亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A Hilbert-Type Integral Inequality with the Inhomogeneous Kernel and Multi-Parameters

        2015-05-03 02:45:32,
        湘潭大學自然科學學報 2015年3期
        關鍵詞:科學系權函數(shù)邵陽

        ,

        (1.Preparatory Department of Primary Education, Changsha Normal University, Changsha 410100;2.Department of Science and Information, Shaoyang University,Shaoyang 422000 China)

        ?

        A Hilbert-Type Integral Inequality with the Inhomogeneous Kernel and Multi-Parameters

        HUANGLin1*,LIUQiong2

        (1.Preparatory Department of Primary Education, Changsha Normal University, Changsha 410100;2.Department of Science and Information, Shaoyang University,Shaoyang 422000 China)

        In this paper, by means of weight function and the technique of real analysis, and introducing multi-parameters and some special functions to jointly characterize the constant factor, a Hilbert-type integral inequality with the inhomogeneous kernel and multi-parameters and it’s equivalent form are given. Their constant factors are proved be the best possible, and its application is discussed.

        Hilbert-type integral inequality; weight function; the best constant factor; inhomogeneous kernel; multi-parameters

        1 Introduction

        For convenience, Ifθ(x)(>0)ismeasurablefunction,ρ≥1,thefunctionspacesaresetas:

        and

        Iff,g∈L2(0,),‖f‖2,‖g‖2>0,thenwehavethefollowingHilbert’sintegralinequality[1]:

        (1.1)

        (1.2)

        (1.3)

        (1.4)

        Inthispaper,bymeansofweightfunctionandthetechniqueofrealanalysis,aHilbert-typeintegralinequalitywiththeinhomogeneouskernelandMulti-parametersisgivenasfollows:

        (1.5)

        2 Some Lemmas

        We need the following definitions[11]:

        (2.1)

        (2.2)

        Lemma 2.1 Letmbe a positive integer, then we have the summation formulas[11]:

        (2.3)

        Lemma 2.2 Leta>-1,Re(s)>0,thentheLaplaceintegraltransformofthepowerfunctionxaasfollows[12]:

        (2.4)

        Lemma 2.3 Ifx>1,wehave

        (2.5)

        Proof Because

        therefore

        (2.6)

        by(2.6),wefind

        thenwehave

        (2.7)

        where

        (2.8)

        Particularly,whenη=2m(m=1,2,…),Γ(η)=Γ(2m)=(2m-1)!,by(2.3),wefind

        (2.9)

        wheretheBm′saretheBernoullinumbers.

        Proof Settingαxλ1yλ2=u,thenby(2.4)and(2.6),wehave:

        thenwehave:

        (2.10)

        (2.11)

        Proof We easily get:

        SinceF(u)=uη+1(1-tanhu)iscontinuousin(0,),(u)=0,(u)=0,thereexistsM>0,satisfyingF(u)≤M,byFubini’stheorem[13],wehave:

        3 Main results and applications

        (3.1)

        (3.2)

        Ifinequality(3.2)keepstheformofanequality,thenaccordingto[14]thereexisttwoconstantsAandB, such that they are not all zero and:

        (3.3)

        Proof Setting a bounded measurable function as:

        since0<‖f‖p,φ<,thereexistsn0∈N, such that 0<φ(x)<(n≥n0),setting:

        whenn≥n0,by(3.1)wefind:

        (3.4)

        (3.5)

        Itfollows0<‖f‖p,φ<.Forn→,by(3.1),both(3.4)and(3.5)stillkeeptheformofstrictinequalities,hence,wehaveinequality(3.3).

        Theinequalityis(3.1),whichisequivalentto(3.3).

        Bytakingthespecialparametervaluesin(3.1)and(3.3),somemeaningfulinequalitiesareobtained:

        (3.6)

        (3.7)

        (3.8)

        (3.9)

        (3.10)

        Comments:Veryunfortunately,wecannotgetaHilbert-typeintegralinequalitywiththekernelofthehyperbolictangentfunctionby(3.1).

        [1] HARDY G H,LITTLEWOOD J E, PLYA G. Inequalities[M].Cambridge: Cambridge Univ Press, 1952.

        [2] HARDY G H. Note on a theorem of Hilbert concerning seris of postive terms[J].Proc London Math Soc, 1925, 23(2):xlv-xlvi.

        [3] MINTRINOVIC D S,PECARIC J E,KINK A M. Inequalities involving functions and their integrals and derivertives[M].Boston:Kluwer Academic Publishers,1991.

        [4] BICHENG Y. A survey of the study of Hilbert-tpye inequalities with parameters[J].Advances in Mathematics, 2009, 38(3):257-258.

        [5] BICHENG Y.On the norm of a Hilbert’s type linear operator and applications[J].J Math Anal Appl,2007,325: 529-541.

        [6] JIMENG L, QING L. A generalization of the Hardy-Hilbert’s inequality and its application[J].Acta Mathematics Sinica, Chinese Series, 2009, 52(2): 237-244.

        [7] QIONG L, BICHENG Y. A Hilbert-type integral inequality with the mixed kernel of some parameters and its application[J].Journal of Zhejiang University(Science Edition), 2012, 39(2):135-141.

        [8] BICHENG Y. On a base Hilbert-type integral inequality and extensions[J].College Mathematics, 2008, 24(2):87-89.

        [9] LIU Q, LONG S C. A Hilbert-type integral inequality with the kernel of hyperbolic secant function[J].Journal of Zhejiang University(Science Edition), 2013, 40(3):255-259.

        [10] LIU Q, LONG S C. A Hilbert-type integral inequality with the kernel of hyperbolic cosecant function[J].Acta Mathematics Sinica, Chinese Series, 2013, 56(1):97-104.

        [11] HUANG Z S,GUO D R. An Intruction to Special Function[M].Beijing:Beijing Press, 2000.

        [12] SHU B P,CHEN D L. Complex-variable function and integral transform[M].Beijing:Higher Education Press, 2003.

        [13] KUANG J C. Introduction to real analysis[M].Changsha:Hunan Edueation Press,1996.

        [14] KUANG J C. Applied inequalities[M].3rd ed.Jinan:Shandong Science and Technology Press,2004.

        [15] YANG B C. The norm of operator and Hilbert-type inequalities[M].Beijing:Science press, 2009.

        責任編輯:龍順潮

        2015-02-18

        國家自然科學基金項目(11171280);湖南省教育廳科學研究項目(10C1186)

        黃琳(1964— ),女,江西 上饒人,副教授.E-mail:13787312290@163.com

        一個多參數(shù)非齊次核Hilbert型積分不等式

        黃 琳1*, 劉 瓊2

        (1.長沙師范學院 初等教育預科部,湖南 長沙 410100;2.邵陽學院 理學與信息科學系,湖南 邵陽 422000)

        利用權正數(shù)方法和實分析技巧,引入多參數(shù)和一些特殊函數(shù)聯(lián)合刻畫常數(shù)因子,得到一個多參數(shù)非齊次核Hilbert型積分不等式和它的等價式,證明了它們的常數(shù)因子是最佳的,并討論了其應用.

        Hilbert型積分不等式;權函數(shù);最佳常數(shù)因子;非齊次核;多參數(shù)

        O178

        A

        1000-5900(2015)03-0001-08

        猜你喜歡
        科學系權函數(shù)邵陽
        基于改進權函數(shù)的探地雷達和無網(wǎng)格模擬檢測混凝土結構空洞缺陷工程中的數(shù)學問題
        邵陽非物質文化遺產(chǎn)的視覺化設計與開發(fā)
        一類廣義的十次Freud-型權函數(shù)
        邵陽學院藝術設計學院作品選登
        致力草學,推進草業(yè),共創(chuàng)輝煌
        ——慶祝湖南農(nóng)業(yè)大學草業(yè)科學系建系20 周年
        作物研究(2021年2期)2021-04-26 09:34:40
        單圈圖的增強型Zagreb指數(shù)的下界
        邵陽三一工程機械與零部件再制造工程項目開工
        異徑電磁流量傳感器權函數(shù)分布規(guī)律研究*
        樂在其中 研我自由——記清華大學數(shù)學科學系助理教授宗正宇
        兩類ω-超廣義函數(shù)空間的結構表示
        老妇女性较大毛片| 亚洲一区二区在线观看av| 美女露出自己的性感大胸一尤内衣| 久久久久亚洲av成人无码| 欧美丰满大爆乳波霸奶水多| 产精品无码久久_亚洲国产精| 免费人成黄页网站在线一区二区| 在线观看特色大片免费视频| 国产三级在线观看播放视频| 偷拍网日本一区二区三区| 日本一二三区在线不卡| 国产亚洲精品第一综合另类| 亚洲av无码日韩精品影片| 无码超乳爆乳中文字幕| 日日噜噜噜夜夜狠狠久久蜜桃| 亚洲av无码乱码在线观看富二代 | 亚洲av成人综合网成人| 性生交大全免费看| 欧美日韩免费一区中文字幕| 精品一区2区3区4区| 精品综合久久久久久888蜜芽| 在线视频国产91自拍| 欧美黑人xxxx又粗又长| 久久精品国产亚洲AV成人公司| 国产精品一区二区三区女同| 久久天天躁夜夜躁狠狠85麻豆| 国产成人精品999在线观看| 亚洲成a人网站在线看| 男女动态91白浆视频| 99久久精品免费观看国产| 成年视频国产免费观看| 亚洲黄色官网在线观看| 91九色老熟女免费资源| 性色av无码一区二区三区人妻| 午夜国产精品久久久久| 国产在线av一区二区| 国产色在线 | 亚洲| 国产成人户外露出视频在线| 亚洲国产精品天堂久久久 | 国产免费AV片在线看| 五十路在线中文字幕在线中文字幕|