亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        母乳的生物學功能研究進展

        2015-09-22 12:46:30馬守慶邊高瑞朱偉云
        食品科學 2015年5期
        關鍵詞:高血糖素區(qū)系初乳

        馬守慶,邊高瑞,朱偉云*

        (南京農業(yè)大學動物科技學院,消化道微生物實驗室,江蘇南京210095)

        母乳的生物學功能研究進展

        馬守慶,邊高瑞,朱偉云*

        (南京農業(yè)大學動物科技學院,消化道微生物實驗室,江蘇南京210095)

        母乳中含有的營養(yǎng)物質、促生長因子、免疫因子和其他活性物質,對新生動物具有提供營養(yǎng)、促進生長、增強免疫力和調控微生物區(qū)系等重要作用。本文綜述母乳中這些生物活性物質的含量以及它們所發(fā)揮的具體功能。同時通過比較母乳喂養(yǎng)和配方奶粉喂養(yǎng)的效果來探討母乳特定的一種或幾種活性因子的缺乏對新生動物的影響以及作用。現(xiàn)階段,由于母乳中很多物質還未被人們所發(fā)現(xiàn),因此其對機體的影響也無從得知,本文期望可以指導消費者樹立正確的母乳喂養(yǎng)觀念。

        母乳;營養(yǎng)作用;促生長作用;免疫作用;調控微生物區(qū)系

        母乳在為新生動物提供營養(yǎng)、促進生長、增強免疫力和調控微生物區(qū)系方面起到了重要作用。母乳喂養(yǎng)和非母乳喂養(yǎng)的新生動物流行病學和免疫學的研究,以及母乳中特定活性物質的調查研究引起了人們對母乳中免疫調節(jié)物質鑒別的興趣。研究發(fā)現(xiàn)與喂食配方奶粉相比,母乳喂養(yǎng)的新生動物在同階段會獲得更多的體質量增加量和正常的器官系統(tǒng)發(fā)育。目前研究發(fā)現(xiàn),母乳中含有乳糖、乳脂和蛋白質等常規(guī)成分以及豐富的免疫因子,如分泌型免疫球蛋白A(secreted immunoglobulin A,sIgA)、免疫球蛋白G(immunoglobulin G,IgG)和IgM等免疫球蛋白以及白細胞介素-2(interleukin-2,IL-2)、IL-4、IL-6、IL-10、IL-12、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、轉化生長因子-β(transforming growth factor-β,TGF-β)和干擾素-γ(interferon-γ,IFN-γ)等細胞因子;以及促生長因子,如胰島素樣生長因子-1(insulinlike growth factor-1,IGF-1)、表皮生長因子(epidermal growth factor,EGF)和血管內皮生長因子(vascular endothelial growth factor,VEGF)等。這些物質在為新生動物提供營養(yǎng)、促進生長、增強免疫力和調控微生物區(qū)系方面都產生了極其重要的作用。新生動出生后如果不及時吸吮初乳的話,會導致后期生長發(fā)育受阻、免疫功能低下、營養(yǎng)吸收障礙、代謝機能紊亂和疾病發(fā)生頻繁等。我們利用本實驗室對豬開展實驗的優(yōu)勢,集中討論近些年各種動物乳的生物學功能,尤以豬和人類為主。同時討論乳中常規(guī)成分、免疫因子以及促生長因子產生上述4種作用的機制,并對以后母乳更多的生物學作用和新物質的發(fā)現(xiàn)作簡要概述。

        1 營養(yǎng)作用

        在營養(yǎng)方面,母乳中的乳糖、脂類和蛋白質為主要的營養(yǎng)物質,自胎兒出生一直到斷奶這段時期,母乳為新生動物提供基本的且唯一重要的營養(yǎng)保障。表1列出了不同地區(qū)哺乳期女性以及一些品種母畜常乳中3 種主要營養(yǎng)成分的含量??偨Y文獻中近年來對這3 種物質最新功能的研究進展,發(fā)現(xiàn)乳糖可提供新生動物早期營養(yǎng)需要,對新生動物腦和神經的發(fā)育起著至關重要的作用,另外乳糖還可以提高新生動物生長速率、飼料消化率以及乳酸菌的菌群數(shù)量[1-3];乳脂對新生動物抵抗感染、合成激素和氧化分解提供能量以及延長生命等很多方面有重要作用,另外多不飽和脂肪酸有防止血栓形成、降血脂和抗癌作用[4-5]。乳蛋白可以為機體提供必需氨基酸、免疫保護以及調控微生物菌群。乳蛋白中含有的酪蛋白經酶解后產生的各種活性肽在促生長、調節(jié)物質代謝和調控微生物區(qū)系等方面發(fā)揮著巨大作用[6-7]。

        2 促生長作用

        母乳中含有多種促生長因子,包括胰島素樣生長因子-1(IGF-1)、表皮生長因子(EGF)、胰高血糖素樣肽(glucagon-like peptide,GLP)、胰島素和酪蛋白酶解物等,這些生長因子對新生嬰兒組織器官的生長發(fā)育具有重要的意義。表2列出了不同動物初乳中幾種重要促生長因子的含量。

        表2不同動物初乳中幾種重要的促生長因子含量Table2Concentrations of several important growth promoters in colostrum from different speciesecies

        2.1表皮生長因子(EGF)

        EGF首先在小鼠的唾液腺中被發(fā)現(xiàn)并提純于人的尿液中[29],是第一種被人們所發(fā)現(xiàn)并提純的促生長因子,其由53 個氨基酸組成,分子質量為6 201 D,分子內有6 個半胱氨酸組成的二硫鍵,形成3 個分子內環(huán)型結構,組成生物活性所必需的受體結合區(qū)域。此后,1978年研究者在人乳中首次發(fā)現(xiàn)了EGF的存在[30]。研究發(fā)現(xiàn),EGF對腸黏膜的損傷具有重要的修復作用,通過口服EGF可以促進腸道和其他組織細胞的分裂和分化[31-32]。同時有研究顯示EGF在極早產兒體內的含量高于早產兒,在早產兒體內的含量高于正常產兒,這表明EGF對于新生兒的生長發(fā)育具有重要作用[1]。

        2.2胰島素樣生長因子-1(IGF-1)

        IGF-1主要由肝臟分泌產生,并且在所有細胞中都有少量表達,對所有組織都有促進細胞分化和蛋白質合成的作用,對腦、肌肉、骨骼和血管的生長起著重要作用[33]。在豬初乳中其含量范圍為0.1~0.4 mg/L,在常乳中的含量為0.01~0.04 mg/L[24]。在IGF-1基因敲除母鼠上進行的實驗發(fā)現(xiàn)[34],幼鼠出生時的體質量僅為正常幼鼠的60%,并且出生后生長緩慢,在出生第8周時的體質量僅為正常鼠的30%。Trejo等[35]用純合子雄性侏儒鼠和野型雌性Lewis鼠進行雜交產生雜合子后代進行外周血IGF-1和腦脊液中IGF-1含量測定,發(fā)現(xiàn)循環(huán)血液中的IGF-1并不影響海馬體中IGF-1基因的表達,但是會影響微脈管結構和功能、腦的發(fā)育和突觸可塑性相關基因的表達,而這些變化都會影響腦的發(fā)育和認知功能下降。IGF-1還能刺激乳幼鼠腸道的麥芽糖酶、乳糖酶、堿性磷酸酶和氨基肽酶的活性升高。

        2.3胰島素

        胰島素由胰島細胞分泌產生,同樣被發(fā)現(xiàn)在母乳中有分布。很多人都在致力于探討胰島素在仔豬胃腸道發(fā)育中的機制[36]。研究發(fā)現(xiàn)[37],選取出生兩天的小豬,分成兩組,一組喂食含有胰島素的配方奶粉,另一組不含有胰島素,實驗進行6 d,在第7天進行宰殺,稱量小腸質量,發(fā)現(xiàn)實驗組小豬的小腸質量大于對照組。同時,另一研究發(fā)現(xiàn)[38],建立缺血再灌注損傷模型大鼠,口服胰島素的實驗組與不服用胰島素的對照組相比可有效增加十二指腸和空腸的質量,也可增加十二指腸、空腸和回腸黏膜的質量,同時對回腸黏膜的DNA表達量、空腸和回腸黏膜蛋白含量,以及空腸和回腸絨毛高度,隱窩深度都有顯著提高(P<0.05)。

        2.4胰高血糖素樣肽-1(GLP-1)

        胰高血糖素樣肽(GLP-1、GLP-2)和胰高血糖素由存在于腸道內的L型細胞選擇性組織特異性分裂原,以及胰腺內分泌α細胞和腦中神經元產生。由于現(xiàn)在對乳中各種物質的測定方法還不健全,關于乳中胰高血糖素樣肽含量的檢測并不是很多。但動物在進食初乳后,會引起血中胰高血糖素樣肽濃度的升高,說明胰高血糖素樣肽的分泌和進食初乳是密切相關的。另外由于該物質和新生動物腸道發(fā)育密切相關,本實驗室正在進行這方面的工作,相信以后可以測得該種物質的濃度值。GLP-1通過葡萄糖促進胰島素的分泌、合成、分化、再生以及抑制胰高血糖素的分泌來控制血糖的吸收,達到降低血糖含量的目的[39]。Zhan Yi等[40]研究了胰高血糖素樣肽-1受體(GLP-1R)激動劑在減輕體質量方面的作用,發(fā)現(xiàn)無論是糖尿病患者還是非糖尿病患者,加入激動劑的實驗組都比對照組體質量減輕的程度更大,存在顯著差異(P<0.05)。同時有研究顯示,GLP-1可以抑制由晚期糖化終產物(advanced glycation end products,AGEs)所引起的細胞凋亡,保護血管內皮細胞免受體內有毒代謝物質的損害。另外,GLP-1R激動劑在維持血壓正常和血漿膽固醇濃度方面都具有一定的有益作用[41]。

        2.5胰高血糖素樣肽-2(GLP-2)

        GLP-2借助其對胃的蠕動性和營養(yǎng)吸收、基層組織細胞的分裂和分化以及腸的通透性的影響來保持腸道黏膜上皮的完整性,以及增強黏膜血液流動和營養(yǎng)吸收的作用[42-43]。Petersen等[44]研究發(fā)現(xiàn),在豬、牛和羊3 種動物的羊水、常乳和初乳中,GLP-2的含量為0~20 pmol/L。Deniz等[45]考察GLP-2對腸系膜動脈血流的作用,發(fā)現(xiàn)在注射了0.9、2.3、4.6、9.3 nmol/kg GLP-2后,大鼠的腸系膜動脈血流都顯著增加(P<0.05),而對照組并沒有變化。Kaji等[46]進行的研究表明,在腸道切除的早期,GLP-2對腸道的生長效應達到最大,同時GLP-2受體的表達也顯著增加(P<0.05),這對腸道形態(tài)結構和腺窩細胞的增殖、分化都有很重要的作用。研究顯示,在對大鼠進行小腸原位移植手術后,注射GLP-2實驗組的絨毛高度、隱窩深度和增殖細胞核抗原水平顯著高于對照組(P<0.05),Na+/K+-ATP酶和雙糖酶活性恢復速率亦顯著高于對照組(P<0.05)。

        3 調控微生物區(qū)系

        嬰兒早期建立的消化道微生物區(qū)系除了對幼齡動物腸道生理功能和免疫系統(tǒng)的發(fā)育有重要作用外,還對嬰幼兒的后期發(fā)育乃至成年后的健康和疾病發(fā)生均有一定的影響。母體是影響嬰幼兒消化道微生物發(fā)育的最重要因素,而母乳就是母體影響的一個重要途徑。平板培養(yǎng)發(fā)現(xiàn),乳樣中的微生物主要是Streptococcus和Staphylococcus,其與腸道早期定殖的微生物區(qū)系中的微生物分型比較一致,同時Bifidobacterium和Lactobacillus出現(xiàn)的頻率也很高,這表明母乳是一個益生菌的傳遞系統(tǒng)[47-50]。母乳喂養(yǎng)的嬰兒體內Bifidobacterium和Lactobacillus的含量確實要顯著高于配方奶粉喂養(yǎng)的嬰兒,而Bacteroides、Clostridium coccoides、Staphylococcus和Enterobacteriaceae的含量則顯著低于后者[51-53]。對母乳和新生兒糞樣中分離出的上述微生物菌株進行鑒定后發(fā)現(xiàn),其屬于同一菌株或同源性很高,這也表明母乳對于嬰兒早期腸道微生物定殖的重要起源作用[52]。母乳中含有豐富的寡糖,在人乳中已發(fā)現(xiàn)超過200 種低聚糖[54],其對于新生兒發(fā)育過程中微生物區(qū)系的形成具有很強的益生作用[50]。Bifi dobacterium longum subsp. infantis的一些菌株可以專一地降解人乳寡糖(human milk oligosaccharides,HMOs)[55]。HMOs還可以上調B. longum subsp.等微生物進行碳水化合物降解和細胞黏附等相關基因的表達[56]。因此,F(xiàn)irmicutes和Actinobacteria的早期定殖受益于母乳的作用,同時一些微生物還可以為非消化碳水化合物的利用提供方便,即在嬰兒能夠攝入固體食物之前,其腸道微生物區(qū)系已經為降解簡單的植物性食物如大米做好了準備[57]。同時,母乳喂養(yǎng)的嬰兒腸道微生物區(qū)系的多樣性和豐度均低于配方乳喂養(yǎng)的嬰兒[58-59],這可能是母乳中的益生元(HMOs等)選擇性地促進益生菌的生長,同時抑制了Staphylococci和E. coli等其他潛在致病菌的生長[60]。

        4 免疫作用

        乳中參加免疫作用的物質主要是免疫球蛋白和各種細胞因子,乳中含有IL-1、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、TNF-α和IFN-γ等細胞因子和sIgA、IgG和IgM等免疫球蛋白,這些物質在初乳中的含量很高,對新生動物抵抗疾病和免疫系統(tǒng)的發(fā)育具有重要作用。

        4.1細胞因子

        研究發(fā)現(xiàn)人乳中含有較高濃度的TGF-β、TNF-α、IL-1、IL-6、IL-8和IFN-γ,豬乳中除了含有較高濃度的IL-6、TGF-β和IFN-γ外,IL-4和IL-12的含量也較高,但TNF-α和IL-10的含量較低[23]。按作用的不同,這些細胞因子可分為促炎細胞因子和抗炎細胞因子,它們在新生動物體內始終處于動態(tài)平衡中,在嬰兒不同發(fā)育時期提供健康保障[61]。Hawkes等[22]采集了49 人在泌乳3 個月之內的257 個乳樣,經放射免疫分析或酶聯(lián)免疫分析發(fā)現(xiàn),IL-1β、IL-6和TNF-α等促炎因子僅在部分樣品中發(fā)現(xiàn),并且檢測到的含量變化范圍很大(IL-1β含量<15~400 pg/mL;IL-6含量<15~1 032 pg/mL;TNF-α含量<15~2 933 pg/mL)??寡准毎蜃覶GF-β1(含量143~7 108 pg/mL)和TGF-β2(含量208~57 935 pg/mL)存在于各個樣品中。這可能是由于促炎細胞因子在母體受到感染時含量會增加,用以促進炎癥反應,而在這個實驗中選取的實驗對象都是無炎癥母體。

        細胞因子為小分子質量的可溶性糖蛋白,以自分泌或旁分泌的形式結合在特定細胞受體上,來控制和協(xié)調免疫系統(tǒng)的發(fā)展和功能。因此,細胞因子在免疫調節(jié)、抗病毒和抗腫瘤等方面有重要作用[62]。傅雯萍等[63]研究比較了早產與足月分娩所分泌的母乳,結果顯示,早產母乳中TNF-α的含量顯著高于足月產母乳(P<0.05),會給早產兒提供較好的免疫保護作用。新生動物在出生后不久極容易受到感染和敗血癥的影響,導致較高的發(fā)病率和死亡率[64]。同時有研究表明,TGF-β1和TGF-β2可以提高IgA在初乳中的含量,隨之發(fā)生的是在嬰兒血清中IgA的含量也有明顯上升[65]。

        4.2免疫球蛋白

        由于豬和人的胎盤為上皮絨毛膜胎盤,所以免疫球蛋白很少能透過胎盤,導致胎兒出生后體內不會含有母體免疫物質,而乳中含有大量免疫球蛋白,經測定人的初乳中IgA、IgG和IgM的含量分別為1.007、5.807、0.302 mg/mL,常乳中的含量為0.707、0.300、0.003 mg/mL[66-67]。

        如果胎兒出生后不能及時吸吮初乳,則在后期發(fā)生各種微生物感染性疾病的機率很高。這是由于初乳中的IgA、IgG和IgM進入新生兒的腸道并吸收進入血液后會對新生兒被動免疫反應的生成起到至關重要的作用。IgA、IgG和IgM主要使機體產生天然被動免疫,阻止某些特異性病毒的感染[66]。Hilpert等[68]利用輪狀病毒高免牛的含有乳免疫球蛋白濃縮物來治療嬰兒急性輪狀病毒胃腸道感染,發(fā)現(xiàn)病毒存在于嬰兒體內的時間顯著減少(P<0.05)。IgA主要抵抗局部感染、共生細菌和食物中的病原[69]。母乳中還含有較多的sIgA,陳瀑等[70]發(fā)現(xiàn),人初乳中含有抵抗輪狀病毒、柯薩奇病毒、??刹《?、腺病毒、呼吸道合胞病毒、幽門螺桿菌、空腸彎曲菌、腸致病性大腸埃希氏菌和沙門氏菌O的sIgA,但在常乳中抵抗柯薩奇病毒、??刹《竞陀拈T螺桿菌的sIgA已不存在。

        5 結語

        母乳作為新生兒最重要的營養(yǎng)、生長、免疫調控物質來源,得到了人們廣泛的重視。經過近幾十年來的研究,人們仍不能夠完全地解析母乳的活性成分及其作用。近幾年,母乳對新生動物作用的研究發(fā)展極為迅速,隨著細胞流式術、糖組學和蛋白質組學等新興技術在乳糖成分和蛋白質成分等研究方面的應用,母乳中的新物質及其作用不斷得以發(fā)現(xiàn)和揭示,人們對母乳的生物學功能也會愈加清楚。

        [1] BANO G.Glucose homeostasis,obesity and diabetes[J].Best Practice&Research Clinical Obstetrics&Gynaecology,2013,27(5):715-726.

        [2] KIM J S,SHINDE P L,YANG Y X,et al.Effects of dietary lactose levels during different starter phases on the performance of weaning pigs[J].Livestock Science,2010,131(2):175-182.

        [3] TRAYHURN P,TEMPLE N J,AERDE J V.Evidence from immunoblotting studies on uncoupling protein that brown adipose tissue is not present in the domestic pig[J].Canadian Journal of Physiology and Pharmacology,1989,67(12):1480-1485.

        [4] BARROS K V,CARVALHO P O,CASSULINO A P,et al.Fatty acids in plasma,white and red blood cells,and tissues after oral or intravenous administration of fish oil in rats[J].Clinical Nutrition,2013,32(6):993-998.

        [5] O’ROURKE E J,PETRIC K,XAVIER R,et al.ω-6Polyunsaturated fatty acids extend life span through the activation of autophagy[J].Genes&Develepment,2013,27:429-44.

        [6] L?NNERDAL B.Biochemistry and physiological function of human milk proteins[J].The American Journal of Clinical Nutrition,1985,42(6):1299-1317.

        [7] LIAO Yalin,ALVARADO R,PHINNEY B,et al.Proteomic characterization of human milk whey proteins during a twelve-month lactation period[J].Journal of Proteome Research,2011,10(4):1746-1754.

        [8] SHI Yudong, SUN Guoqing, ZHANG Zhiguo, et al. The chemical composition of human milk from Inner Mongolia of China[J]. Food Chemistry, 2011, 127(3): 1193-1198.

        [9] WOJCIK K Y, RECHTMAN D J, LEE M L, et al. Macronutrient analysis of a nationwide sample of donor breast milk[J]. Journal of the American Dietetic Association, 2009, 109(1): 137-140.

        [10] YAMAWAKI N, YAMADA M, KAN-NO T, et al. Macronutrient, mineral and trace element composition of breast milk from Japanese women[J]. Journal of Trace Elements in Medicine and Biology, 2005, 19(2): 171-181.

        [11] HARTMANN B T, PANG W W, KEIL A D, et al. Best practice guidelines for the operation of a donor human milk bank in an Australian NICU[J]. Early Human Development, 2007, 83(10): 667-673.

        [12] KIM S W, BRANDHERM M, FREELAND M, et al. Effects of yeast culture supplementation to gestation and lactation diets on growth of nursing piglets[J]. Asian-Australasian Journal of Animal Sciences, 2008, 21(7): 1011-1014.

        [13] RAYNAL-LJUTOVAC K, LAGRIFFOUL G, PACCARD P, et al. Composition of goat and sheep milk products: an update[J]. Small Ruminant Research, 2008, 79(1): 57-72.

        [14] MARKIEWICZ-K?SZYCKA M, WóJTOWSKI J, KUCZY?SKA B, et al. Chemical composition and whey p rotein fraction of late lactation mares’ milk[J]. International Dairy Journal, 2013, 31(2): 62-64.

        [15] WEISBJERG M R, LARSEN M K, HYMLLER L, et al. Milk production and composition in Danish Holstein, Danish Red, and Danish Jersey cows supplemented with saturated or unsaturated fat[J]. Livestock Science, 2013,155(1): 60-70.

        [16] READ L C, UPTON F M, FRANCIS G L, et al. Changes in the growth-promoting activity of human milk during lactation[J]. Pediatric Research, 1984, 18(2): 133-139.

        [17] BEARDMORE J M, RICHARDS R C. Concentrations of epidermal growth factor in mouse milk throughout lactation[J]. The Journal of Endocrinology, 1983, 96(2): 287-292.

        [18] XU R, WANG F, ZHANG S H. Postnatal adaptation of the gastrointestinal tract in neonatal pigs: a possible role of milk-borne growth factors[J]. Livestock Production Science, 2000, 66(2): 95-107. [19] OZGURTAS T, AYDIN I, TURAN O, et al. Vascular endothelial growth factor, basic fibroblast growth factor, insulin-like growth factor-Ⅰ and platelet-derived growth factor levels in human milk of mothers with term and preterm neonates[J]. Cytokine, 2010, 50(2): 192-194.

        [20] DONOVAN S M, HARTKE J L, MONACO M H, et al. Insulin-like growth factor-Ⅰ and piglet intestinal development[J]. Journal of Dairy Science, 2004, 87: E47-E54.

        [21] CASTIGLIEGO L, LI X, ARMANI A, et al. An immunoenzymatic assay to measure insulin-like growth factor 1 (IGF-1) in buffalo milk with an IGF binding protein blocking pre-treatment of the sample[J]. International Dairy Journal, 2011, 21(6): 421-426.

        [22] HAWKES J S, BRYAN D L, JAMES M J, et al. Cytokines (IL-1β, IL-6, TNF-α, TGF-β1, and TGF-β2) and prostaglandin E2 in human milk during the fi rst three months postpartum[J]. Pediatric Research, 1999, 46(2): 194-199.

        [23] NGUYEN T V, YUAN L, AZEVEDO M S P, et al. Transfer of maternal cytokines to suckling piglets: in vivo and in vitro models with implications for immunomodulation of neonatal immunity[J]. Veterinary Immunology and Immunopathology, 2007, 117(3): 236-248.

        [24] OLLIKAINEN P, MUURONEN K. Determination of insulin-like growth factor-1 and bovine insulin in raw milk and its casein and whey fractions after microfi ltration and ultrafi ltration[J]. International Dairy Journal, 2013, 28(2): 83-87.

        [25] KROENING T A, MUKERJI P, HARDS R G. Analysis of beta-casein and its phosphoforms in human milk[J]. Nutrition Research, 1998, 18(7): 1175-1186.

        [26] RAMíREZ-PALOMINO P, FERNáNDEZ-ROMERO J M, GóMEZHENS A. Rapid chromatographic determination of caseins in milk with photometric and fluorimetric detection using a hydrophobic monolithic column[J]. Food Chemistry, 2014, 142: 249-254.

        [27] TORKELSON A R, DWYER K A, ROGAN G J, et al. Radioimmunoassay of somatotropin in milk from cows administered recombinant bovine somatotropin[J]. Journal of Dairy Science, 1987, 70(Suppl 1): 146.

        [28] MOLIK E, MISZTAL T, ROMANOWICZ K, et al. Short-day and melatonin effects on milking parameters, prolactin profi les and growthhormone secretion in lactating sheep[J]. Small Ruminant Research, 2012, 109(2): 182-187.

        [29] COHEN S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal[J]. Journal of Biological Chemistry, 1962, 237(5): 1555-1562.

        [30] KLAGSBRUN M. Human milk stimulates DNA synthesis and cellular proliferation in cultured fibroblasts[J]. Proceedings of the National Academy of Sciences, 1978, 75(10): 5057-5061.

        [31] DVORAK B. Milk epidermal growth factor and gut protection[J]. The Journal of Pediatrics, 2010, 156(Suppl 2): 31-35.

        [32] XU Ruojun. Development of the newborn GI tract and its relation to colostrum/milk intake: a review[J]. Reproduction, Fertility and Development, 1996, 8(1): 35-48.

        [33] H?RD A L, SMITH L E, HELLSTR?M A. Nutrition, insulin-like growth factor-1 and retinopathy of prematurity[C]//Seminars in Fetal and Neonatal Medicine. Philadelphia: WB Saunders, 2013: 136-142.

        [34] BAKER J, LIU J P, ROBERTSON E J, et al. Role of insulin-like growth factors in embryonic and postnatal growth[J]. Cell, 1993, 75(1): 73-82.

        [35] TREJO J L, CARRO E, TORRES-ALEMáN I. Circulating insulinlike growth factorⅠ mediates exercise-induced increases in the number of new neurons in the adult hippocampus[J]. The Journal of Neuroscience, 2001, 21(5): 1628-1634.

        [36] MONNIER L, COLETTE C, OWENS D. Basal insulin analogs: from pathophysiology to therapy. What we see, know, and try to comprehend?[J]. Diabetes & Metabolism, 2013, 39(6): 468-476.

        [37] SHEN Weihua, XU Ruojun. Gastrointestinal stability and absorption of insulin in suckling pigs[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2000, 125(3): 389-401.

        [38] SUKHOTNIK I, SHEHADEH N, MOGILNER J, et al. Benefi cial effects of oral insulin on intestinal recovery following ischemia-reperfusion injury in rat[J]. Journal of Surgical Research, 2005, 128(1): 108-113.

        [39] AMIRAM M, LUGINBUHL K M, LI X, et al. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for fi ve days with a single injection[J]. Journal of Controlled Release, 2013, 172(1): 144-151.

        [40] ZHAN Yi, SUN Huilin, CHEN Hong, et al. Glucagon-like peptide-1 (GLP-1) protects vascular endothelial cells against advanced glycation end products (AGEs)-induced apoptosis[J]. Medical Science Monitor Basic Research, 2012, 18(7): 286-291.

        [41] VILSBLL T, CHRISTENSEN M, JUNKER A E, et al. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials[J]. British Medical Journal, 2012, 344. doi: 10.1136/bmj.d7771.

        [42] GUAN X, KARPEN H E, STEPHENS J, et al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow[J]. Gastroenterology, 2006, 130(1): 150-164.

        [43] DRUCKER D J. Mini review: the glucagon-like peptides[J]. Endocrinology, 2001, 142(2): 521-527.

        [44] PETERSEN Y M, HARTMANN B, HOLST J J, et al. Introduction of enteral food increases plasma GLP-2 and decreases GLP-2 receptor mRNA abundance during pig development[J]. The Journal of Nutrition, 2003, 133(6): 1781-1786.

        [45] DENIZ M, BOZKURT A, KURTEL H. Mediators of glucagon-like peptide 2-induced blood fl ow: responses in different vascular sites[J]. Regulatory Peptides, 2007, 142(1): 7-15.

        [46] KAJI T, TANAKA H, REDSTONE H, et al. Temporal changes in the intestinal growth promoting effects of glucagon-like peptide 2 following intestinal resection[J]. Journal of Surgical Research, 2009, 152(2): 271-280.

        [47] KLATT N R, FUNDERBURG N T, BRENCHLEY J M. Microbial translocation, immune activation, and HIV disease[J]. Trends in Microbiology, 2013, 21(1): 6-13.

        [48] SAHL J W, MATALKA M N, RASKO D A. Phylomark, a tool to identify conserved phylogenetic markers from whole-genome alignments[J]. Applied and Environmental Microbiology, 2012, 78(14): 4884-4892.

        [49] FERNáNDEZ L, LANGA S, MARTíN V, et al. The human milk microbiota: origin and potential roles in health and disease[J]. Pharmacological Research, 2013, 69(1): 1-10.

        [50] PETHERICK A A. Development: mother’s milk: a rich opportunity[J]. Nature, 2010, 468: S5-S7.

        [51] HARMSEN H J M, WILDEBOER-VELOO A C M, RAANGS G C, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identifi cation and detection methods[J]. Journal of Pediatric Gastroenterology and Nutrition, 2000, 30(1): 61-67.

        [52] FALLANI M, YOUNG D, SCOTT J, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics[J]. Journal of Pediatric Gastroenterology and Nutrition, 2010, 51(1): 77-84.

        [53] RINNE M, KALLIOMAKI M, ARVILOMMI H, et al. Effect of probiotics and breastfeeding on the Bifi dobacterium and Lactobacillus/ Enterococcus microbiota and humoral immune responses[J]. The Journal of Pediatrics, 2005, 147(2): 186-191.

        [54] HAN N S, KIM T J, PARK Y C, et al. Biotechnological production of human milk oligosaccharides[J]. Biotechnology Advances, 2012, 30(6): 1268-1278.

        [55] SELA D A, MILLS D A. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides[J]. Trends in Microbiology, 2010, 18(7): 298-307.

        [56] GONZáLEZ R, KLAASSENS E S, MALINEN E, et al. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide[J]. Applied and Environmental Microbiology, 2008, 74(15): 4686-4694.

        [57] KOENIG J E, SPOR A, SCALFONE N, et al. Succession of microbial consortia in the developing infant gut microbiome[J]. Proceedings of the National Academy of Sciences, 2011, 108(Suppl 1): 4578-4585.

        [58] LI M, BAUER L L, CHEN X, et al. Microbial composition and in vitro fermentation patterns of human milk oligosaccharides and prebiotics differ between formula-fed and sow-reared piglets[J]. The Journal of Nutrition, 2012, 142(4): 681-689.

        [59] PENDERS J, THIJS C, VINK C, et al. Factors influencing the composition of the intestinal microbiota in early infancy[J]. Pediatrics, 2006, 118(2): 511-521.

        [60] LEBOUDER E, REY-NORES J E, RUSHMERE N K, et al. Soluble forms of toll-like receptor (TLR) 2 capable of modulating TLR2 signaling are present in human plasma and breast milk[J]. The Journal of Immunology, 2003, 171(12): 6680-6689.

        [61] 楊靜靜, 龐廣昌. 母乳中免疫成分及其對嬰兒免疫發(fā)育作用的研究進展[J]. 食品科學, 2006, 27(10): 641-643.

        [62] ZANARDO V, NICOLUSSI S, CAVALLIN S, et al. Effect of maternal smoking on breast milk interleukin-1α, β-endorphin, and leptin concentrations[J]. Environmental Health Perspectives, 2005, 113(10): 1410-1413.

        [63] 傅雯萍, 常桂珍, 李亞蕊. 初乳中免疫活性細胞及TNF-α的測量研究[J].中華圍產醫(yī)學雜志, 2000, 3(3): 169-171.

        [64] OMOREGIE R, EGBE C A, DIRISU J, et al. Microbiology of neonatal septicemia in a tertiary hospital in Benin City, Nigeria[J]. Biomarkers and Genomic Medicine, 2013, 5(4): 142-146.

        [65] OGAWA J, SASAHARA A, YOSHIDA T, et al. Role of transforming growth factor-β in breast milk for initiation of IgA production in newborn infants[J]. Early Human Development, 2004, 77(1): 67-75.

        [66] SMILOWITZ J T, TOTTEN S M, HUANG J, et al. Human milk secretory immunoglobulin A and lactoferrin N-glycans are altered in women with gestational diabetes mellitus[J]. The Journal of Nutrition, 2013, 143(12): 1906-1912.

        [67] HURLEY W L. Immunoglobulins in mammary secretions[M]// Advanced dairy chemistry-1 proteins. New York: Springer US, 2003: 421-447.

        [68] HILPERT H, BRIISSOW H, MIETENS C, et al. Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants[J]. Journal of Infectious Diseases, 1987, 156(1): 158-166.

        [69] 李楊, 龐廣昌, 于立琴. 牛初乳中的IgG對腸黏膜免疫系統(tǒng)調節(jié)的初步研究[J]. 食品科學, 2009, 30(17): 297-301.

        [70] 陳瀑, 謝建渝, 楊致邦, 等. 人母乳中分泌型免疫球蛋白A的抗體特異性分析[J]. 中國微生態(tài)學雜志, 2009, 21(3): 235-238.

        Progresses in Biological Functions of Maternal Milk

        MA Shouqing,BIAN Gaorui,ZHU Weiyun*
        (Laboratory of Gastrointestinal Microbiology,College of Animal Science and Technology,Nanjing Agricultural University,Nanjing210095,China)

        This article mainly focus on the functions of maternal milk factors like nutritional substances,growth factors,immune factors and other bioactive substances on newborn animals and elaborates the possible mechanisms of these functions.These factors play important roles in nutrition,growth promotion,immune system and microflora regulation.We elucidate the critical functions of material milk as well as discuss the effect of deficiency of one or more specific active factors on newborn animals by comparison between breasted and non-breasted newborn animals.Even though considerable knowledge is available about milk,more functions of milk and new substances remain to be discovered.

        maternal milk;nutritional function;growth-promoting function;immune function;microflora regulation

        F416.82

        A

        1002-6630(2015)05-0233-06

        10.7506/spkx1002-6630-201505043

        2014-04-09

        歐盟第7框架項目(FP7-KBBE-2008-2B);科技部中國-歐盟科技合作項目(1008)

        馬守慶(1989—),男,碩士研究生,主要從事消化道微生物研究。E-mail:2013105048@njau.edu.cn

        朱偉云(1962—),女,教授,博士,主要從事消化道微生物研究。E-mail:zhuweiyun@njau.edu.cn

        猜你喜歡
        高血糖素區(qū)系初乳
        基于品管圈的多學科聯(lián)合干預策略在早產兒初乳喂養(yǎng)中的應用
        贛粵地區(qū)蕨類植物區(qū)系新資料
        用初乳進行口腔免疫護理對早產極低出生體重兒的影響
        早期初乳口腔內滴注對極低出生體重早產兒喂養(yǎng)管理的影響
        智慧健康(2021年33期)2021-03-16 05:47:26
        胰高血糖素樣肽1及其受體激動劑在支氣管哮喘治療中的研究進展
        內蒙古灌木植物多樣性及其區(qū)系分析
        犢牛飼喂初乳好處多
        2型糖尿病應用胰高血糖素樣肽-1受體激動劑治療的效果探討
        空腹及糖負荷后胰高血糖素水平與代謝綜合征的相關性研究
        不同施肥處理對農田土壤微生物區(qū)系和功能的影響
        亚洲av日韩av高潮潮喷无码 | 亚洲av综合av一区| 精品国产天堂综合一区在线 | 国产av久久在线观看| 国产一区二区三区小说| 一本本月无码-| 18禁美女裸身无遮挡免费网站| 亚洲an日韩专区在线| 少妇av免费在线播放| 中文字幕一区二区三区6| 国产精品久色婷婷不卡| 少妇高潮惨叫久久久久电影69| 亚洲va久久久噜噜噜久久男同| 人妻影音先锋啪啪av资源| 国产精品综合久久久久久久免费| 亚洲av人片在线观看调教| 亚洲三级香港三级久久| 国产免费av手机在线观看片| av中文字幕潮喷人妻系列| 国产亚洲人成a在线v网站| 欧洲亚洲第一区久久久| 精品国产又大又黄又粗av| 高清国产亚洲精品自在久久| 精品综合一区二区三区| 国产内射爽爽大片视频社区在线 | 久久精品免视看国产明星| 在线观看黄片在线播放视频| 日韩极品在线观看视频| 久久久久av综合网成人| 女人张开腿让男桶喷水高潮| 欧美国产成人精品一区二区三区| 无码AV午夜福利一区| 在线观看视频国产一区二区三区 | 大尺度无遮挡激烈床震网站 | 日韩字幕无线乱码免费| 看女人毛茸茸下面视频| 人妻无码中文字幕| 国产又黄又大又粗视频| 久久伊人精品只有这里有| 亚洲国产av一区二区四季| 老师露出两个奶球让我吃奶头|