潘霄羽,王燕,黃高翔,盧建,曲伸△
(1同濟(jì)大學(xué)附屬第十人民醫(yī)院內(nèi)分泌代謝科,上海 200072;2第二軍醫(yī)大學(xué)病理生理教研室,上海 200433)
TGF-β1激活的p38 MAPK在TGF-β1上調(diào)人卵巢癌細(xì)胞PAI-1表達(dá)中的作用*
潘霄羽1,王燕2,黃高翔2,盧建2,曲伸1△
(1同濟(jì)大學(xué)附屬第十人民醫(yī)院內(nèi)分泌代謝科,上海 200072;2第二軍醫(yī)大學(xué)病理生理教研室,上海 200433)
目的:纖溶酶原激活物抑制劑1(PAI-1)在凝血、創(chuàng)傷修復(fù)、炎癥和腫瘤轉(zhuǎn)移中起重要作用。已有報(bào)道轉(zhuǎn)化生長因子β1(TGF-β1)能通過Smad通路誘導(dǎo)PAI-1表達(dá),但TGF-β1能否通過激活非Smad通路誘導(dǎo)PAI-1表達(dá)尚不清楚,因此本研究探討了在卵巢癌細(xì)胞中TGF-β1激活的非Smad通路p38絲裂原活化蛋白激酶(p38 MAPK)和細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)與TGF-β1上調(diào)PAI-1表達(dá)的關(guān)系。方法:用10 μg/L TGF-β1處理卵巢癌SKOV3細(xì)胞和HO-8910細(xì)胞后,采用real-time PCR和Western blotting的方法檢測PAI-1的表達(dá),用磷酸化p38 MAPK的抗體和磷酸化ERK的抗體檢測p38 MAPK和ERK的激活情況,用p38 MAPK和ERK的特異性抑制劑SB203580和PD98059分別抑制其活性后,檢測PAI-1的表達(dá)。結(jié)果:TGF-β1在卵巢癌細(xì)胞中可明顯上調(diào)PAI-1 mRNA和蛋白的表達(dá),并可快速激活p38 MAPK和ERK。用p38 MAPK的抑制劑可以明顯抑制TGF-β1上調(diào)PAI-1表達(dá),但是抑制ERK活性對TGF-β1上調(diào)PAI-1表達(dá)沒有明顯影響。結(jié)論:TGF-β1激活的p38 MAPK通路參與了TGF-β1上調(diào)PAI-1的表達(dá)。
轉(zhuǎn)化生長因子β1;纖溶酶原激活物抑制劑1;p38絲裂原活化蛋白激酶;細(xì)胞外信號(hào)調(diào)節(jié)激酶;卵巢腫瘤
纖溶酶原激活物抑制劑1(plasminogen activator inhibitor-1,PAI-1)能通過抑制纖溶酶原激活物進(jìn)而抑制纖溶酶的生成,在凝血、創(chuàng)傷修復(fù)、炎癥和腫瘤轉(zhuǎn)移中起重要作用[1-3]。已知PAI-1在卵巢組織的不同細(xì)胞中都有表達(dá),并且影響排卵后的傷口修復(fù)和卵巢癌的侵襲與轉(zhuǎn)移過程[4-5]。轉(zhuǎn)化生長因子β1 (transforming growth factor β1,TGF-β1)是一種分布廣泛,在細(xì)胞外基質(zhì)形成、免疫和炎癥的調(diào)控以及腫瘤發(fā)生發(fā)展中起重要作用的細(xì)胞生長因子[6-7]。TGF-β1與其受體結(jié)合后,通過激活經(jīng)典的Smad通路和非Smad通路導(dǎo)致生物效應(yīng)[8-9]。已有報(bào)道TGF-β1能通過Smad通路誘導(dǎo)PAI-1表達(dá)[10],但我們前期在卵巢癌細(xì)胞中的研究表明,用RNA干擾的方法抑制Smad3的表達(dá)只能部分阻斷TGF-β1上調(diào)PAI-1的作用,提示TGF-β1激活的非Smad通路可能也參與了TGF-β1上調(diào)PAI-1的作用,因此本課題進(jìn)一步探討了在卵巢癌細(xì)胞中TGF-β1激活的p38絲裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)和細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated protein kinase,ERK)通路和TGF-β1上調(diào)PAI-1表達(dá)的關(guān)系,以進(jìn)一步闡明TGF-β1上調(diào)PAI-1的機(jī)制。
1 主要試劑和藥品
重組人轉(zhuǎn)化生長因子β1(Peprotech);p38 MAPK抑制劑SB203580和ERK抑制劑PD98059(Sigma);小鼠抗人PAI-1單克隆抗體(Santa Cruz);兔抗人p38 MAPK多克隆抗體、兔抗人p-p38 MAPK多克隆抗體、兔抗人p-ERK多克隆抗體和兔抗人ERK多克隆抗體(Cell Signaling);小鼠抗人β-actin抗體(Sigma);山羊抗小鼠與山羊抗兔HRP標(biāo)記的II抗(ROCKLAND)。
2 細(xì)胞系及其培養(yǎng)
人卵巢癌HO-8910細(xì)胞和SKOV3細(xì)胞用含有10%胎牛血清、1%雙抗的RPMI-1640培養(yǎng)基培養(yǎng),置于37℃、飽和濕度和5%CO2細(xì)胞培養(yǎng)箱中培養(yǎng)。取對數(shù)生長期細(xì)胞進(jìn)行實(shí)驗(yàn)。
3 Real-time PCR
接種對數(shù)生長期的細(xì)胞于6孔板內(nèi),4×105cells/well,待細(xì)胞貼壁完全后用含5%去激素血清的RPMI 1640培養(yǎng)液培養(yǎng)12 h,之后給予TGF-β1(10 μg/L)處理細(xì)胞不同時(shí)間,用TRIzol法抽提細(xì)胞總RNA、定量和鑒定,行反轉(zhuǎn)錄,cDNA的合成按Thermo試劑盒說明書進(jìn)行。反應(yīng)條件依次為:25℃10 min,42℃1 h,72℃10 min,在PCR儀中進(jìn)行。Real-time PCR用SYBR Green Real-Time PCR Master Mix試劑盒,參照試劑盒說明書步驟,在Eppendorf實(shí)時(shí)熒光定量PCR儀上完成。PAI-1上游引物為5’-GCCTCCAAAGACCGAAATGTG-3’,下游引物為5’-GTCGTTGATGATGAATCTGGCTC-3’;用GAPDH作為內(nèi)參照,上游引物為5’-TAGCCCAGGATGCCCTTTAGT-3’,下游引物為5’-CCCCCAATGTATCCGTTGTG-3’。反應(yīng)條件如下:94℃變性20 s,60℃退火20 s,72℃延伸45 s;反應(yīng)40個(gè)循環(huán)。相對定量用2-△△Ct法計(jì)算。
4 Western blotting檢測蛋白質(zhì)表達(dá)
用蛋白裂解液破碎細(xì)胞,并用超聲破碎儀冰上破碎細(xì)胞后加入等量上樣緩沖液,100℃水浴煮沸5 min,冰上冷卻后上樣。用10%SDS聚丙烯酰胺凝膠電泳分離蛋白質(zhì);用轉(zhuǎn)膜系統(tǒng)將蛋白轉(zhuǎn)移至PVDF膜上;常溫下用含5%脫脂奶粉的TBST封閉45 min,加入1∶1 000稀釋的I抗體,4℃搖床孵育過夜; TBST洗脫3次后,加入辣根過氧化物酶偶聯(lián)的II抗孵育1 h,TBST洗脫3次后,將PVDF膜浸泡于發(fā)光檢測試劑混合液后,于凝膠成像分析儀上檢測。
5 統(tǒng)計(jì)學(xué)處理
計(jì)量資料數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,組間均數(shù)比較采用單因素方差分析。所有實(shí)驗(yàn)至少重復(fù)3次,全部數(shù)據(jù)采用SPSS 17.0統(tǒng)計(jì)軟件進(jìn)行處理。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 TGF-β1對人卵巢癌細(xì)胞PAI-1表達(dá)的影響
用TGF-β1(10 μg/L)處理卵巢癌SKOV3細(xì)胞和HO-8910細(xì)胞不同時(shí)間,real-time PCR結(jié)果顯示,TGF-β1能時(shí)間依賴性地上調(diào)PAI-1 mRNA表達(dá),這種上調(diào)作用在4 h后達(dá)到最高,PAI-1 mRNA分別為對照組的6.1倍和3.8倍(P<0.01)(圖1A、B)。用Western blotting的方法也證實(shí)10 μg/L TGF-β1處理SKOV3和HO-8910細(xì)胞6 h后PAI-1蛋白增加(圖1C、D),表明在卵巢癌細(xì)胞中,TGF-β1能上調(diào)PAI-1的表達(dá)。
2 p38 MAPK與TGF-β1上調(diào)PAI-1的關(guān)系
Western blotting的結(jié)果顯示,在SKOV3和HO-8910細(xì)胞中,TGF-β1(10 μg/L)能快速誘導(dǎo)p38 MAPK的磷酸化,這種作用至少能持續(xù)4 h(圖2A、B),表明TGF-β1能快速激活人卵巢癌細(xì)胞p38 MAPK。用p38 MAPK抑制劑SB203580(10 nmol/L)預(yù)處理SKOV3細(xì)胞后,可以明顯減少TGF-β1上調(diào)PAI-1 mRNA的水平(P<0.05)(圖2C)。在HO-8910細(xì)胞中也得到了類似的結(jié)果(P<0.05)(圖2D)。表明在卵巢癌細(xì)胞中,TGF-β1激活的p38 MAPK通路參與了TGF-β1上調(diào)PAI-1的作用。
Figure 1.The effect of TGF-β1 on the expression of PAI-1 mRNA and protein in ovarian cancer cells.SKOV3(A) and HO-8910(B)cells were incubated with TGF-β1 (10 μg/L)at the indicated time points,and PAI-1 mRNA was measured by real-time PCR.SKOV3(C) and HO-8910(D)cells were incubated with TGF-β1 (10 μg/L)for 6 h,and PAI-1 protein expression was analyzed by Western blotting.Mean±SD.n=3.*P<0.05,**P<0.01 vs 0 h.圖1 TGF-β1對卵巢癌細(xì)胞PAI-1 mRNA和蛋白表達(dá)的影響
Figure 2.Effect of TGF-β1-activated p38 MAPK pathway on the expression of PAI-1 induced by TGF-β1 in ovarian cancer cells.SKOV3(A)and HO-8910(B)cells were incubated with TGF-β1(10 μg/L)for the indicated time.The protein level of p-p38 MAPK and total p38 MAPK was measured by Western blotting.SKOV3 (C)and HO-8910(D)cells were pretreated with or without SB203580 for 1 h,and then further stimulated for 4 h with TGF-β1(10 μg/L).The expression of PAI-1 mRNA was analyzed by real-time PCR and normalized to house-keeping gene GAPDH.Mean±SD.n=3.**P<0.01 vs control;#P<0.05 vs TGF-β1.圖2 TGF-β1激活的p38 MAPK通路對TGF-β1誘導(dǎo)PAI-1表達(dá)的影響
3 ERK與TGF-β1上調(diào)PAI-1的關(guān)系
結(jié)果顯示,在HO-8910和SKOV3細(xì)胞中,TGF-β1也能快速增加ERK的磷酸化水平(圖3A、B),但用ERK抑制劑PD98059(20 μmol/L)預(yù)處理SKOV3細(xì)胞和HO-8910細(xì)胞后,TGF-β1上調(diào)PAI-1 mRNA的作用雖然被一定程度地抑制,但差異無統(tǒng)計(jì)學(xué)意義(圖3C、D),表明在卵巢癌細(xì)胞中TGF-β1激活ERK通路對其上調(diào)PAI-1的作用沒有明顯影響。
Figure 3.Effect of TGF-β1-activated ERK pathway on the expression of PAI-1 mRNA induced by TGF-β1.SKOV3 (A)and HO-8910(B)cells were incubated with TGF-β1(10 μg/L)at different time points as indicated.The protein levels of p-ERK and total ERK were measured by Western blotting.SKOV3(C)and HO-8910(D)cells were pretreated with or without PD98059 for 1 then further stimulated for 4 h with TGF-β1(10 μg/L).The expression of PAI-1 mRNA was analyzed by real-time PCR and normalized to GAPDH.Mean±SD.n=3.**P<0.01 vs control.圖3 TGF-β1激活的ERK通路對TGF-β1誘導(dǎo)PAI-1表達(dá)的影響
至少有85%的人類卵巢癌是人類卵巢上皮細(xì)胞(ovarian surface epithelium,OSE)來源的。在每次排卵后,卵巢上皮細(xì)胞會(huì)遭受一定程度損傷,并且經(jīng)歷一個(gè)修復(fù)過程,所以排卵介導(dǎo)的創(chuàng)傷和炎癥有促進(jìn)細(xì)胞增殖的作用,這被認(rèn)為是導(dǎo)致卵巢上皮細(xì)胞癌發(fā)生發(fā)展的因素之一[11]。TGF-β1不僅是一種OSE自分泌的生長因子,也是一種卵巢的旁分泌因子,在哺乳動(dòng)物卵泡形成、排卵等過程中起到重要作用,還參與調(diào)節(jié)與排卵相關(guān)的傷口修復(fù)以及卵巢癌的侵襲轉(zhuǎn)移等過程[11]。TGF-β1的作用通過一對跨膜受體,即I型和II型TGF-β受體(TGF-β receptor I,TGF-βRⅠ;TGF-β receptor II,TGF-βRⅡ)以及Smad和非Smad信號(hào)通路介導(dǎo)。TGF-β1先與2個(gè)TGF-βRII結(jié)合,繼而與2個(gè)TGF-βRI形成異四聚體,TGF-βRII隨即磷酸化TGF-βRI并使其激活。激活的TGF-βRI磷酸化并激活細(xì)胞內(nèi)的Smad2/3,后者與co-Smad (Smad4)結(jié)合形成復(fù)合物,轉(zhuǎn)入細(xì)胞核內(nèi)與特定的DNA序列結(jié)合,與轉(zhuǎn)錄共激活因子相互作用,調(diào)節(jié)TGF-β1靶基因的轉(zhuǎn)錄[6]。除了上述經(jīng)典的TGF-β1-Smad信號(hào)轉(zhuǎn)導(dǎo)通路外,TGF-β1也可以在不同細(xì)胞中激活非Smad通路,這些通路包括MAPK家族的ERK、p38 MAPK和JNK通路以及磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)及其下游的蛋白激酶B/AKT通路(PI3K/AKT)和小G蛋白R(shí)ho及其下游的Rho相關(guān)的蛋白激酶(Rho-associated protein kinase,ROCK)通路(Rho/ROCK)等[8-9]。這些不同的通路獨(dú)立或者通過相互之間的作用介導(dǎo)TGF-β1的生物學(xué)效應(yīng)。
PAI-1作為纖溶酶原激活物的抑制劑,能通過抑制纖溶酶的生成,在凝血、創(chuàng)傷修復(fù)、炎癥和腫瘤轉(zhuǎn)移中起重要作用[1-3]。已知PAI-1在卵巢組織不同細(xì)胞中都有表達(dá),并且影響排卵后的傷口愈合和卵巢癌的侵襲與轉(zhuǎn)移過程[4-5]。PAI-1的表達(dá)受多種激素和化學(xué)因子及其信號(hào)通路的調(diào)控,這些調(diào)控大多在轉(zhuǎn)錄水平上進(jìn)行[12-13]。PAI-1是TGF-β1的靶基因,在PAI-1基因的啟動(dòng)子區(qū)域含有TGF-β1下游的Smad結(jié)合元件。TGF-β1激活的Smad3和Smad4能與PAI-1啟動(dòng)子中的TGF-β1反應(yīng)元件結(jié)合,誘導(dǎo)該基因的表達(dá)[10]。除了經(jīng)典的TGF-β1/Smad通路外,有報(bào)道在肝細(xì)胞中PAI-1的表達(dá)與TGF-β1激活的下游ERK通路也有關(guān)[13]。
我們前期在卵巢癌細(xì)胞中的研究表明,抑制Smad3的表達(dá)只能部分阻斷TGF-β1上調(diào)PAI-1的作用,提示TGF-β1激活的非Smad通路可能也參與了TGF-β1上調(diào)PAI-1的作用。本研究發(fā)現(xiàn)在卵巢癌細(xì)胞中,TGF-β1能快速激活p38 MAPK。用p38 MAPK抑制劑SB203580抑制p38 MAPK的活性,可明顯抑制TGF-β1上調(diào)PAI-1表達(dá)。TGF-β1雖然也能激活ERK,但抑制ERK的活性對TGF-β1上調(diào)PAI-1表達(dá)沒有明顯影響。以上結(jié)果表明在卵巢癌細(xì)胞中,除了TGF-β1/Smad通路外,TGF-β1激活的p38 MAPK通路也部分參與了TGF-β1上調(diào)PAI-1表達(dá)的作用。我們之前的研究發(fā)現(xiàn)TGF-β1有促進(jìn)卵巢癌細(xì)胞與細(xì)胞外基質(zhì)(extracellular cell matrix,ECM)黏附的作用[14]。而已有報(bào)道PAI-1能通過抑制ECM降解和促進(jìn)ECM沉積來增強(qiáng)細(xì)胞與ECM的黏附[15],提示TGF-β1上調(diào)PAI-1表達(dá)可能是其促進(jìn)卵巢癌細(xì)胞黏附的機(jī)制之一,這方面有待下一步工作來證明。
[1]Ghosh AK,Vaughan DE.PAI-1 in tissue fibrosis[J].J Cell Physiol,2012,227(2):493-507.
[2]Durand MK,Bodker JS,Christensen A,et al.Plasminogen activator inhibitor-I and tumour growth,invasion,and metastasis[J].Thromb Haemost,2004,91(3):438-449.
[3]黃云劍,張遠(yuǎn)寧,王沂芹,等.PAI-1和TIMP-1基因在腎小管間質(zhì)纖維化中的表達(dá)及HGF的干預(yù)作用[J].中國病理生理雜志,2004,20(9):1542-1546.
[4]Koensgen D,Mustea A,Denkert C,et al.Overexpression of the plasminogen activator inhibitor type-1 in epithelial ovarian cancer[J].Anticancer Res,2006,26(2C): 1683-1689.
[5]Liu YX.Plasminogen activator/plasminogen activator inhibitors in ovarian physiology[J].Front Biosci,2004,9: 3356-3373.
[6]Gordon KJ,Blobe GC.Role of transforming growth factorbeta superfamily signaling pathways in human disease[J].Biochim Biophys Acta,2008,1782(4):197-228.
[7]Massagué J.TGFβ in cancer[J].Cell,2008,134(2): 215-230.
[8]趙俊芳,劉成,劉成海.轉(zhuǎn)化生長因子β胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)與Smad蛋白[J].中國病理生理雜志,2002,18(3): 321-325.
[9]Zhang YE.Non-Smad pathways in TGF-beta signaling[J].Cell Res,2009,19(1):128-139.
[10]Dennler S,Itoh S,Vivien D,et al.Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitortype 1 gene[J].EMBO J,1998,17(11):3091-3100.
[11]Wong AS,Leung PC.Role of endocrine and growth factors on the ovarian surface epithelium[J].J Obstet Gynaecol Res,2007,33(1):3-16.
[12]Ma Y,Ryu JS,Dulay A,et al.Regulation of plasminogen activator inhibitor(PAI)-1 expression in a human trophoblast cell line by glucocorticoid(GC)and transforming growth factor(TGF)-beta[J].Placenta,2002,23(10): 727-734.
[13]Wickert L,Chatain N,Kruschinsky K,et al.Glucocorticoids activate TGF-beta induced PAI-1 and CTGF expression in rat hepatocytes[J].Comp Hepatol,2007,6:5.
[14]Chen YX,Wang Y,F(xiàn)u CC,et al.Dexamethasone enhances cell resistance to chemotherapy by increasing adhesion to extracellular matrix in human ovarian cancer cells[J].Endocr Relat Cancer,2010,17(1):39-50.
[15]Ohashi K,Yoshimoto T,Kosaka H,et al.Interferon γ and plasminogen activator inhibitor 1 regulate adhesion formation after partial hepatectomy[J].Br J Surg,2014,101(4):398-407.
Role of TGF-β1-activated p38 MAPK in up-regulation of PAI-1 expression by TGF-β1 in human ovarian cancer cells
PAN Xiao-yu1,WANG Yan2,HUANG Gao-xiang2,LU Jian2,QU Shen1
(1Department of Endocrinology,Shanghai Tenth People’s Hospital,Tongji University,Shanghai 200072,China;2Department of Pathophysiology,The Second Military Medical University,Shanghai 200443,China.E-mail:qushencn@ hotmail.com)
AIM:To investigate the relationship between up-regulation of plasminogen activator inhibitor-1 (PAI-1)expression and activation of p38 mitogen-activated protein kinase(p38 MAPK)and extracellular signal-regulated kinase(ERK)pathways by TGF-β1 in human ovarian cancer cells.METHODS:PAI-1 expression in human ovarian cancer cells treated with TGF-β1(10 μg/L)was assayed by real-time PCR and Western blotting.The activation of p38 MAPK and ERK was determined by Western blotting using phosphorylated p38 MAPK and phosphorylated ERK antibodies.Specific p38 MAPK inhibitor(SB203580)or ERK inhibitor(PD98059)was used to inhibit their activation.RESULTS:TGF-β1 up-regulated the expression of PAI-1,and activated p38 MAPK and ERK pathways in the ovarian cancer cells.Inhibition of p38 MAPK activation by SB203580 resulted in significant inhibition of the mRNA expression of PAI-1 induced by TGF-β1.However,inhibition of ERK activation did not significantly alter TGF-β1-induced increase in PAI-1 mRNA level.CONCLUSION:TGF-β1-activated p38 MAPK pathway contributes to the up-regulation of PAI-1 expression by TGF-β1 in ovarian cancer cells.
Transforming growth factor β1;Plasminogen activator inhibitor-1;p38 mitogen-activated protein kinase;Extracellular signal-regulated kinase;Ovarian neoplasms
R730.23
A
10.3969/j.issn.1000-4718.2015.02.17
1000-4718(2015)02-284-05
2014-12-04
2014-12-20
國家自然科學(xué)基金資助項(xiàng)目(No.31301164)
△通訊作者Tel:021-66302531;E-mail:qushencn@hotmail.com