李鵬茂, 薩楚爾夫,2, 蘇少龍
(1.內(nèi)蒙古師范大學(xué)物理與電子信息學(xué)院, 呼和浩特 010022; 2.內(nèi)蒙古師范大學(xué)圖書(shū)館, 呼和浩特 010022)
薛定諤貓態(tài)光場(chǎng)與二能級(jí)原子相互作用系統(tǒng)的量子特性
李鵬茂1, 薩楚爾夫1,2, 蘇少龍1
(1.內(nèi)蒙古師范大學(xué)物理與電子信息學(xué)院, 呼和浩特 010022; 2.內(nèi)蒙古師范大學(xué)圖書(shū)館, 呼和浩特 010022)
在非旋波近似下,通過(guò)采用相干態(tài)正交化展開(kāi)的方法,研究了薛定諤貓態(tài)光場(chǎng)與二能級(jí)原子相互作用系統(tǒng)中,原子的布局?jǐn)?shù)和光場(chǎng)的反聚束效應(yīng),并與旋波近似下的結(jié)果進(jìn)行了對(duì)比.在旋波近似與非旋波近似下,討論了初始光場(chǎng)強(qiáng)度、相干態(tài)間的相位角以及失諧量對(duì)原子布局?jǐn)?shù)和光場(chǎng)反聚束效應(yīng)的影響;在非旋波近似下,討論了強(qiáng)弱耦合情況下光場(chǎng)的反聚束效應(yīng).研究結(jié)果表明:旋波近似與非旋波近似下,原子的布局?jǐn)?shù)隨著初始光場(chǎng)強(qiáng)度的不同,表現(xiàn)出不同的特性;當(dāng)初始光場(chǎng)強(qiáng)度較小時(shí),旋波近似與非旋波近似下,原子的布局?jǐn)?shù)表現(xiàn)出相同的特性;隨著初始光場(chǎng)強(qiáng)度的增大,旋波近似下,原子的布局?jǐn)?shù)將表現(xiàn)出坍塌現(xiàn)象.耦合強(qiáng)度較大時(shí),光場(chǎng)的聚束與反聚束效應(yīng)在非旋波近似與旋波近似下有較大的區(qū)別;非旋波近似下,隨著初始光場(chǎng)強(qiáng)度的增大,光場(chǎng)一直處于聚束效應(yīng)狀態(tài);而旋波近似下,光場(chǎng)的聚束效應(yīng)與反聚束效應(yīng)交替出現(xiàn).
薛定諤貓態(tài); 非旋波近似; 布局?jǐn)?shù)反轉(zhuǎn); 反聚束效應(yīng)
近幾十年來(lái),量子光學(xué)的重要進(jìn)展之一就是構(gòu)造出了許多光場(chǎng)的非經(jīng)典態(tài),薛定諤貓態(tài)就是其中之一,它是由在宏觀上可區(qū)分的兩個(gè)或多個(gè)相干態(tài)疊加而形成的一種量子態(tài),具有特殊的非經(jīng)典特性.量子光學(xué)中,當(dāng)原子與腔場(chǎng)的耦合強(qiáng)度較小時(shí),旋波近似J-C模型因?yàn)榭梢跃_求解而被廣泛應(yīng)用.人們利用這一模型對(duì)薛定諤貓態(tài)光場(chǎng)與原子相互作用系統(tǒng)的量子特性已進(jìn)行了大量的研究,并取得了一系列重要的研究成果[1-6],如壓縮性[5]、高階壓縮性、亞泊松分布以及光子數(shù)振蕩等.隨著技術(shù)的發(fā)展和研究水平的提高,近年來(lái),人們開(kāi)始利用量子固態(tài)裝置代替?zhèn)鹘y(tǒng)的原子-腔模式,來(lái)研究原子與光場(chǎng)相互作用的量子特性.實(shí)驗(yàn)結(jié)果所提供的光譜分析表明,其耦合強(qiáng)度比原子-腔模式下獲得的強(qiáng)度大3-4個(gè)數(shù)量級(jí),此時(shí)系統(tǒng)中的光場(chǎng)壓縮[6]、原子反轉(zhuǎn)[7]、場(chǎng)Q函數(shù)、原子壓縮等都與在旋波近似下所得的結(jié)果都有很大的不同.這是由于在非旋波近似下,相互作用系統(tǒng)中虛光子的作用引起的,所以研究非旋波近似J-C模型中的量子特性具有重要的理論和實(shí)際意義.本文將在非旋波近似下,通過(guò)采用相干態(tài)正交展開(kāi)的方法,對(duì)薛定諤貓態(tài)光場(chǎng)與二能級(jí)原子相互作用系統(tǒng)中,原子的布局?jǐn)?shù)反轉(zhuǎn)和光場(chǎng)聚束效應(yīng)進(jìn)行了研究.
在非旋波近似下,一個(gè)單模光場(chǎng)與二能級(jí)原子相互作用哈密頓量為(?=1)
(1)
對(duì)(1)式做如下變換:
(2)
則(1)式可表示為:
(3)
現(xiàn)令(3)式的定態(tài)波函數(shù)為
|-〉=|φ1〉|e〉+|φ2〉|g〉
(4)
將(3)和(4)式代入薛定諤方程:
H|-〉=E|-〉,
(5)
利用|e〉,|g〉的正交性得:
(6)
(7)
引入新的玻色算符[7-8]
則(6)和(7)式可以改寫(xiě)為
(8)
(9)
令
(10)
其中|n〉A(chǔ),|n〉B分別為A空間或B空間的Fock態(tài),或稱(chēng)為平移Fock態(tài)[9](displacedFockstate).所以由|n〉A(chǔ)和|n〉B構(gòu)成了兩組新的完備歸一基.|n〉A(chǔ)和|n〉B的定義如下:
(11)
(12)
(13)
(14)
(15)
(16)
假設(shè)腔場(chǎng)的初態(tài)處于薛定諤貓態(tài)
(17)
式中:
若原子初始時(shí)刻處于上能級(jí),則
|t=0〉=|α,φ〉|E〉
(18)
將(2)和(17)式代入(18)式并根據(jù)|e〉,|g〉的正交性,(18)式可轉(zhuǎn)變?yōu)?/p>
(19)
(20)
對(duì)(19)和(20)兩式分別左乘A〈m|,B〈m|,得
(21)
(22)
(23)
對(duì)(21)和(22)式求解,可求出fi,則任意時(shí)刻的波函數(shù)可表示為
(24)
由于布局?jǐn)?shù)反轉(zhuǎn)W(t)以及二階相干度G2(t)的表示形式十分復(fù)雜,對(duì)于布局?jǐn)?shù)反轉(zhuǎn)W(t)和二階相干度G2(t)與各參量的相互影響關(guān)系將采用數(shù)值計(jì)算的方法進(jìn)行分析.下面主要分析和討論相干態(tài)間的相位角、初始光場(chǎng)強(qiáng)度和耦合強(qiáng)度對(duì)原子布局?jǐn)?shù)反轉(zhuǎn)W(t)和光場(chǎng)的二階相干度G2(t)的影響.
3.1 原子的布局?jǐn)?shù)反轉(zhuǎn)
由(24)式可以得到原子處于上能級(jí)的布局幾率為:
所以原子的布局?jǐn)?shù)反轉(zhuǎn)相應(yīng)為
W(t)=2P上-1
3.2 光場(chǎng)的反聚束效應(yīng)
光場(chǎng)的聚束與反聚束效應(yīng)由二階相干度來(lái)描述,二階相干度定義為
圖取不同值時(shí)原子布局?jǐn)?shù)反轉(zhuǎn)的時(shí)間演化曲線Fig.1 The time evolution of atomic population for different |α|2
其中
若G2(t)>1,則光場(chǎng)表現(xiàn)為聚束效應(yīng),G2(t)<1則為反聚束效應(yīng),當(dāng)G2(t)=1時(shí),則光場(chǎng)表現(xiàn)為聚束與反聚束的一個(gè)臨界狀態(tài).
圖取不同值時(shí)二階相干度G2(t)的演化Fig.2 The time evolution of the degree of second order coherence for different |α|2
圖 3 非旋波近似下,失諧量Δ取不同值時(shí)二階相干度G2(t)的演化Fig.3 The time evolution of the degree of second order coherence for different detuning volumes without RWA
本文通過(guò)采用相干態(tài)正交展開(kāi)的方法,在非旋波近似J-C模型下,對(duì)薛定諤貓態(tài)光場(chǎng)與二能級(jí)原子相互作用的量子特性進(jìn)行了研究,并與旋波近似下的結(jié)果進(jìn)行了對(duì)比.結(jié)果表明,隨著初始光場(chǎng)強(qiáng)度的增大,在非旋波近似下,原子的布局?jǐn)?shù)不會(huì)出現(xiàn)完全塌縮現(xiàn)象,而是出現(xiàn)很多鋸齒狀的高頻振蕩,但是在旋波近似下,原子的布局?jǐn)?shù)會(huì)出現(xiàn)完全塌縮現(xiàn)象;對(duì)于光場(chǎng)的反聚束效應(yīng),在非旋波近似下,光場(chǎng)完全表現(xiàn)出聚束效應(yīng),而旋波近似下光場(chǎng)的聚束與反聚束效應(yīng)交替出現(xiàn).產(chǎn)生這些現(xiàn)象的原因在于非旋波項(xiàng)的存在,并且在光場(chǎng)強(qiáng)度比較大時(shí),非旋波項(xiàng)對(duì)系統(tǒng)量子特性的影響也比較大.
[1]RenXZ,JiangDL,CongHL.Exactcalculationsoftheenergyspectraandthedynamicalpropertiesofatwo-levelsystem[J].ActaPhysicaSinica, 2009, 58 (8): 5394(in Chinese)[任學(xué)藻, 姜道來(lái), 叢紅璐. 精確計(jì)算非旋波近似下二能級(jí)系統(tǒng)的能譜和動(dòng)力學(xué)性質(zhì)[J]. 物理學(xué)報(bào), 2009, 58(8): 5394]
[2] Liu S Q, Guo Q, Tao X Y. Quantum dynamics of a cascade three-level atom interacting with coherent state in the counter rotating wave approximation[J].ActaPhysicaSinica, 1998, 47(9): 1481(in Chinese)[劉三秋, 郭琴, 陶向陽(yáng). 非旋波近似下級(jí)聯(lián)型三能級(jí)原子與腔場(chǎng)相互作用的量子動(dòng)力學(xué)性質(zhì)[J]. 物理學(xué)報(bào), 1998, 47(9): 1481]
[3] Liu T, Wang K L, Feng M. Lower ground state due to counter-rotating wave interaction in a trapped ion system [J].Phys. B, 2007, 40: 1967.
[4] Liu T, Feng M, Wang K L. Exact solution of quantum dynamics of a cantilever coupling to a single trapped ultracold ion [J].CommonTheor.Phys., 2007, 47 (3): 561.
[5] Peng J S, Li G X. Influences of the virtual photon process on the squeezing effects of a single mode light field [J].ActaPhysicaSinica, 1993, 42(4): 568(in Chinese)[彭金生, 李高翔. 虛光子過(guò)程對(duì)光場(chǎng)壓縮的影響[J]. 物理學(xué)報(bào), 1993, 42(4):568]
[6] Wu S M, Sachuerfu, Bao L. The atomic population inversion in the system of Schr?dinger cat state light field interacting with a two-level Atom under intrinsic decoherence condition [J].J.InnerMongoliaNormalUniv.:Nat.Sci.Ed., 2010, 39 (1): 40(in Chinese)[吳淑梅, 薩楚爾夫, 包麗. 存在內(nèi)稟退相干時(shí)薛定諤貓態(tài)光場(chǎng)中原子的布居數(shù)反轉(zhuǎn)[J]. 內(nèi)蒙古師范大學(xué)學(xué)報(bào)(自然科學(xué)漢文版), 2010, 39(1): 40]
[7] Chen Q H, Zhang Y Y, Liu T,etal. Numerically exact solution to the finite-size Dicke model [J] .Phys.Rev. A, 2008, 78 (5): 051801.
[8] Irish E K, Gea-Banacloche J, Martin I,etal. Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator [J].Phys.Rev. B, 2006, 72: 195410.
[9] Yurke B, Stoler D. Generating quantum mechanical super positions of macroscopically distinguishable states via amplitude dispersion [J].Phys.Rev.Lett., 1986, 57(1): 13.
[10] Zhang C H, Sachuerfu, Ge R L. Evolution of field entropy in a system of Schr?dinger cat state light field interacting with two moving entangled atoms [J].J.At.Mol.Phys., 2008, 25(6): 1415(in Chinese)[張彩花, 薩楚爾夫, 格日樂(lè). 運(yùn)動(dòng)糾纏雙原子與薛定諤貓態(tài)光場(chǎng)相互作用系統(tǒng)的場(chǎng)熵演化[J]. 原子與分子物理學(xué)報(bào), 2008, 25(6): 1415]
[11] Wang X C, Cao Z L. Photon antibunching effect in the system of two-mode entangled coherent states interacting with a moving V-type three-level atom [J].J.At.Mol.Phys., 2007, 24 (4): 785(in Chinese)[汪賢才, 曹卓良. 雙模光場(chǎng)與運(yùn)動(dòng)三能級(jí)原子作用系統(tǒng)的反聚束效應(yīng)[J]. 原子與分子物理學(xué)報(bào), 2007, 24(4): 785]
[12] Franco R Lo, Compagno G, Messina A,etal. Single-shot generation and detection of a two-photon generalized binomial state in a cavity [J].Phys.Rev. A, 2006, 74: 045803.
[13] Cirac J I, Zoller P. Quantum computations with cold trapped ions [J].Phys.Rev.Lett., 1995, 74: 4091.
[14] Zheng S, Zhu X W, Feng M. Motional quantum-state engineering and measurement in the strong-excitation regime [J].Phys.Rev. A, 2000, 62: 033807.
[15] Milburn G J. Intrisic decoherece in quantum mechanics [J].Phys.Rev. A, 1991, 44: 5401.
Quantum properties in a system of interaction between a two-level atom and the Schr?dinger cat state
LI Peng-Mao1, Sachuerfu1, 2, SU Shao-Long1
(1.College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China;2. Library of Inner Mongolia Normal University, Huhhot 010022, China)
Applying the method of coherent states orthogonalization expansion, the atomic population and the antibunching effect of the light field are studied in the system of interaction between a two-level atom and the Schr?dinger cat state without rotating wave approximation (RWA). The results are compared with those in RWA. The influences of the original strength of the light field and two coherent phase angles on the atomic population and antibunching effect with RWA and without RWA are discussed respectively, and the antibunching effect in the weak coupling condition is also discussed without RWA. The results show that the atomic populations with RWA and without RWA have different properties with the different original strengths of the light field. As the original strength of the light field is smaller, the atomic populations with RWA and without RWA show the same properties, but with the increase of the original strength of the light field the population with RWA will show the collapse phenomenon. When the coupling strength is larger, the antibunching effects with RWA and without RWA have bigger difference. Without RWA the light field will appear bunching effect, whereas with RWA it will appear alternately the bunching effect and the antibunching effect with the increase of the original strength of light field.
Schr?dinger cat state; Without RWA; Atomic population; The antibunching effect
103969/j.issn.1000-0364.2015.02.017
2013-11-06
內(nèi)蒙古自然科學(xué)基金(2013MS0115);內(nèi)蒙古師范大學(xué)“十百千”人才項(xiàng)目(RCPY-2-2012-K-038)
李鵬茂(1988—),男,山西省臨汾人,內(nèi)蒙古師范大學(xué)碩士研究生,主要從事量子光學(xué)研究.
薩楚爾夫. E-mail: Sacrf@imnu.edu.cn
O431.2
A
1000-0364(2015)02-0275-06