H X,TANG W Y,et al.Fatigue analysis of steel catenary riser at the touch-down point based on linear hysteretic riser-soil interaction model[J].Ocean Engineering,2013,68:102-111.
[13] LI F Z,DWIVEDI A,LOW Y M,et al.Experimental investigation on scour under a vibrating catenary riser[J].Journal of Engineering Mechanics,2013,139(7):868-878.
[14] DET NORSKE VERITAS.Offshore standard DNV-RP-F204:riser fatigue[S].DNV Services,Research and Publications,Hovik,Norway,2010.
[15]PESCE C P,MARTINS C A,DA SILVEIRA L M Y.Riser-soil interaction:local dynamics at TDP and a discussion on the eigenvalue and the VIV problems[J].Journal of Offshore Mechanics and Arctic Engineering,2006,128(1):39-55.
[16] SUMER B M,F(xiàn)REDS?E J.Hydrodynamics around cylindrical structures[M].World Scientific,1997.
[17] BRIDGE C D,HOWELLS H A.Observations and modeling of steel catenary riser trenches[C]//Proceeding of 17th International Offshore and Polar Engineering Conference.2007:803-813.