張 琰,張耀海,焦必寧,*
(1.西南大學園藝園林學院,重慶 400715;2.國家柑桔工程技術(shù)研究中心,中國農(nóng)業(yè)科學院柑桔研究所,重慶 400712;3.農(nóng)業(yè)部柑橘產(chǎn)品質(zhì)量安全風險評估實驗室,重慶 400712;4.農(nóng)業(yè)部柑桔及苗木質(zhì)量監(jiān)督檢驗測試中心,重慶 400712;5.柑桔學重慶市市級重點實驗室,重慶 400712)
離子液體-分散液液微萃取在食品及環(huán)境污染物檢測中的應用
張琰1,2,3,4,5,張耀海2,3,4,5,焦必寧1,2,3,4,5,*
(1.西南大學園藝園林學院,重慶400715;2.國家柑桔工程技術(shù)研究中心,中國農(nóng)業(yè)科學院柑桔研究所,重慶400712;3.農(nóng)業(yè)部柑橘產(chǎn)品質(zhì)量安全風險評估實驗室,重慶400712;4.農(nóng)業(yè)部柑桔及苗木質(zhì)量監(jiān)督檢驗測試中心,重慶400712;5.柑桔學重慶市市級重點實驗室,重慶400712)
離子液體以其蒸汽壓低、熱穩(wěn)定性好、良好的溶解性和可設(shè)計性等特性在萃取分離領(lǐng)域應用廣泛。本文就離子液體性質(zhì)、離子液體-分散液液微萃取模式進行介紹,重點綜述該項技術(shù)在食品和環(huán)境污染物檢測中的最新應用進展,并對其發(fā)展前景進行展望。
離子液體;分散液液微萃取;食品;環(huán)境污染物;應用
樣品前處理是分析檢測的關(guān)鍵步驟之一。近年來,樣品前處理方法正朝著簡單化、節(jié)約化和微型化方向發(fā)展。2006年,Rezaee等[1]首次提出分散液液微萃取技術(shù)(dispersive liquid-liquid microextraction,DLLME),該技術(shù)集采樣、萃取和濃縮于一體,具有操作簡單、快速、成本低、富集效率高、有機溶劑用量少等特點。但傳統(tǒng)的DLLME通常使用四氯化碳、氯仿等鹵代烴作為提取溶劑,這些溶劑毒性大且對環(huán)境不友好。
離子液體(ionic liquid,IL),也稱室溫離子液體(room-temperature ionic liquid,RTIL),具有低蒸汽壓、不易燃、熱穩(wěn)定性好等性質(zhì)。離子液體代替?zhèn)鹘y(tǒng)的有機溶劑可以避免揮發(fā)帶來的環(huán)境污染問題,因此被譽為“綠色溶劑”。
將離子液體和分散液液微萃取技術(shù)結(jié)合,可以充分利用二者優(yōu)點,形成集萃取、濃縮于一體的操作簡便、快速、高回收率、前處理微型化的綠色環(huán)保新方法。2008年,Zhou Qingxiang[2]和Baghdadi[3]等最早將離子液體和分散液液微萃取技術(shù)結(jié)合,形成了離子液體-分散液液微萃取技術(shù)(ionic liquid-based dispersive liquid-liquid microextraction,IL-DLLME),并分別應用于環(huán)境樣品中有機磷農(nóng)藥和Hg元素的分析檢測。此后,關(guān)于ILDLLME技術(shù)檢測有機化合物及元素含量的研究相繼出現(xiàn)(圖1)。本文首先簡要介紹離子液體性質(zhì),分析比較IL-DLLME不同模式間的優(yōu)缺點,就其在食品和環(huán)境污染物檢測中的應用進行綜述,以期為IL-DLLME的發(fā)展提供參考。
圖1 IL-DLLME技術(shù)近7年出版文章數(shù)目趨勢Fig.1The annual number of publications regarding IL-DLLME in the last seven years
1.1分散液液微萃取的原理
分散液液微萃取技術(shù)的原理是將混有微量萃取劑的分散劑快速注入樣品溶液,萃取劑在分散劑的作用下以細小液滴的形式均勻分散在樣品溶液中,形成樣品溶液-分散劑-萃取劑的三元乳濁液體系。由于萃取劑和樣品溶液有較大的接觸面積,目標物在二者之間快速達到萃取平衡,離心、冷卻或凝固后,目標物被富集在離心管底部微量沉淀相中,注射器取出后即可用于儀器分析。該方法可以在較短的萃取時間內(nèi)獲得較高富集倍數(shù)和回收率,其具體操作過程如圖2所示。
圖2分散液液微萃取的操作過程Fig.2Flow chart of dispersive liquid-liquid microextraction
對分散液液微萃取而言,萃取劑和分散劑種類的選擇是提高萃取效率的關(guān)鍵。因此,萃取劑應滿足密度比水大、且與目標物性質(zhì)匹配、有良好的色譜行為。常用的萃取劑主要有氯仿、氯苯、四氯化碳、四氯乙烯、二氯甲烷、三氯乙烷等。而分散劑種類的選擇要滿足同時溶于樣品溶液和萃取劑,才能保證可在樣品溶液中分離萃取劑液滴。常用的分散劑主要有甲醇、乙腈、丙酮、四氫呋喃等。
1.2離子液體的性質(zhì)
離子液體最突出的優(yōu)點包括蒸汽壓低、熱穩(wěn)定性好、黏度可調(diào)等。1)溶解性是離子液體的一個重要物理特性,可以通過陰離子或烷基鏈長度的改變來對這一特性進行調(diào)控;2)熔點由離子對稱性、范德華力、氫鍵和離子電荷分布的均勻程度決定,比如用無機陽離子代替非對稱的有機陽離子可以顯著增大離子液體的熔點;3)離子液體的表面張力與陰、陽離子結(jié)構(gòu)有關(guān),隨著與其結(jié)合的烴基鏈長度的減小而增大。4)離子液體的熱穩(wěn)定性主要取決于陰、陽離子,而陰離子對熱穩(wěn)定性的影響更大;5)與傳統(tǒng)有機溶劑相比,離子液體具有較高的黏度,通常是有機溶劑黏度的2~3 個數(shù)量級,通過升高溫度可以降低離子液體黏度。此外,離子液體黏度還由分子間作用力(庫倫力、范德華力)決定[4]。
此外,離子液體的毒理特性也是影響其應用的重要因素之一,近年來也有很多關(guān)于離子液體毒性在水生生態(tài)系統(tǒng)和微生物等方面的研究[5]。研究結(jié)果表明離子液體并非全部具有低毒性,其毒性高低與陽離子是否為芳香環(huán)、芳香環(huán)碳數(shù)及陽離子上取代烴鏈的長度有關(guān)。一般陽離子為芳香烴的離子液體毒性高于陽離子為非芳香烴的離子液體,六元環(huán)毒性大于五元環(huán),較短的烴基取代鏈比長鏈毒性?。魂庪x子種類對離子液體毒性影響更為復雜,需要更深入調(diào)查研究[6-7]。
目前主要研究的離子液體由不對稱的陽離子,如咪唑類、吡咯類、吡啶類、季銨鹽類及季磷鹽類和無機或有機陰離子構(gòu)成,如[BF4]-、[PF6]-、Cl-、Br-、[CF3SO3]-等[8-9]。代表性的離子液體有1-丁基-3-甲基咪唑六氟磷酸鹽([C4MIM][PF6])、1-己基-3-甲基咪唑六氟磷酸鹽([C6MIM][PF6])和1-辛基-3-甲基咪唑六氟磷酸鹽([C8MIM][PF6]),多用于環(huán)境及食品污染物的檢測。因此,通過離子液體理化性質(zhì)的改變可以擴大其應用范圍,對其理化性質(zhì)分析方法的研究受到普遍重視。
1.3離子液體-分散液液微萃取的模式
IL-DLLME聯(lián)用技術(shù)以IL代替?zhèn)鹘y(tǒng)的含氯有機試劑作為萃取劑,在分散劑的作用下擴散并進行有序排列,形成IL-樣品溶液-分散劑的三元溶劑萃取體系。以咪唑類IL為例:親水性咪唑陽離子指向外部水體系,疏水性烷基鏈聚集構(gòu)成疏水內(nèi)核,不同極性的目標物分布于烷基鏈不同部位或進入疏水內(nèi)核從而被IL萃取。目前,除了傳統(tǒng)IL-DLLME,研究人員也對這一方法進行了一系列改進,如當萃取劑密度低于水時使用渦旋或超聲波提高萃取效率[10-11],與目標物衍生相結(jié)合[12]。Trujillo-Rodríguez等[13]總結(jié)了近年來IL-DLLME的應用。本文將IL-DLLME主要分為3 種模式:傳統(tǒng)離子液體-分散液液微萃取,溫控、超聲波、渦旋或微波輔助離子液體-分散液液微萃取,原位離子液體-分散液液微萃取。
傳統(tǒng)IL-DLLME是3 種模式中最為簡單的模式。在萃取劑-樣品溶液-分散劑三相混合后,無需外界能量如溫控、超聲波等加速萃取,手動攪拌或振蕩后離心即可將含有目標物的離子液滴從水相中分離。但傳統(tǒng)IL-DLLME也存在難以應對多種目標物、萃取效率低等缺點,因此研究人員開發(fā)了溫控輔助(temperaturecontrolled-assisted,TCA)、超聲波輔助(ultrasoundassisted,UA)、渦旋輔助(vortex-assisted,VA)和微波輔助(microwave-assisted,MA) IL-DLLME模式。這些模式需借助外界能量對含有目標物的樣品進行加熱、超聲波、渦旋或微波,提高離子液體在樣品溶液中的溶解度,增大與目標物的接觸面積,從而提高萃取效率,并且可減緩萃取過程中的有機反應。原位離子液體-分散液液微萃取(in situ IL-DLLME),又稱基于離子液體的原位溶劑形成微萃取(ionic liquid-in situ solvent formation microextraction,IL-ISFME),該模式采用親水性離子液體作為萃取劑,一種陰離子交換劑和其發(fā)生置換反應生成新的疏水性離子液體,集萃取、置換反應、形成離子液體沉淀相于一體,大大縮短了萃取時間。目前,采用該模式的研究中基本沒有使用分散劑,通常親水性離子液體和陰離子交換劑保持1∶1的比例。表1將3 種模式進行了對比,以下將就IL-DLLME在農(nóng)藥殘留、食品添加劑、元素等其他化學污染物檢測中的應用作簡要綜述。
表1 離子液體-分散液液微萃取的3種模式3Table1Modes of IL-DLLMEDLLME
2.1IL-DLLME在農(nóng)獸藥殘留檢測中的應用
近年來,隨著我國居民生活水平的提高,農(nóng)獸藥殘留造成的環(huán)境及農(nóng)產(chǎn)品安全事故頻發(fā),為有效控制農(nóng)獸藥殘留污染,發(fā)展簡單、快速、可靠和應用范圍廣的檢測方法顯得尤為重要。
Zhou Qingxiang等[2]最早提出將TCA-IL-DLLME結(jié)合高效液相色譜-紫外檢測(high performance liquid chromatography-ultra violet,HPLC-UV)應用到環(huán)境水樣中有機磷殺蟲劑(甲基對硫磷和辛硫磷)的檢測:50 μL離子液體[C6MIM][PF6]和10 mL水混合后,80 ℃水浴加熱,冰浴30 min,離心后取沉淀上機分析;在優(yōu)化條件下,該方法的富集倍數(shù)為50,檢出限為0.17~0.29 ng/mL,回收率為88.2%~103.6%。該方法簡單、有效,為今后IL-DLLME開辟了新視角。Zhang Jiaheng等[14]利用UA-IL-DLLME結(jié)合HPLC-二極管陣列檢測器(diode array detector,DAD)技術(shù)檢測蜂蜜中4 種擬除蟲菊酯:以離子液體[C8MIM][PF6]為萃取劑,甲醇為分散劑,富集倍數(shù)高達506~515 倍,回收率為101.2%~103.0%;同時第一次提出將UA-IL-DLLME與傳統(tǒng)IL-DLLME和TCA-IL-DLLME進行了比較,結(jié)果表明UA-IL-DLLME的萃取效率最高,接近100%。
IL-DLLME技術(shù)中,多使用有機試劑作為分散劑。最近的研究已將離子液體作為分散劑。Zhao Rusong等[15]以離子液體[C8MIM][PF6]為萃取劑,[C4MIM][BF4]為分散劑,利用IL-DLLME結(jié)合HPLC-UV技術(shù)檢測了水樣中芐氯菊酯和聯(lián)苯菊酯,優(yōu)化條件下檢出限為0.28~0.83 μg/L,回收率為84%~114%。有機試劑的減少,使IL-DLLME技術(shù)更加環(huán)保,此方法可能成為今后前處理方法研究的新方向。
最初的IL-DLLME技術(shù)僅適用于簡單基質(zhì)(以水體為代表),近年來,此技術(shù)也逐漸應用于復雜基質(zhì)中,比如果蔬和土壤。Ravelo-Pérez等[16]以[C6MIM][PF6]為萃取劑,甲醇為分散劑,并與HPLC-DAD結(jié)合測定了香蕉中8 種農(nóng)藥殘留,優(yōu)化條件下其檢出限滿足該8 種農(nóng)藥農(nóng)殘檢測標準。2012年,Zhang Lijin等[17]采用VA-IL-DLLME模式結(jié)合HPLC-UV檢測蘋果、梨中6 種有機磷農(nóng)藥,以[C8MIM][PF6]為萃取劑,甲醇為分散劑,優(yōu)化條件下富集倍數(shù)大于300,檢出限為0.061~0.73 μg/L,回收率為69.8%~109.1%。
離心在傳統(tǒng)DLLME中是必不可少但又被認為是最耗時的步驟,通過離心可將含有目標物的萃取劑沉淀至離心管底部。最近有研究建議將磁性納米粒子[18](magnet ic nanoparticles,MNPs)應用到IL-DLLME技術(shù)中,利用MNPs的超順磁性和較大接觸面積等優(yōu)點,可以減少萃取劑時間,使處理自動化。Zhang Jiaheng等[19]提出MR(magnetic retrieval)-IL-DLLME,并結(jié)合HPLC-可變波長檢測器(automated variable-wavelength detector,VWD)檢測環(huán)境水樣中5 種苯甲酰脲殺蟲劑:以離子液體[C6MIM][PF6]為萃取劑,乙腈為分散劑,萃取后加入磁性納米粒子Fe3O4,將離子液體從樣品溶液中直接分離,從而代替了傳統(tǒng)的離心操作;在優(yōu)化條件下富集倍數(shù)高達261~302 倍,檢出限為0.05~0.15 μg/L,回收率為79.8%~91.7%。該方法快速、高效、綠色,適合大批量樣品的快速檢測。
IL-DLLME技術(shù)同樣適用于獸藥殘留檢測。Qin Hui等[20]首次提出離子液體渦旋輔助協(xié)同微萃取(ionic liquid supported vortex-assisted synergic microextraction,ILSVA-SME)結(jié)合HPLC-UV檢測水樣中微量糖皮質(zhì)激素:以離子液體[C4MIM][PF6]作為萃取劑,表面活性劑聚乙二醇辛基苯基醚(Triton X-100)作為分散劑;在優(yōu)化條件下,富集倍數(shù)達99.85,檢出限為0.23~1.30 μg/L,回收率為97.24%~102.2%。該研究使用非離子表面活性劑為分散劑代替了傳統(tǒng)有機試劑,減少有毒試劑消耗,研究組還將該方法與傳統(tǒng)方法固相萃取(solid phase extraction,SPE)、固相微萃?。╯olidphase micro-extraction,SPME)和濁點萃取(cloud point extraction,CPE)進行了比較,其萃取時間短、效率高、且無需加熱的特點使其在對同類物質(zhì)的檢測中具有潛在應用價值。
表2IL-DLLME在農(nóng)獸藥殘留檢測中的應用Table2Application of IL-DLLME in the analysis of pesticide and veterinary drug residues
IL-DLLME也可與衍生方法結(jié)合。Xu Xu等[21]首次提出IL-MASI-DLLME(IL-based microwave-assisted surfactantimproved DLLME)結(jié)合HPLC一步衍生、萃取檢測牛奶中氨基糖苷類抗生素:以離子液體[C4MIM][PF6]為萃取劑,表面活性劑Triton X-100為分散劑,氯甲酸-9-芴基甲酯(9-fluorenylmethyl chloroformate,[FMOC][Cl])為衍生劑,180 W條件下微波60 s;在優(yōu)化條件下檢出限為0.11~0.50 μg/L,回收率為96.4%~105.4%,技術(shù)指標均滿足目標物檢測要求。使用表面活性劑,一步衍生、萃取、預濃縮,減少有機試劑使用量,縮短萃取時間,提高了萃取效率。
表2為對近年來IL-DLLME在農(nóng)獸藥殘留檢測中的應用所進行的總結(jié)。
2.2IL-DLLME在真菌毒素檢測中的應用
食品中常見真菌毒素如黃曲霉毒素、脫氧雪腐鐮刀菌烯醇、展青霉素、赭曲霉毒素A等,這些毒素及其次生代謝物重者可導致人體器官損害、功能衰竭。目前,DLLME技術(shù)主要應用于酒、谷物和蘋果汁中真菌毒素的檢測,但應用IL-DLLME技術(shù)檢測食品及環(huán)境中真菌毒素的研究僅有少量報道。Arroyo-Manzanares等[37]首次提出IL-DLLME結(jié)合毛細管液相色譜-熒光檢測器分析酒中赭曲霉素A:以離子液體[C6MIM][PF6]為萃取劑,甲醇為分散劑,在優(yōu)化條件下檢出限為5.2 ng/L,回收率為88.7%~94.2%。同時,將該方法同QuEChERS(Quick, Easy, Cheap, Effective, Rugged and Safe)進行對比,結(jié)果表明,IL-DLLME回收率較好,但精密度和重現(xiàn)性均不及QuEChERS。
Mohammadi等[38]改進了IL-DLLME,首次將酶輔助萃?。╡nzyme-assisted extraction,EAE)結(jié)合IL-DLLME-HPLC技術(shù)用于檢測蘋果汁中展青霉素:以離子液體[C6MIM][PF6]為萃取劑,甲醇為分散劑,在優(yōu)化條件下,富集倍數(shù)達162,檢出限為0.15 ng/g,回收率為89%。該方法簡單、快速、靈敏并且降低基質(zhì)效應,為這一領(lǐng)域內(nèi)物質(zhì)的研究提供了有效的新方法。
2.3IL-DLLME在食品添加劑檢測中的應用
食品添加劑主要有抗氧化劑、著色劑、護色劑、漂白劑等,可以改善食品色、香、味等品質(zhì),提高食品營養(yǎng)價值,并且防腐保鮮促進消費。但長期或過量食用會對人體產(chǎn)生潛在副作用。因此有必要建立針對此類物質(zhì)的簡單、可靠、快速的檢測方法。表3列出了IL-DLLME在食品添加劑檢測中的具體應用。Yang Peng等[39]以離子液體[C8MIM][PF6]為萃取劑,乙腈為分散劑,應用傳統(tǒng)IL-DLLME結(jié)合HPLC-UV分析了煎餅中4 種防腐劑(對羥基苯甲酸甲酯、羥苯乙酯、對羥基苯甲酸丙脂、對羥基苯甲酸丁酯),結(jié)果滿足食品中防腐劑檢測要求。
Guo Jingbo等[40]建立了TCA-IL-DLLME結(jié)合紫外分光光度計檢測8 種食品和化妝品中亮藍的新方法,以離子液體1-癸基-3-丁基咪唑六氟磷酸鹽([C10MIM][PF6])為萃取劑,無需分散劑,優(yōu)化條件下,檢出限為0.34 n g/L,回收率為97.7%~103.4%。最近,Wu Hao等[41]通過傳統(tǒng)IL-DLLME結(jié)合HPLC-UV技術(shù)檢測軟飲料、糖果兩種基質(zhì)中6 種合成食品著色劑,以離子液體[C8MIM][PF6]為萃取劑,回收率為95.8%~104.5%。
表3IL-DLLME在真菌毒素和食品添加劑檢測中的應用Table3Application of IL-DLLME in the analysis of fungaltoxin and food additives
近年來,增塑劑和工業(yè)染料等食品污染物冒充食品添加劑違法濫用危害人類健康,造成惡劣影響,研究人員對此進行了相關(guān)研究[42-44]。Wang Ruoyu等[42]建立微波輔助IL-DLLME-HPLC方法測定水樣中5 種增塑劑:以離子液體[C4MIM][PF6]為萃取劑,甲醇為分散劑,回收率為85.2%~103.3%。隨后,Ho等[44]首次報道了應用IL-DLLME-HPLC-DAD快速篩查油狀和固體調(diào)料中鄰苯二甲酸酯增塑劑、蘇丹紅等8 種污染物殘留的方法,以離子液體[C6MIM][PF6]為萃取劑,乙腈為分散劑,同其他報道的方法有所不同,采用裝有惰性聚合熔塊的固相萃取多孔墨盒,集過濾、溶劑混合、相分離于一步,在優(yōu)化條件下,富集倍數(shù)高達451,回收率為70%~120%。該法具有操作簡單、超高通量、低溶劑消耗、高靈敏度等特點,可應用于多種食品添加劑的快速篩查。
2.4IL-DLLME在元素檢測中的應用
由于工業(yè)排放、交通尾氣和生活垃圾等因素產(chǎn)生的重金屬元素對環(huán)境和人類造成污染。IL-DLLME技術(shù)也可應用到這類元素的檢測中,從表4可以看出,已報道的方法多與火焰原子吸收(flame atomic absorption spectrometry,F(xiàn)AAS)、電熱原子吸收(electrothermal atomic absorption spectrometry,ETAAS)和石墨爐原子吸收(graphite furnace atomic absorption spectrometry,GFAAS)聯(lián)用。Baghdadi等[3]提出冷誘導聚合微萃?。╟old-induced aggregation microextraction,CIAME)結(jié)合分光光度法檢測水樣中Hg2+,該方法加入兩種離子液體[C6MIM][PF6](萃取劑)和1-己基-3-甲基咪唑N-[(三氟代甲基)磺酰基]-1,1,1-三氟代-甲烷磺酰胺([C6MIM] [Tf2N]),可以大大降低萃取劑在鹽溶液中的溶解度。優(yōu)化后該方法的回收率為97.5%~100.4%,適用于高鹽溶液中Hg2+的檢測,并且避免了萃取劑的溶解。
López-García等[47]采用原位IL-DLLME-ETAAS技術(shù)測定了水樣中Cr3+和Cr6+,以親水性離子液體[C8MIM][Cl]為萃取劑,吡咯烷二硫代氨基甲酸銨(ammonium pyrrolidinedithiocarbamate,APDC)為螯合劑,優(yōu)化實驗條件下,該方法檢出限為2 ng/L,回收率為95%~104%,富集倍數(shù)為300。Absalan等[48]以離子液體[C6MIM][PF6]為萃取劑,利用溫控輔助萃取,并與GFAAS結(jié)合測定水樣中納米數(shù)量級的Ag+。優(yōu)化后測得富集倍數(shù)為120,檢出限為5.2 ng/L,回收率為96.1%~104.1%,同其他方法相比,該方法富集倍數(shù)高,檢出限低。
表4 IL-DLLME在元素檢測中的應用Table4Application of IL-DLLME in the analysis of elements
近年來,IL-DLLME技術(shù)也逐漸應用于復雜基質(zhì)中元素的檢測。Zeeb等[49]采用原位離子液體溶劑形成微萃取(in situ ionic liquid-solvent formation microextraction,IL-ISFME)結(jié)合停流注射熒光分光光度計(stoppedflow injection spectrofluorimetry,SFI S)檢測水樣、食品中Cu元素,以離子液體[C6MIM][BF4]為萃取劑,[Na][PF6]為陰離子交換劑,在優(yōu)化條件下富集倍數(shù)為25,檢出限為0.024 μg/L,回收率分別為92.8%~102.9%和95.6%~102.5%。López-García等[50]以1-辛基-3-甲基咪唑氯([C8MIM][Cl])作為萃取劑,應用原位IL-DLLME與ETAAS聯(lián)用技術(shù)測定水樣和塑料玩具中Pb和Cr元素,富集倍數(shù)高達280,檢出限分別為0.2~3 ng/L和10 ng/L,回收率為96%~105%。該方法操作簡單、靈敏度高、綠色環(huán)保,完全滿足樣品中Pb和Cr元素的檢測要求。
Escudero等[51]改進了VA-IL-DLLME技術(shù),并首次應用于葡萄酒中不同形態(tài)As的在線檢測,以離子液體[C8MIM][PF6]為萃取劑,甲醇為分散劑,二乙基二氨基硫代甲酸酯(diethyldithiocarbamate,DDTC)為螯合劑。在加入萃取劑和分散劑后,通過流動注射系統(tǒng)進行離子液體相的保留和分析物的預濃縮。該系統(tǒng)以一定流速驅(qū)動含有目標物的離子液體,使其留在含有填料的柱子中,然后用甲醇溶液將保留的離子液體相洗脫,最后將洗脫相泵入ETAAS的石墨管進行檢測。在優(yōu)化條件下回收率可達96%~104%。在線保留、分離離子液體富集相極大地縮短目標物預濃縮速度,減少樣品消耗并且避免不同批次處理造成的樣品污染。
2.5IL-DLLME在其他污染物檢測中的應用
Yao Cong等[60]最早提出應用in situ-IL-DLLME檢測水樣中芳香化合物,在10 mL樣品溶液中,注入38 μL 1-丁基-3-甲基咪唑氯([C4MIM][Cl]),輕微振蕩后加入471 μL二(三氟甲磺酰)亞胺鋰([Li][NTf2]),形成乳濁液后振蕩離心,去除上清液,取10 μL離子液體沉淀相上高效液相色譜儀進行分析。該方法檢出限為0.02~0.3 μg/L,加標回收率為84%~115%。同時,研究人員還將該方法同傳統(tǒng)DLLME、IL-DLLME、TCA-IL-DLLME對比,結(jié)果表明該方法的富集倍數(shù)顯著高于其他方法,可能因為陰離子交換劑的加入使新形成的離子液體分散成更小的液滴,增大與目標物的接觸面積,提高萃取效率。
2012年,Germán-Hernández等[61]首次提出以離子液體作為表面活性劑用于預濃縮,該研究以1-十六烷基-3-甲基咪唑溴([C16C4IM][Br])為萃取劑,[Li][NTf2]為分散劑,采用原位IL-DLLME結(jié)合HPLC-UV-FD檢測烘烤谷物類食品中16 種多環(huán)芳烴(polycyclic aromatic hydrocarbons,PAHs),在優(yōu)化條件下檢出限為0.03~83 μg/kg,回收率為68.4%~122%。該方法無需借助有機溶劑及外界能量(微波或超聲波輔助)即可萃取固體樣品中的有機物,更加高效、環(huán)保。
表5IL-DLLME在其他污染物檢測中的應用Table5Application of IL-DLLME in the analysis of other contaminants
IL-DLLME同樣可用于檢測氣體污染物。Peng Bing等[62]首次提出應用IL-DLLME結(jié)合HPLC-VWD同時檢測3 種不同樣品(空氣、水樣、土壤)中甲醛含量。固體樣品需先經(jīng)過溶劑提取,以離子液體[C8MIM][PF6]為萃取劑,甲醇為分散劑進行前處理;方法富集倍數(shù)高達355,檢出限為0.01~0.09 ng/mL,回收率為71.6%~103.5%。同其他前處理方法相比,該方法具有線性范圍廣、檢出限低、靈敏度高等特點。
近年來,一些新型污染物引起了政府和大眾的關(guān)注,盡管沒有被列入常規(guī)污染物名單,但對人類及環(huán)境安全造成潛在威脅。Yao Cong等[63]分別采用傳統(tǒng)IL-DLLME和原位IL-DLLME兩種前處理方法結(jié)合HPLC-UV檢測水樣中14 種新型污染物,前者以1-(6-氨基-己基)-1-甲基吡咯三羥甲基氨基甲烷(五氟碘乙烷)三氟磷酸(HNH2MPL-FAP)為萃取劑,甲醇為分散劑,后者以[C4MIM][Cl]為萃取劑,[Li][NTf2]為分散劑,優(yōu)化條件下檢出限為0.1~55.8 μg/L,回收率為91%~110%。研究人員比較兩種方法,發(fā)現(xiàn)[C4MIM][Cl]適合不含氨基的極性或酸性混合物的檢測,獲得較高的富集倍數(shù),但其用量要高于HNH2MPL-FAP。表5列出了IL-DLLME在一些新型污染物檢測中的應用報道。
同傳統(tǒng)有機溶劑相比,由于離子液體固有的低蒸汽壓、良好的熱穩(wěn)定性、可調(diào)的理化性質(zhì)等優(yōu)點,離子液體-分散液液微萃取技術(shù)已經(jīng)被廣泛應用于有機化合物和金屬元素的分析檢測[69]。目前,IL-DLLME仍存在一定局限性:1)離子液體較傳統(tǒng)有機溶劑成本高,最終形成的沉淀相黏度較大,定量效果不及有機試劑,并且常用種類較少,多為咪唑類離子液體,有時需借助輔助條件如超聲波、微波等方式,導致步驟和成本增加[70];2)IL-DLLME普遍使用有一定毒性的有機溶劑作為分散劑,在降低萃取效率的同時,可能對環(huán)境及人體健康造
成威脅;3)有關(guān)不同IL-DLLME模式的萃取機理及過程優(yōu)化研究較少;4)目前主要應用于簡單基質(zhì),因為DLLME主要在液體介質(zhì)中完成萃取,復雜基質(zhì)樣品會產(chǎn)生嚴重的基質(zhì)效應;5)由于離子液體蒸汽壓低,黏度大等特點,導致與各種儀器聯(lián)用的檢測方法較傳統(tǒng)DLLME少,如與氣相色譜(gas chromatography,GC)兼容性差。由此,為推廣應用IL-DLLME技術(shù),今后應加強以下方面的研發(fā):1)針對目標物質(zhì)的理化性質(zhì),研發(fā)新型廉價、適用性更廣、毒性小、可生物降解的環(huán)境友好型的離子液體;2)對各種IL-DLLME模式進行對比,研究不同模式下針對不同目標物的萃取機理,優(yōu)化萃取過程條件及技術(shù)參數(shù),如應用集萃取、螯合于一體的試劑檢測金屬元素,將離子液體表面活性劑和磁性納米粒子結(jié)合使用,簡化操作步驟,提高萃取效率;3)強化與其他前處理技術(shù)的聯(lián)用,比如QuEChERS、凝膠滲透色譜(gel permeation chromatography,GPC)、超臨界流體萃取(supercritical fl uid extraction,SFE)和固相萃?。⊿PE)等技術(shù),推廣到各種復雜基質(zhì)的應用上;4)開發(fā)新型在線DLLME技術(shù),加強同其他檢測器和儀器的聯(lián)用,如質(zhì)譜檢測器(mass spectrometry,MS)和熒光檢測器(fl uorescence detector,F(xiàn)LD)、氣相色譜儀(GC)和毛細管電泳(capillary electrophoresis,CE)等[71]??傊?,隨著研究的深入,IL-DLLME技術(shù)在食品和環(huán)境污染物等檢測上的應用會更加自動化、微型化、兼容化、綠色化。
[1] REZAEE M,ASSADI Y,MILANI HOSSEINI M R,et al.Determination of organic compounds in water using dispersive liquidliquid microextraction[J].Journal of Chromatography A,2006,1116(1):1-9.
[2] ZHOU Qingxiang,BAI Huahua,XIE Guohong,et al.Trace determination of organophosphorus pesticides in environmental samples by temperaturecontrolled ionic liquid dispersive liquid-phase microextraction[J].Journal of Chromatography A,2008,1188(2):148-153.
[3] BAGHDADI M,SHEMIRANI F.Cold-induced aggregation microextraction:a novel sample preparation technique based on ionic liquids[J].Analytica Chimica Acta,2008,613(1):56-63.
[4] ZHANG Panjie,HU Lu,LU Runhua,et al.Application of ionic liquids for liquid-liquid microextraction[J].Analytical Methods,2013,5(20):5376-5385.
[5] WELLS A S,COOMBE V T.On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids[J].Organic Process Research&Development,2006,10(4):794-798.
[6] VENTURA S P M,GON?ALVES A M M,SINTRA T,et al.Designing ionic liquids:the chemical structure role in the toxicity[J].Ecotoxicology,2013,22(1):1-12.
[7] ZHAO Dongbin,LIAO Yongcheng,ZHANG Ziding.Toxicity of ionic liquids[J].CLEAN-Soil,Air,Water,2007,35(1):42-48.
[8] LIU Rui,LIU Jingfu,YIN Yongguang,et al.Ionic liquids in sample preparation[J].Analytical and Bioanalytical Chemistry,2009,393(3):871-883.
[9] ANDERSON J L,ARMSTRONG D W,WEI G T.Ionic liquids in analytical chemistry[J].Analytical Chemistry,2006,78(9):2892-2902.
[10] YIANTZI E,PSILLAKIS E,TYROVOLA K,et al.Vortex-assisted liquid-liquid microextraction of octylphenol,nonylphenol and bisphenol-A[J].Talanta,2010,80(5):2057-2062.
[11] KOC?ROV?L,BALOGH I S,?ANDREJOV?J,et al.Recent advances in dispersive liquid-liquid microextraction using organic solvents lighter than water.A review[J].Microchemical Journal,2012,102:11-17.
[12] NUHU A A,BASHEER C,SAAD B.Liquid-phase and dispersive liquid-liquid microextraction techniques with de rivatization:recent applications in bioanalysis[J].Journal of Chromatography B,2011,879(17):1180-1188.
[13] TRUJILLO-RODR?GUEZ M J,ROC?O-BAUTISTA P,PINO V,et al.Ionic liquids in dispersive liquid-liquid microextraction[J].TrAC Trends in Analytical Chemistry,2013,51:87-106.
[14] ZHANG Jiaheng,GAO Haixiang,PENG Bing,et al.Comparison of the performance of conventional,temperature-controlled,and ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with high-performance liquid chromatography in analyzing pyrethroid pesticides in honey samples[J].Journal of Chromatography A,2011,1218(38):6621-6629.
[15] ZHAO Rusong,WANG Xia,LI Fuwei,et al.Ionic liquid/ionic liquid dispersive liquid-liquid microextraction[J].Journal of Separation Science,2011,34(7):830-836.
[16] RAVELO-P?REZ L M,HERN?NDEZ-BORGES J,ASENSIORAMOS M,et al.Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas[J].Journal of Chromatography A,2009,1216(43):7336-7345.
[17] ZHANG Li jin,CHEN Fang,LIU Shaowen,et al.Ionic liquidbased vortex-assisted dispersive liquid-liquid microextraction of organophosphorus pesticides in apple and pear[J].Journal of Separation Science,2012,35(18):2514-2519.
[18] LIN P C,TSENG M C,SU A K,et al.Functionalized magnetic nanoparticles for small-molecule isolation,identification,and quantifica tion[J].Analytical Chemistry,2007,79(9):3401-3408.
[19] ZHANG Jiaheng,LI Min,YANG Miyi,et al.Magnetic retrieval of ionic liquids:fast dispersive liquid-liquid microextraction for the determination of benzoylurea insecticides in environmental water samples[J].Journal of Chromatography A,2012,1254:23-29.
[20] QIN Hui,LI Bi,LIU Mousheng,et al.Separation and preconcentration of glucocorticoids in water samples by ionic liquid supported vortex-assisted synergic microextraction and HPLC determination[J].Journal of Separation Science,2013,36(8):1463-1469.
[21] XU Xu,LIU Zhuang,ZHAO Xin,et al.Ionic liquid-based microwaveassisted surfactant-improved dispersive liquid-liquid microextraction and derivatization of aminoglycosides in milk samples[J].Journal of Separation Science,2013,36(3):585-592.
[22] YU Chen,ZHANG Sanbing,ZhANG Jiaheng,et al.An in situ ionic liquid dispersive liquid-liquid microextraction method for the detection of pyrethroids by LC-UV in environmental water samples[J].Journal of the Brazilian Chemical Society,2013,24(6):1034-1040.
[23] WANG Xia,XU Qingcai,CHENG Chuange,et al.Rapid determination of DDT and its metabolites in environmental water samples with mixed ionic liquids dispersive liquid-liquid microextraction prior to HPLC-UV[J].Chromatographia,2012,75(17/18):1081-1085.
[24] LIU Yu,ZHAO Ercheng,ZHU Wentao,et al.Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples[J].Journal of Chromatography A,2009,1216(6):885-891.
[25] ZHANG Jiaheng,LIANG Zhe,LI Songqing,et al. in-situ metathesis reaction combined with ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction method for the determination of phenylurea pesticides in water samples[J].Talanta,2012,98:145-151.
[26] LI Songqing,GAO Haix iang,ZhANG Jiaheng,et al.Determination of insecticides in water using in situ halide exchange reaction-assisted ionic liquid dispersive liquid-liquid microextraction followed by highperformance liquid chromatography[J].Journal of Separation Scien ce,2011,34(22):3178-3185.
[27] ZHONG Qiu,SU Ping,ZHANG Yao,et al. in-situ ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction of triazine herbicides[J].Microchimica Acta,2012,178(3/4):341-347.
[28] HE Lijun,LUO Xianli,JIANG Xiuming,et al.A new1,3-dibutylimidazolium hexafluorophosphate ionic liquidbased dispersive liquid-liquid microextraction to determine organophosphorus pesticides in water and fruit samples by highperformance liquid chromatography[J].J ournal of Chromatography A,2010,1217(31):5013-5020.
[29] WANG Suli,REN Liping,XU Yanjun,et al.Application of ultrasound-assisted ionic liquid dispersive liquid-phase microextraction followed high-performance liquid chromatography for the determination of fungicides in red wine[J].Microc himica Acta,2011,173(3/4):453-457.
[30] RAVELO-P?REZ L M,HERN?NDEZ-BORGES J,HERRERAHERRERA A V,et al.Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction[J].Analytical and Bioanalytical Chemistry,2009,395(7):2387-2395.
[31] DONG Sheying,HU Qing,YANG Zhen,et al.An ionic liquid-based ultrasound assisted dispersive liquid-liquid microextraction procedure followed by HPLC for the determination of low concentration of phytocides in soil[J].Microchemical Journal,2013,110:221-226.
[32] 董社英,胡清,李靖,等.離子液體微波輔助液相萃取-高效液相色譜法同時測定土壤中5種微量有機氧農(nóng)藥[J].分析試驗室,2013,32(8):48-52.
[33] HOU Dekun,GUAN Yan,DI Xiaowei.Temperature-induced ionic liquids dispersive liquid-liquid microextraction of tetracycline antibiotics in environmental water samples assisted by complexa tion[J].Chromatographia,2011,73(11/12):1057-1064.
[34] 侯德坤,關(guān)燕,狄曉威.溫度驅(qū)動離子液體分散微萃取/超高壓液相色譜檢測水樣中的微量四環(huán)素[J].分析測試學報,2011,30(3):259-263.
[35] V?ZQUEZ M M,V?ZQUEZ P P,GALERA M M,et al.Determination of eight fluoroquinolones in gr oundwater samples with ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction prior to high-performance liquid chromatography and fluorescence detection[J].Analytica Chimica Acta,2012,748:20-27.
[36] GAO Shiqian,YANG Xiao,YU Wei,et al.Ultrasound-assisted ionic liquid/ionic liquid-dispersive liquid-liquid microextraction for the determination of sulfonamides in i nfant formula milk powder using highperformance liquid chromatography[J].Talanta,2012,99:875-882.
[37] ARROYO-MANZANARES N,GARC?A-CAMPA?A A M,G?MIZGRACIA L.Comparison of different sample treatments for the analysis of ochratoxin A in wine by capillary HPLC with laser-induced fluorescence detection[J].Analytical and Bioanalytical Chemistry,2011,401(9):2987-2994.
[38] MOHAMMADI A,TAVAKOLI R,KAMANKESH M,et al.Enzymeassisted extraction and ionic liquid-based dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of patulin in apple juice and method optimization using central composite design[J].Analytica Chimica Act a,2013,804:104-110.
[39] YANG Peng,REN Haixia,QIU Hongde,et al.Determination of four trace preservatives in street food by ionic liquid-based dispersive liquidliquid micro-extraction[J].Chemical Papers,2011,65(6):747-753.
[40] GUO Jingbo,WU Hao,DU Liming,et al.Determination of brilliant blue FCF in food and cosmetic samples by ionic liquid independent disperse liquid-liquid micro-extraction[J].Analytical Methods,2013,5(16):4021-4026.
[41] WU Hao,GUO Jingbo,DU Liming,et al.A rapid shaking-based ionic liquid dispersive liquid phase microextraction for the simultaneous determination of six synthetic food colourants in soft drinks,sugar-and gelatin-based confectionery by high-performance liquid chromatography[J].Food Chemistry,2013,141(1):182-186.
[42] WANG Ruoyu,SU Ping,YANG Yi.Optimization of ionic liquidbased microwave-assisted dispersive liquid-liquid mi c roextraction for the determination of plasticizers in water by response surface methodology[J].Analytical Methods,2013,5(4):1033-1039.
[43] FAN Yingying,LIU Shuhui,XIE Qilong.Rapid determination of ph thalate esters in alcoholic beverages by conventional ionic liquid dispersive liquid-liquid microextraction coupled with high performance liquid chromatography[J].Talanta,2014,119:291-298.
[44] HO Y M,TSOI Y K,LEUNG K S Y.Ionic-liquid-based dispersive liquid-liquid microextraction for high-throughput multiple food contaminant screening[J].Journal of Separation Science,2013,36(23):3791-3798.
[45] GHAREHBAGHI M,SHEMIRANI F.A novel method for dye removal:ionic liquid-based dispersive liquid-liquid extraction(ILDLLE)[J].CL EAN-Soil,Air,Water,2012,40(3):290-297.
[46] 郭京波,吳昊,王婕艷,等.離子液體自分散液-液微萃取測定食品中的檸檬黃與亮藍[J].分析測試學報,2012,31(12):1499-1504.
[47] L?PEZ-GARC?A I,VICENTE-MART?NEZ Y,HERN?NDEZC?RDOBA M.Determination of very low amounts of chromium(Ⅲ)and(Ⅵ)using dispersive liqu id-liquid microextraction by in situ formation of an ionic liquid followed by electrothermal atomic absorption spectrometry[J].Journal of Analytical Atomic Spectrometry,2012,27(5):874-880.
[48] ABSALAN G,AKHOND M,SHEIKHIAN L,et al.Temperaturecon trolled ionic liquid-based dispersive liquid-phase microextraction,preconcentration and quantification of nano-amounts of silver ion by using disulfiram as complexing agent[J].Analytical Methods,2011,3(10):2354-2359.
[49] ZEEB M,GANJALI M R,NOROUZI P,et al.Separation and preconcentration system based on microextraction with ionic liquid for determination of copper in water and food samples by stopped-flow injection spectrofluorimetry[J].Food and Chemical Toxicology,2011,49(5):1086-1091.
[50] L?PEZ-GARC?A I,VICENTE-MART?NEZ Y,HERN?NDEZC?RDOBA M.Determination of lead and cadmium using an ionic liquid and dispersive liquid-liquid microextraction followed by electrothermal atomic absorption spectrometry[J].Talanta,2013,110:46-52.
[51] ESCUDERO L B,MARTINIS E M,OLSINA R A,et al.Arsenic spec iation analysis in mono-varietal wines by on-line ionic liquidbased dispersive liquid-liquid microextraction[J].Food Chemistry,2013,138(1):484-490.
[52] MOLAAKBARI E,MOSTAFAVI A,AFZALI D.Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination[J].Journal of Hazardous Materials,2011,185(2):647-652.
[53] ESKANDARI H. in situ formed1-hexyl-3-methylimidazolium hexafluorophosphate for dispersive liquid-liquid microextraction of Pd(Ⅱ)prior to electrothermal AAS and spectrophotometry[J].Turkish Journal of Chemistry,2012,36(4):631-643.
[54] WEN Shengping,ZHU Xiashi.Speciation analysis of Mn(Ⅱ)/ Mn(Ⅶ)in tea samples using flame atomic absorption spectrometry after room temperature ionic liquid-based dispersive liquid-liquid microextraction[J].Food Analytical Methods,2014,7(2):291-297.
[55] KHANI R,SHEMIRANI F.Simultaneous determination of trace amounts of cobalt and nickel in water and food samples using a combination of partial least squares method and dispersive liquidliquid microextraction based on ionic liquid[J].Food Analytical Methods,2013,6(2):386-394.
[56] ZEEB M,SADEGHI M.Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples[J].Microchimica Acta,2011,175(1/2):159-165.
[57] TAZIKI M,SHEMIRANI F,MAJIDI B.Robust ionic liquid-based dispersive liquid-liquid microextraction m ethod for determination of chromium(Ⅵ)in saline solutions[J].Communications in Soil Science and Plant Analysis,2013,44(22):3400-3411.
[58] KHAYATIAN G,HOSSEINI S S,HASSANPOOR S.Ionic liquidbased dispersive liquid-liquid microextraction for determin ation of trace amounts of iron in water,rock and human blood serum samples[J].Journal of the Iranian Chemical Society,2013,10(6):1167-1173.
[59] BERTON P,MARTINIS E M,MARTINEZ L D,et al.Selective determination of inorganic cobalt in nutritional supplements by ultrasound-assis ted temperature-controlled ionic liquid dispersive liquid phase microextraction and electrothermal atomic absorption spectrometry[J].Analytica Chimica Acta,2012,713:56-62.
[60] YAO Cong,ANDERSON J L.Dispersive liquid-liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water[J].Analytical and Bioanalytical Chemistry,2009,395(5):1491-1502.
[61] GERM?N-HERN?NDEZ M,PINO V,ANDERSON J L,et al.A novel in situ preconcentration method with ionic liquid-based surfactants resulting in enhanced sensitivity for the extraction of polycyclic aromatic hydrocarbons from toasted cereals[J].Journal of Chromatography A,2012,1227:29-37.
[62] PENG Bing,ZHANG Jiaheng,WU Chenghao,et al.Use of ionic liquid-based dispersive liquid-liquid microextraction and highperformance liquid chromatography to detect formaldehyde in air,water,and soil samples[J].Journal of Liquid Chromatography&Related Technologies,2014,37(6):815-828.
[63] YAO Cong,LI Tianhao,TWU P,et al.Selective extraction of emerging contaminants from water samples by dispersive liquidliquid microextraction using functionalized ionic liquids[J].Journal of Chromatography A,2011,1218(12):1556-1566.
[64] ZHAO Rusong,WANG Xia,SUN Jing,et al.Determinati on of triclosan and triclocarban in environmental water samples with ionic liquid/ionic liquid dispersive liquid-liquid microextraction prior to HPLC-ESI-MS/MS[J].Microchimica Acta,2011,174(1/2):145-151.
[65] HAN Dandan,YAN Hongyuan,ROW K H.Ionic liquid-based dispersive liquid-liquid microextraction for sensitive determination of a romatic amines in environmental water[J].Journal of Separation Science,2011,34(10):1184-1189.
[66] TAZIKI M,SHEMIRANI F,MAJIDI B.Robust ionic liquid against high concentration of salt for preconcentration and determination of rhodamine B[J].Separation and Purification Technology,2012,97:216-220.
[67] ZHOU Caihong,TONG Shanshan,CHANG Yunxia,et al.Ionic liquid-based dispersive liquid-liquid microextraction with backextraction coupled with capillary electrophoresis to determine phenolic compounds[J].Electrophoresis,2012,33(8):1331-1338.
[68] L?PEZ-DARIAS J,PINO V,AYALA J H,et al.in-situ ionic liquid-dispersive liquid-liquid microextraction method to determine endocrine disrupting phenols in seawaters and industrial effluents[J].Microchimica Acta,2011,174(3/4):213-222.
[69] MART?N-CALERO A,PINO V,AFONSO A M.Ionic liquids as a tool for determination of metals and organic compounds in food analysis[J].TrAC Trends in Analytical Chemistry,2011,30(10):1598-1619.
[70] ANDRUCH V,BALOGH I S,KOC?ROV?L,et al.Five years of dispersive liquid-liquid microextraction[J].Applied Spectroscopy Reviews,2013,48(3):161-259.
[71] SARAJI M,MALIHE K B.Recent developments in dispersive liquidliquid microextraction[J].A nalytical and Bioanalytical Chemistry,2014,406:2027-2066.
Application of Ionic Liquid-Dispersive Liquid-Liquid Microextraction for the Determination of Contaminants in Foods and Environment:A Review
ZHANG Yan1,2,3,4,5,ZHANG Yaohai2,3,4,5,JIAO Bining1,2,3,4,5,*
(1.College of Horticulture and Landscape Architecture,Southwest University,Chongqing400715,China;2.National Citrus Engineering Research Center,Citrus Research Institute,Chinese Academy of Agricu ltural Sciences,Chongqing400712,China;3.Laboratory of Quality and Safty Risk Assessment for Citrus Products,Ministry of Agriculture,Chongqing400712,China;4.Quality Supervision and Testing Centre for Citrus and Seedling,Ministry of Agriculture,Chongqing400712,China;5.Chongqing Key Laboratory of Citrus Science,Chongqing400712,China)
Ionic liquid(IL)have gained extensive applications in the fields of extraction and separation due to their unique properties,such as low vapor pressure,high thermal stability,good solubility and designable structures.In the paper,the characteristics of IL and the modes of ionic liquid-dispersive liquid-liquid microextraction are introduced.The recent applications of this technique in the determination of contaminants in foods and the environment are emphatically reviewed.Based on the above discussion,future exploration and development of this technique are also proposed.
ionic liquid(IL);dispersive liquid-liquid microextraction(DLLME);food;environment pollutant;application
O658.2
A
1002-6630(2015)05-0250-10
10.7506/spkx1002-6630-201505046
2014-03-21
國家現(xiàn)代農(nóng)業(yè)(柑桔)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-27);2014年國家農(nóng)產(chǎn)品質(zhì)量安全風險評估重大專項(GJFP2014003);重慶市自然科學基金重點項目(cstc2013jjB80009)
張琰(1988—),女,碩士研究生,研究方向為果品營養(yǎng)與質(zhì)量安全。E-mail:feiyangzy810@163.com
焦必寧(1964—),男,研究員,本科,研究方向為果蔬貯藏加工技術(shù)與質(zhì)量安全。E-mail:bljiao@tom.com