岳崇旺 楊小明 鐘曉勤 潘保芝 王飛
摘要:多層測(cè)試井的產(chǎn)能劈分是油氣藏勘探開發(fā)中的一個(gè)關(guān)鍵問(wèn)題。影響產(chǎn)能的儲(chǔ)層參數(shù)很多,不同的物性參數(shù)對(duì)儲(chǔ)層產(chǎn)能影響的大小不同;模糊系統(tǒng)理論將綜合評(píng)價(jià)的定性問(wèn)題轉(zhuǎn)化為定量問(wèn)題,層次分析法將不同因素按照相關(guān)性大小計(jì)算其權(quán)值。利用綜合評(píng)價(jià)系數(shù)對(duì)多層試氣中的小層進(jìn)行綜合評(píng)判和優(yōu)選,進(jìn)而對(duì)產(chǎn)能進(jìn)行合理劈分。給出了評(píng)價(jià)因素對(duì)等級(jí)區(qū)間隸屬度的求取方法以及不同因素之間相對(duì)權(quán)值的計(jì)算方法。通過(guò)實(shí)例給出了模糊綜合評(píng)判法進(jìn)行產(chǎn)能劈分的原理和具體步驟,進(jìn)一步驗(yàn)證了該方法在鄂爾多斯盆地蘇里格氣田的應(yīng)用效果。
關(guān)鍵詞:產(chǎn)能劈分;模糊綜合評(píng)判法;層次分析法;測(cè)井學(xué);儲(chǔ)層參數(shù);隸屬度;蘇里格氣田
中圖分類號(hào):P631文獻(xiàn)標(biāo)志碼:A
Application of Fuzzy Comprehensive Evaluation Method in the Production
Dividing of Multilayered Gas Reservoirs of Testing WellsYUE Chongwang1, YANG Xiaoming2, ZHONG Xiaoqin2, PAN Baozhi3, WANG Fei1
(1. School of Geology Engineering and Geomatics, Changan University, Xian 710054, Shaanxi, China;
2. Research Institute of Exploration and Development, Changqing Oilfield Company, PetroChina,
Xian 710018, Shaanxi, China; 3. School of Geoexploration Science and Technology,
Jilin University, Changchun 130026, Jilin, China)Abstract: Production dividing is a key issue in exploration and development of multilayered oil and gas reservoirs of testing wells. There are many factors affecting the productivity of reservoir productivity, and the influences of physical parameters are different. The qualitative problem of comprehensive evaluation was transformed into quantitative problem by fuzzy system theory, and the weights of different factors were calculated by analytic hierarchy process according to different correlations. Small layers in multilayered gas testing well were evaluated comprehensively and selected optimally based on comprehensive evaluation coefficient, and then the productivity of multilayered gas reservoir was reasonably divided. The method of calculating membership of evaluation factors to grade intervals was given, and the calculation method of relative weight between different factors was put forward. Furthermore, principle and concrete steps of fuzzy comprehensive evaluation method for production dividing were proposed with the example. It is verified that the application of the method in Sulige oilfield of Ordos Basin is good.
Key words: production dividing; fuzzy comprehensive evaluation method; analytic hierarchy process; well logging; reservoir parameter; membership; Sulige gasfield
0引言
在油氣藏勘探開發(fā)過(guò)程中,多層測(cè)試條件下獲取的是多層合采的產(chǎn)能,在實(shí)際生產(chǎn)過(guò)程中為了合理布置施工,還要了解各小層的產(chǎn)能情況,但由于層與層之間物性參數(shù)差異大,非均質(zhì)性強(qiáng),影響產(chǎn)能的因素多[18],所以很難弄清每個(gè)小層對(duì)產(chǎn)能的貢獻(xiàn),并對(duì)后續(xù)的增產(chǎn)措施帶來(lái)了盲目性。因此,如何對(duì)多層測(cè)試井產(chǎn)能進(jìn)行合理的劈分對(duì)后續(xù)施工開發(fā)是一個(gè)關(guān)鍵性的問(wèn)題[911]。對(duì)于多層測(cè)試井的產(chǎn)能劈分,前人常依靠經(jīng)驗(yàn)來(lái)指導(dǎo)現(xiàn)場(chǎng)施工[12],存在一定的主觀盲目性。目前,劈分氣井產(chǎn)能常用的方法基于油藏工程原理,但需要大量的測(cè)試資料,且氣層產(chǎn)能受多種因素影響,因此,其應(yīng)用效果并不是很理想。對(duì)于天然氣儲(chǔ)層的產(chǎn)能來(lái)說(shuō),可將每個(gè)小層看作一個(gè)系統(tǒng),影響該系統(tǒng)的產(chǎn)能有多種因素,每個(gè)因素既相互聯(lián)系又各自獨(dú)立,因此,可以將各種因素綜合起來(lái),利用測(cè)井資料參數(shù)對(duì)產(chǎn)能進(jìn)行劈分。本文首先利用模糊系統(tǒng)理論將多因素綜合評(píng)價(jià)的定性問(wèn)題轉(zhuǎn)化為定量問(wèn)題[1318],再利用層次分析法[1924]進(jìn)一步確定影響小層產(chǎn)能的各因素權(quán)重,利用權(quán)值對(duì)多層試氣中的小層進(jìn)行綜合評(píng)判和優(yōu)選,進(jìn)而對(duì)產(chǎn)能進(jìn)行合理劈分。
1模糊分析
模糊分析法是一種基于模糊數(shù)學(xué)的綜合評(píng)價(jià)方法。它將多因素制約的定性問(wèn)題轉(zhuǎn)化為定量問(wèn)題,在很多領(lǐng)域得到了廣泛應(yīng)用。地層產(chǎn)能影響因素很多,評(píng)價(jià)不同的地層產(chǎn)能既要考慮相同影響因素之間的大小關(guān)系,又要考慮不同因素之間的影響比重,模糊分析法能夠?qū)⒏鞣N指標(biāo)按相同影響因素的大小關(guān)系進(jìn)行量化。通常情況下,首先要確定制約對(duì)象的主要因素有哪些;其次,給出各個(gè)因素的劃分等級(jí);根據(jù)給定的劃分等級(jí),進(jìn)一步計(jì)算評(píng)價(jià)向量,利用評(píng)價(jià)向量可以按指標(biāo)求取每個(gè)評(píng)價(jià)對(duì)象的評(píng)價(jià)矩陣。它具有結(jié)果清晰、系統(tǒng)性強(qiáng)的特點(diǎn)。
1.1確定影響因素論域
影響儲(chǔ)層產(chǎn)能的因素有很多。從儲(chǔ)層的參數(shù)來(lái)看,其主要包括孔隙度、滲透率、飽和度、密度、聲波時(shí)差、電阻率、油壓等。在對(duì)儲(chǔ)層產(chǎn)能綜合評(píng)價(jià)之前,需確定影響儲(chǔ)層產(chǎn)能的因素。設(shè)影響因素表示為u,最大值和最小值分別為umax、umin,假設(shè)有p個(gè)評(píng)價(jià)指標(biāo),則影響因素域?yàn)閡=u1,u2,…,up(1)式中:ui為第i個(gè)影響因素,i=1,2,…,p。
然后,對(duì)影響因素指標(biāo)進(jìn)行歸一化。設(shè)x為歸一化后的影響因素值,則對(duì)于越大越好型,其表達(dá)式為x=u-uminumax-umin(2)對(duì)于越小越好型,其表達(dá)式為x=1-u-uminumax-umin(3)1.2對(duì)評(píng)價(jià)指標(biāo)進(jìn)行等級(jí)劃分
等級(jí)劃分可根據(jù)需要確定級(jí)別的個(gè)數(shù)。本次研究的評(píng)價(jià)等級(jí)根據(jù)優(yōu)、良、中、差4個(gè)等級(jí)分為4個(gè)級(jí)別。設(shè)sj、tj為區(qū)間截止值,則評(píng)價(jià)等級(jí)區(qū)間為[sj,tj],若評(píng)價(jià)區(qū)間以優(yōu)、良、中、差4個(gè)評(píng)價(jià)區(qū)間劃分,評(píng)價(jià)級(jí)別見(jiàn)表1。其中,j為正整數(shù)。
表1評(píng)價(jià)級(jí)別
Tab.1Evaluation Grade級(jí)別差中良優(yōu)等級(jí)區(qū)間[0,0.25)[0.25,0.5)[0.5,0.75)[0.75,1.0]1.3計(jì)算評(píng)價(jià)級(jí)別向量和評(píng)價(jià)矩陣
根據(jù)評(píng)價(jià)等級(jí)區(qū)間[sj,tj],可進(jìn)一步計(jì)算評(píng)價(jià)向量。設(shè)評(píng)價(jià)向量為V,評(píng)價(jià)區(qū)間的中心值為vj,則V=[v1,v2,…,vk](4)
vj=sj+tj-sj2(5)式中:k為正整數(shù)。
利用評(píng)價(jià)向量可以求出每個(gè)評(píng)價(jià)指標(biāo)對(duì)各個(gè)評(píng)價(jià)等級(jí)區(qū)間的隸屬度。對(duì)于某個(gè)待評(píng)價(jià)地層,設(shè)有n個(gè)評(píng)價(jià)指標(biāo),評(píng)價(jià)等級(jí)個(gè)數(shù)m為4,則每個(gè)評(píng)價(jià)指標(biāo)對(duì)每個(gè)評(píng)價(jià)等級(jí)區(qū)間都可以計(jì)算出其隸屬度,由隸屬度組成了地層的評(píng)價(jià)矩陣R,其表達(dá)式為R=r11r12…r1m
rn1rn2…rnm(6)式中:rij為該地層單個(gè)評(píng)價(jià)指標(biāo)對(duì)評(píng)價(jià)等級(jí)空間的隸屬度,rij=1-|xi-vj|,i為正整數(shù)。
2層次分析法確定各因素權(quán)重
模糊理論計(jì)算出并由隸屬度組成的評(píng)價(jià)矩陣反映了不同地層相同評(píng)價(jià)因素對(duì)評(píng)價(jià)等級(jí)區(qū)間的隸屬大小關(guān)系。然而,不同因素對(duì)產(chǎn)能的影響是不一樣的。為了求取各因素對(duì)產(chǎn)能影響的比重,采用層次分析法確定各因素對(duì)產(chǎn)能的影響權(quán)值,將權(quán)值和隸屬度結(jié)合起來(lái)求取獲得地層產(chǎn)能的評(píng)價(jià)系數(shù)。
層次分析法是美國(guó)運(yùn)籌學(xué)家Saaty于20世紀(jì)70年代初,應(yīng)用網(wǎng)絡(luò)系統(tǒng)理論和多目標(biāo)綜合評(píng)價(jià)方法,提出的一種層次權(quán)重決策分析方法。其基本原理是根據(jù)性質(zhì)和達(dá)到的目標(biāo)將系統(tǒng)分為不同的組成因素,針對(duì)各因素與因素之間的關(guān)聯(lián)和歸屬關(guān)系按照不同層次進(jìn)行組合,從而使問(wèn)題歸結(jié)為最底層對(duì)目標(biāo)層的綜合評(píng)判。
2.1構(gòu)造層次結(jié)構(gòu)模型
影響儲(chǔ)層產(chǎn)能的因素包括地層的孔隙度、滲透率、飽和度、地層壓力,此外,還包括一些電性參數(shù)如電阻率、聲波時(shí)差、密度等。儲(chǔ)層的產(chǎn)能是這些因素綜合作用的結(jié)果。這些參數(shù)在不同地質(zhì)條件下對(duì)產(chǎn)能影響的大小是不一樣的。運(yùn)用層次分析法可以確定這些影響因素的權(quán)重。首先要建立層次結(jié)構(gòu),構(gòu)造層次結(jié)構(gòu)模型,本次層次模型可分為目標(biāo)層和準(zhǔn)則層(圖1)。其中:O為儲(chǔ)層產(chǎn)能;ui為第i個(gè)影響因素,共有n個(gè)影響因素。
圖1層次結(jié)構(gòu)模型
Fig.1Hierarchical Structure Model2.2構(gòu)造判斷矩陣
判斷矩陣元素的值反映了對(duì)各元素相對(duì)重要性的認(rèn)識(shí),常用1~9比率標(biāo)度法將對(duì)某事物的定性認(rèn)識(shí)進(jìn)行量化。設(shè)判斷矩陣P為{pij},標(biāo)度pij是一個(gè)用定量表示定性的量度取值,該參數(shù)表示第i個(gè)評(píng)價(jià)指標(biāo)相對(duì)第j個(gè)評(píng)價(jià)指標(biāo)對(duì)地層產(chǎn)能影響的相對(duì)大小取值。判斷矩陣的元素取值見(jiàn)表2。
2.3計(jì)算判斷矩陣
計(jì)算出判斷矩陣{pij}的最大特征根λmax,并求出對(duì)應(yīng)的特征向量,將特征向量歸一化記為w=(w1,w2,…,wn),則特征向量w中元素(即影響因素)u1、u2、…、un就是目標(biāo)層相對(duì)重要性的排序權(quán)值。
2.4一致性檢驗(yàn)
為了對(duì)判斷矩陣{pij}進(jìn)行一致性檢驗(yàn),需計(jì)算一致性指標(biāo)ICI,ICI=(λmax-n)/(n-1)。一致性指標(biāo)越接近于0,{pij}的一致性越好;一致性指標(biāo)越大,{pij}的一致性越差;當(dāng)一致性指標(biāo)為0時(shí),{pij}有完全的一致性。
表2層次分析標(biāo)度取值及對(duì)應(yīng)含義
Tab.2Values of Hierarchical Structure Proportion
Quotiety and Their Significationpij含義1第i個(gè)因素和第j個(gè)因素同樣重要3第i個(gè)因素比第j個(gè)因素稍微重要5第i個(gè)因素比第j個(gè)因素明顯重要7第i個(gè)因素比第j個(gè)因素顯著重要9第i個(gè)因素比第j個(gè)因素極其重要1/3第j個(gè)因素比第i個(gè)因素稍微重要1/5第j個(gè)因素比第i個(gè)因素明顯重要1/7第j個(gè)因素比第i個(gè)因素顯著重要1/9第j個(gè)因素比第i個(gè)因素極其重要注:標(biāo)度pij取值2表示第i個(gè)因素和第j個(gè)因素的相對(duì)重要性介于取值1和3之間,標(biāo)度pij取值4、6、8的含義依此類推;標(biāo)度pij取值1/2表示第i個(gè)因素和第j個(gè)因素的相對(duì)重要性介于取值1和1/3之間, 標(biāo)度pij取值1/4、1/6、1/8的含義依此類推。
3綜合評(píng)價(jià)與產(chǎn)能劈分
模糊分析計(jì)算出的評(píng)價(jià)矩陣R表征了地層相同影響因素之間的相對(duì)大小,層次分析法計(jì)算出的權(quán)值w表征了不同指標(biāo)影響的相對(duì)貢獻(xiàn)比例。將評(píng)價(jià)矩陣按權(quán)值進(jìn)行加權(quán)綜合便可以獲得地層綜合評(píng)價(jià)系數(shù)。
設(shè)綜合評(píng)價(jià)向量為M,則M=wR=(w1,w2,…,wn)r11r12…r1m
rn1rn2…rnm=
M1,M2,…,MmT(7)式中:元素Mj為不同評(píng)價(jià)指標(biāo)對(duì)第j個(gè)評(píng)價(jià)區(qū)間的隸屬度,該隸屬度可以看作某地層的各種影響因素按層次分析法計(jì)算出的權(quán)值進(jìn)行加權(quán)求和得出的綜合隸屬度。
綜合隸屬度計(jì)算公式為Mj=∑ni=1rijwi(8)將各個(gè)評(píng)價(jià)區(qū)間計(jì)算出的綜合隸屬度Mj與評(píng)價(jià)向量V加權(quán)求和計(jì)算可得綜合評(píng)價(jià)系數(shù)D為D=∑mj=1Mjvj(9)綜合評(píng)價(jià)系數(shù)是根據(jù)相同影響因素u1、u2、…、un的相對(duì)大小及不同影響因素重要性權(quán)值對(duì)地層做出的定量綜合評(píng)價(jià)。根據(jù)綜合評(píng)價(jià)系數(shù)和各小層的厚度hi便可以對(duì)產(chǎn)能進(jìn)行劈分。設(shè)多層試氣總產(chǎn)能為E,則各小層產(chǎn)能Ei為Ei=EDihi/(∑Ni=1Dihi)(10)式中:N為小層數(shù);Di為第i小層綜合評(píng)價(jià)系數(shù)。
4實(shí)例分析
本文以鄂爾多斯盆地蘇里格氣田A井為例進(jìn)行分析,該井進(jìn)行了多層測(cè)試。各小層的儲(chǔ)層參數(shù)見(jiàn)表3,層次結(jié)構(gòu)模型目標(biāo)層為儲(chǔ)層的產(chǎn)能,影響因素有7個(gè),分別是電阻率、孔隙度、滲透率、含氣飽和度、密度、聲波時(shí)差、油壓。對(duì)于影響氣層產(chǎn)能的指標(biāo)來(lái)說(shuō),電阻率、孔隙度、滲透率、含氣飽和度、聲波時(shí)差屬于越大越好型,密度屬于越小越好型。表3蘇里格氣田某多層測(cè)試井各小層的指標(biāo)
Tab.3Indicators of Each Small Layer of a Multilayered Testing Well in Sulige Oilfield地層厚度/m電阻率/(Ω·m)孔隙度/%滲透率/10-3 μm2含氣飽和度/%密度/(g·cm-3)聲波時(shí)差/(μs·m-1)油壓/MPaF14.176.318.540.5250.942.51223.704.00F24.168.433.620.1033.012.63214.502.60F33.990.9312.920.2566.102.31224.201.20F46.641.1011.3019.5052.992.42237.007.704.1評(píng)價(jià)指標(biāo)歸一化
針對(duì)不同類型影響因素指標(biāo),根據(jù)式(2)、(3)對(duì)數(shù)據(jù)進(jìn)行歸一化計(jì)算,計(jì)算結(jié)果見(jiàn)表4。
表4地層參數(shù)指標(biāo)歸一化計(jì)算結(jié)果
Tab.4Normalized Results of Formation
Parameter Indicators地層電阻率孔隙度滲透率含氣飽和度密度時(shí)差油壓F10.706 600.529 00.021 70.541 800.343 70.409 330.430 8F20.548 460.000 00.000 00.000 000.000 00.000 000.215 0F31.000 001.000 00.007 71.000 001.000 00.432 400.000 0F40.000 000.825 81.000 00.603 800.625 01.000 001.000 04.2計(jì)算評(píng)價(jià)矩陣
按照表1以優(yōu)、良、中、差4個(gè)級(jí)別劃分為4個(gè)評(píng)價(jià)區(qū)間,分別為[0,0.25)、[0.25,0.5)、[0.5,075)、[0.7,1.0],則根據(jù)式(5)可分別求出v1、v2、v3、v4分別為0.125、0.375、0.625、0.875,則評(píng)價(jià)向量V為V=(0.125,0.375,0.625,0.875)(11)按照式(6)分別計(jì)算出F1、F2、F3、F4地層的評(píng)價(jià)矩陣。F1地層的評(píng)價(jià)矩陣R1為
R1=0.418 3980.668 3980.918 3980.831 602
0.595 9680.845 9680.904 0320.654 032
0.583 1440.833 1440.916 8560.666 856
0.715 6660.965 6660.784 3340.534 334
0.896 6490.646 6490.396 6490.146 649
0.694 2310.944 2310.805 7690.555 769
0.770 1610.979 8390.729 8390.479 839(12)
4.3利用層次分析法確定指標(biāo)權(quán)重
得到評(píng)價(jià)矩陣之后,接著要求取不同因素對(duì)產(chǎn)能的影響權(quán)值。根據(jù)表2的層次分析標(biāo)度取值進(jìn)行對(duì)比打分,構(gòu)造判斷矩陣。不同參數(shù)在層次分析標(biāo)度取值中打分的分值是一個(gè)主觀定性大小,在打分時(shí)要根據(jù)參數(shù)與產(chǎn)能的相關(guān)性強(qiáng)弱來(lái)權(quán)衡。圖2(a)~(f)分別為滲透率、孔隙度、聲波時(shí)差、含氣飽和度、密度、電阻率與產(chǎn)能之間的相關(guān)性,其相關(guān)系數(shù)分別為0.76、0.50、0.42、0.39、0.26、0.15。根據(jù)表2的層次分析標(biāo)度取值及其含義選取標(biāo)度值。電阻率與產(chǎn)能的相關(guān)系數(shù)為0.15,標(biāo)度定為1;密度與產(chǎn)能的相關(guān)系數(shù)為0.26,密度相對(duì)電阻率對(duì)產(chǎn)能的貢獻(xiàn)稍微重要,將其標(biāo)度定為2。根據(jù)“相關(guān)系數(shù)越大,該影響因素標(biāo)度越高”的原則,依照表2和圖2分別對(duì)電阻率、密度、含氣飽和度、聲波時(shí)差、孔隙度、滲透率、油壓7個(gè)影響指標(biāo)依次進(jìn)行兩兩比較,得出pij的取值,見(jiàn)表5。構(gòu)造判斷矩陣P為
P=11/21/31/31/51/71/7
211/21/21/31/51/5
3211/21/21/31/3
32211/21/31/3
532211/21/2
7533211
7533211(13)
表5地層參數(shù)層次分析標(biāo)度取值
Tab.5Values of Hierarchical Structure Proportion
Quotiety of Formation Parameters參數(shù)電阻率密度含氣飽和度聲波時(shí)差孔隙度滲透率油壓電阻率11/21/31/31/51/71/7密度211/21/21/31/51/5含氣飽和度3211/21/21/31/3聲波時(shí)差32211/21/31/3孔隙度532211/21/2滲透率7533211油壓7533211圖2地層參數(shù)指標(biāo)與產(chǎn)能之間的關(guān)系
Fig.2Relationships Between Formation Parameter Indicator and Gas Productivity計(jì)算判斷矩陣P的最大特征根,并求出對(duì)應(yīng)的特征向量,在滿足一致性的條件下得到7個(gè)影響因素的權(quán)重w為
w=(0.034 768 6,0.079 885 6,0.088 968 5,0.088 968 6,
0.171 441,0.267 984,0.267 984)
4.4綜合評(píng)價(jià)
將權(quán)重和每個(gè)地層的評(píng)價(jià)矩陣帶入式(7),可分別求出每個(gè)地層的綜合評(píng)價(jià)向量M。將每個(gè)地層的綜合評(píng)價(jià)向量M和評(píng)價(jià)向量V代入式(9),可計(jì)算出每個(gè)地層的綜合評(píng)價(jià)系數(shù)(表6)。
4.5產(chǎn)能劈分
根據(jù)多層產(chǎn)能試氣結(jié)果,4個(gè)小層多層試氣總產(chǎn)能為51 326 m3·d-1,各小層厚度h1、h2、h3、h4分別為41、41、39、66 m。設(shè)各層的產(chǎn)能分別為
表6小層綜合評(píng)價(jià)系數(shù)
Tab.6Comprehensive Evaluation Coefficients of
Small Layer地層F1F2F3F4綜合評(píng)價(jià)系數(shù)0.466 7880.354 2290.476 0120.564 536E1、E2、E3、E4,則根據(jù)式(10)對(duì)多層試氣產(chǎn)能進(jìn)行劈分,劈分結(jié)果見(jiàn)圖3。從圖3可以看出:F1、F3、F4地層產(chǎn)能較高,為含氣層;F2地層產(chǎn)量較低,為差氣層。劈分產(chǎn)能與分層試氣產(chǎn)能結(jié)果有較好的一致性。圖3劈分產(chǎn)能與分層試氣產(chǎn)能的對(duì)比
Fig.3Comparison of Divided Production with Result of Gas Testing5結(jié)語(yǔ)
模糊綜合評(píng)判法是將模糊數(shù)學(xué)原理與層次分析法結(jié)合起來(lái),對(duì)儲(chǔ)層進(jìn)行綜合評(píng)判,并根據(jù)綜合評(píng)價(jià)指數(shù)進(jìn)行產(chǎn)能劈分的一種有效方法。在劈分過(guò)程中充分利用儲(chǔ)層的物性參數(shù),將定性問(wèn)題轉(zhuǎn)化為定量問(wèn)題,通過(guò)計(jì)算每個(gè)小層的評(píng)價(jià)因子,按照層厚進(jìn)行加權(quán),對(duì)多層試氣的產(chǎn)能進(jìn)行劈分。通過(guò)在鄂爾多斯盆地蘇里格氣田某井的應(yīng)用可以看出,該方法對(duì)于多層測(cè)試氣井的產(chǎn)能劈分是行之有效的。參考文獻(xiàn):
References:[1]LIU C L,ZHANG S H,DOU S P,et al.Productivity Analysis of Fractured Wells in Lowpermeability Naturally Fractured Reservoirs[C]∥IEEE.AsiaPacific Power and Energy Engineering Conference 2010.Chengdu:IEEE,2010:2025.
[2]AGUILERA R.Well Test Analysis of Multilayered Naturally Fractured Reservoirs[J].Journal of Canadian Petroleum Technology,2000,39(7):2137.
[3]NOUSHABADI M R J,JOURDE H,MASSONNAT G.Evaluation of the Interporosity Exchange Coefficient Inferred from Well Test in a Fractured Reservoir with a Nonuniform Distribution Pattern: A Numerical Study[J].Journal of Petroleum Science and Engineering,2013,108:8295.
[4]高建華,李瑞,王改芳,等.用測(cè)井參數(shù)預(yù)測(cè)多層合試產(chǎn)能的方法[J].成都理工學(xué)院學(xué)報(bào),2002,29(3):296299.
GAO Jianhua,LI Rui,WANG Gaifang,et al.The Method of Production Capacity Prediction of Multilayer Testing by Parameters of Logging[J].Journal of Chengdu University of Techonlogy,2002,29(3):296299.
[5]ZHANG L J,LI D L,LI L,et al.Development of a New Compositional Model with Multicomponent Sorption Isotherm and Slip Flow in Tight Gas Reservoirs[J].Journal of Natural Gas Science and Engineering,2014,21:10611072.
[6]盧文東,李偉,路云峰.榆林—神木氣田上古生界具不同產(chǎn)能的砂巖氣層特征分析[J].天然氣工業(yè),2006,26(7):5456.
LU Wendong,LI Wei,LU Yunfeng.Analyzing the Characteristics of Upper Paleozoic Sandstone Reservoirs with Different Productivities in YulinShenmu Gasfield[J].Natural Gas Industry,2006,26(7):5456.
[7]何軍,胡永樂(lè),何東博,等.低滲致密氣藏產(chǎn)能預(yù)測(cè)方法[J].斷塊油氣田,2013,20(3):334336.
HE Jun,HU Yongle,HE Dongbo,et al.Productivity Prediction Methods for Tight Gas Reservoir with Low Permeability[J].Faultblock Oil and Gas Field,2013,20(3):334336.
[8]黃力,何順利,張小霞,等.超低滲透儲(chǔ)層產(chǎn)能主要影響因素確定方法研究[J].科學(xué)技術(shù)與工程,2010,10(30):74087413.
HUANG Li,HE Shunli,ZHANG Xiaoxia,et al.Research on Determination of the Main Factors Influencing the Oil Well Productivity of Ultra Low Permeability Reservoir[J].Science Technology and Engineering,2010,10(30):74087413.
[9]別愛(ài)芳,冀光,張向陽(yáng),等.產(chǎn)量構(gòu)成法中措施產(chǎn)量劈分及預(yù)測(cè)的兩種方法[J].石油勘探與開發(fā),2007,34(5):628632.
BIE Aifang,JI Guang,ZHANG Xiangyang,et.al.Two Ways for Breaking out and Forecasting Stimulation Production by Production Composition Method[J].Petroleum Exploration and Development,2007,34(5):628632.
[10]羅剛,蔣志斌,徐后偉,等.基于數(shù)據(jù)挖掘的單層產(chǎn)量劈分方法[J].石油天然氣學(xué)報(bào),2014,36(10):148169.
LUO Gang,JIANG Zhibin,XU Houwei,et al.Single Layer Production Splitting Method Based on Data Mining[J].Journal of Oil and Gas Technology,2014,36(10):148169.
[11]李坤,喻高明,王喬.一種新的產(chǎn)量劈分方法[J].油氣地球物理,2011,9(4):1922,25.
LI Kun,YU Gaoming,WANG Qiao.A New Production Split Method[J].Petroleum Geophysics,2011,9(4):1922,25.
[12]楊波,唐海,周科,等.多層合采氣井合理配產(chǎn)簡(jiǎn)易新方法[J].油氣井測(cè)試,2010,19(1):6668.
YANG Bo,TANG Hai,ZHOU Ke,et al.A Simple New Method of Proper Proration for Multilayered Commingled Gas Wells[J].Well Testing,2010,19(1):6668.
[13]李鴻吉.模糊數(shù)學(xué)基礎(chǔ)及實(shí)用算法[M].北京:科學(xué)出版社,2005.
LI Hongji.Fuzzy Mathematical Foundation and Practical Algorithm[M].Beijing:Science Press,2005.
[14]吳建發(fā),郭建春,趙金洲.壓裂酸化選井模糊綜合評(píng)判方法[J].石油鉆采工藝,2004,26(2):5457,84.
WU Jianfa,GUO Jianchun,ZHAO Jinzhou.Fuzzy Comprehensive Evaluation Method to Choose the Candidate Wells for Fracturing[J].Oil Drilling and Production Technology,2004,26(2):5457,84.
[15]董紅.黃沙坨粗面巖儲(chǔ)層流體模糊識(shí)別方法[J].測(cè)井技術(shù),2006,30(5):408410.
DONG Hong.The Method of Fuzzy Recognition for Liquid of Trachite Reservoir in Huangshatuo[J].Well Logging Technology,2006,30(5):408410.
[16]范翔宇,夏宏泉,鄭雷清,等.基于模糊理論的復(fù)雜巖相測(cè)井識(shí)別研究[J].鉆采工藝,2007,30(2):5355.
FAN Xiangyu,XIA Hongquan,ZHENG Leiqing,et al.Well Logging Identification for Complex Lithofacies Based on Fuzzy Theory[J].Drilling and Production Technology,2007,30(2):5355.
[17]黎梨苗,陳志剛,鄧曉衡,等.基于模糊理論的主觀信任綜合評(píng)價(jià)模型研究[J].計(jì)算機(jī)應(yīng)用研究,2010,27(5):18601862.
LI Limiao,CHEN Zhigang,DENG Xiaoheng,et al.Research of Subject Trust Comprehensive Evaluation Model Based on Fuzzy Theory[J].Application Research of Computers,2010,27(5):18601862.
[18]劉春梅,譚青.模糊綜合評(píng)判在油氣勘探多學(xué)科指標(biāo)評(píng)價(jià)預(yù)測(cè)中的應(yīng)用:以新疆柴窩堡凹陷為例[J].石油實(shí)驗(yàn)地質(zhì),2014,36(1):106109,116.
LIU Chunmei,TAN Qing.Application of Fuzzy Comprehensive Evaluation in Oil and Gas Exploration with Multidisciplinary Assessment and Forecasting:A Case Study on Chaiwopu Sag in Xinjiang[J].Petroleum Geology and Experiment,2014,36(1):106109,116.
[19]SONG Z Y,ZHU H Q,JIA G W,et al.Comprehensive Evaluation on Selfignition Risks of Coal Stockpiles Using Fuzzy AHP Approaches[J].Journal of Loss Prevention in the Process Industries,2014,32:7894.
[20]董鳳娟,孫衛(wèi),胡緒軍,等.灰色層次分析法在儲(chǔ)層流動(dòng)單元?jiǎng)澐种械膽?yīng)用:以丘陵油田三間房組儲(chǔ)層為例[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2010,40(6):12551261.
DONG Fengjuan,SUN Wei,HU Xujun,et al.Application of Grey Analytic Hierarchy Process to Divide Flow Units:A Case from Sanjianfang Formation of Qiuling Oilfield[J].Journal of Jilin University:Earth Science Edition,2010,40(6):12551261.
[21]TAN R R,AVISO K B,HUELGAS A P,et al.Fuzzy AHP Approach to Selection Problems in Process Engineering Involving Quantitative and Qualitative Aspects[J].Process Safety and Environmental Protection,2014,92:467475.
[22]鄧雪,李家銘,曾浩健,等.層次分析法權(quán)重計(jì)算方法分析及其應(yīng)用研究[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2012,42(7):93100.
DENG Xue,LI Jiaming,ZENG Haojian,et al.Research on Computation Methods of AHP Wight Vector and Its Applications[J].Mathematics in Practice and Theory,2012,42(7):93100.
[23]SAATY T L.The Analytic Hierarchy Process[M].New York:McGrwaHill,1980.
[24]康毅力,王海濤,游利軍,等.基于層次分析法的地層鉆井液漏失概率判定[J].西南石油大學(xué)學(xué)報(bào):自然科學(xué)版,2013,35(4):180186.
KANG Yili,WANG Haitao,YOU Lijun,et al.Probability Determination for Loss Circulation of Drilling Fluids Based on Analytic Hierarchy Process[J].Journal of Southwest Petroleum University:Science and Technology Edition,2013,35(4):180186.第37卷第2期2015年3月地球科學(xué)與環(huán)境學(xué)報(bào)Journal of Earth Sciences and EnvironmentVol37No2Mar. 2015