安聞,湯小晗,李萌,鄧鎖,盧美松
卵巢透明細(xì)胞癌(ovarian clear cell carcinoma,OCCC)是目前致死率最高的婦科惡性腫瘤[1]。其發(fā)病率與種族相關(guān),對(duì)美國(guó)女性的流行病學(xué)研究顯示,白人的發(fā)病率為4.8%,黑人為3.1%,亞洲人為11.1%[2]。2012年日本婦科癌癥委員會(huì)的年度報(bào)告顯示OCCC占卵巢癌的比例已超過(guò)25%[3]。近年研究認(rèn)為OCCC和子宮內(nèi)膜樣腫瘤起源于子宮內(nèi)膜異位癥(endometriosis,EMs)。與其他組織學(xué)類(lèi)型相比較,OCCC更易早期診斷,且未發(fā)生轉(zhuǎn)移時(shí)預(yù)后良好。然而,晚期病變預(yù)后很差且對(duì)現(xiàn)存的治療耐藥[4]。OCCC對(duì)于紫杉醇聯(lián)合卡鉑的敏感性低于其他組織學(xué)類(lèi)型[5],復(fù)發(fā)的OCCC對(duì)于化療方案明顯耐藥,敏感度低于10%[6]。因此,探索對(duì)于OCCC的靶向治療是亟待解決的問(wèn)題。OCCC獨(dú)特的生物學(xué)特性和臨床表現(xiàn)很大程度上取決于相關(guān)分子通路的激活[7]。磷脂酰肌醇3激酶/蛋白激酶B/哺乳動(dòng)物雷帕霉素靶體蛋白(PI3K/AKT/mTOR)信號(hào)通路在OCCC中起著重要作用。綜述該通路與OCCC關(guān)系的研究進(jìn)展。
PI3K/AKT/mTOR信號(hào)通路不僅在正常細(xì)胞生理過(guò)程中發(fā)揮重要作用,在腫瘤細(xì)胞生成、繁殖和轉(zhuǎn)移的過(guò)程中也是主要的調(diào)節(jié)器。該通路主要由PI3K,AKT和mTOR 3個(gè)分子組成。PI3K是脂質(zhì)激酶家族中的一員,能特異性地使磷酸肌醇環(huán)上的3-羥基發(fā)生磷酸化。AKT是信號(hào)通路中重要的蛋白激酶,其作為PI3K的下游靶蛋白在PI3K/AKT/mTOR信號(hào)通路中發(fā)揮核心作用。AKT的持續(xù)活化狀態(tài)與腫瘤的關(guān)系極為密切,其異常激活代表腫瘤細(xì)胞對(duì)于凋亡誘導(dǎo)產(chǎn)生耐受,也意味著細(xì)胞增殖與生長(zhǎng)代謝的異常增加。mTOR是一種通路相關(guān)的蛋白激酶,磷酸化mTOR能激活與mRNA相關(guān)的蛋白以增強(qiáng)mRNA的轉(zhuǎn)錄和翻譯。
PI3K/AKT/mTOR信號(hào)通路的活化可以抑制由多種刺激誘發(fā)的細(xì)胞凋亡,加快細(xì)胞周期進(jìn)展,從而促進(jìn)細(xì)胞的生長(zhǎng)和增殖;還可以參與血管形成、腫瘤的侵襲和轉(zhuǎn)移,在腫瘤的形成和發(fā)展中扮演非常重要的角色。
PI3K/AKT/mTOR信號(hào)通路中的多種蛋白在OCCC中常表達(dá)異常[8],表現(xiàn)為PI3K催化亞單位α(PIK3CA)的突變,第10染色體同源丟失性磷酸酶-張力蛋白(PTEN)缺失,AKT1、AKT2和AKT3的擴(kuò)增。
Kuo等[9]在OCCC患者中已證實(shí)PIK3CA(編碼p110a)突變導(dǎo)致PI3K活性的過(guò)度活躍。也有研究表明OCCC患者的子宮內(nèi)膜異位病灶存在PIK3CA突變[10]。因此,PI3K途徑在OCCC的病理生理過(guò)程中起到重要作用,且PIK3CA突變是子宮內(nèi)膜異位相關(guān)的OCCC的早期表現(xiàn)。Kinross等[11]發(fā)現(xiàn)存在PIK3CA突變的患者中,40%的患者同時(shí)有調(diào)節(jié)基因PIK3R1或者PTEN的失活。由此推論P(yáng)I3K作用的輔調(diào)節(jié)蛋白PTEN的缺失與PIK3CA在致瘤過(guò)程中起到協(xié)同作用。Tan等[12]在生存期較短的OCCC患者中發(fā)現(xiàn)了AKT2的擴(kuò)增。另有研究對(duì)原發(fā)性卵巢癌患者組織中磷酸化mTOR的表達(dá)進(jìn)行免疫組化分析,結(jié)果表明mTOR在透明細(xì)胞癌中(71.2%)比在漿液性腫瘤中(45.7%)更加活躍[13]。
迄今為止,已有多種PI3K/AKT/mTOR途徑的抑制劑通過(guò)卵巢癌模型進(jìn)行了臨床前研究。Lin等[14]證明了AKT抑制劑MK-2206能通過(guò)不同的機(jī)制在人卵巢腺癌細(xì)胞系SKOV3(活化的AKT)和人卵巢透明細(xì)胞癌細(xì)胞系ES2(未活化的AKT)中增加紫杉醇或順鉑的細(xì)胞毒性效應(yīng)。mTOR抑制劑依維莫司在順鉑敏感的親本和順鉑耐藥的OCCC細(xì)胞系中均可抑制細(xì)胞的生長(zhǎng)[15]。然而,OCCC細(xì)胞株對(duì)于BEZ235或替西羅莫司(均為PI3K/mTOR的雙重抑制劑)的敏感度與突變狀態(tài)不相關(guān),但在較高濃度BEZ235時(shí)OCCC細(xì)胞表現(xiàn)出G1期阻滯和凋亡。Oishi等[16]證實(shí)BEZ235在小鼠卵巢癌細(xì)胞(OVISE)能顯著抑制腫瘤生長(zhǎng)。Kashiyama等[17]指出雙重PI3K/mTOR抑制劑DS-7423是一個(gè)有前途的OCCC分子靶向治療藥物。
目前,一個(gè)擁有國(guó)際合作研究支持的婦科腫瘤組正在評(píng)估聯(lián)合mTOR抑制劑替西羅莫司、卡鉑和紫杉醇是否可成為治療晚期OCCCs的一線方案[18]。雖然替西羅莫司在OCCC中的調(diào)節(jié)作用缺乏臨床依據(jù),但已證實(shí)其在其他腫瘤細(xì)胞中發(fā)揮的作用。一項(xiàng)隨機(jī)對(duì)照試驗(yàn)顯示,與傳統(tǒng)的治療方式相比,使用替西羅莫司治療高危轉(zhuǎn)移性腎細(xì)胞癌可以顯著延長(zhǎng)無(wú)進(jìn)展生存期(PFS)和總生存期(OS)[19]。 另有研究證明:替西羅莫司和去乙酰化酶抑制劑丙戊酸在誘導(dǎo)細(xì)胞周期阻滯、增強(qiáng)細(xì)胞自噬作用和抑制淋巴瘤細(xì)胞增殖方面具有明顯的協(xié)同作用[20],這為藥物的聯(lián)合治療提供了進(jìn)一步的理論基礎(chǔ),具有較好的臨床應(yīng)用前景。
ARID1A突變是OCCC中最常見(jiàn)的突變[5]。46%~57%的OCCC中可見(jiàn)ARID1A突變,而在高分化的漿液性卵巢癌中無(wú)此突變出現(xiàn)[6]。Katagiri等[21]對(duì)OCCC患者的研究發(fā)現(xiàn):ARID1A蛋白低表達(dá)能導(dǎo)致低生存率,同時(shí)也更易對(duì)順鉑產(chǎn)生耐藥性。
ARID1A基因編碼富含腺嘌呤和胸腺嘧啶堿基功能域蛋白1A,也被叫做BAF250a,屬于SWI/SNF染色體重組的復(fù)合體家族,是一個(gè)含100個(gè)氨基酸的DNA結(jié)合區(qū),可以結(jié)合DNA的一系列特異性序列[22]。這個(gè)復(fù)合體通過(guò)協(xié)助DNA修復(fù)蛋白,如p53、BRCA1和GADD45等在DNA直接損傷的修復(fù)中起主要作用[23]。由于許多惡性腫瘤(乳腺癌[24],胰腺癌[25]和胃癌[26])中出現(xiàn)大量的亞基突變,SWI/SNF復(fù)合體被越來(lái)越多的研究者認(rèn)為是腫瘤抑制性復(fù)合體。Yamamoto等[27]在對(duì)假定的卵巢透明細(xì)胞癌早期病變組織進(jìn)行研究后認(rèn)為:86%的無(wú)異型性的EMs,100%的有異型性的EMs、良性腫瘤和交界性的透明細(xì)胞腺纖維瘤發(fā)現(xiàn)了ARID1A缺失。這個(gè)結(jié)果表明出現(xiàn)ARID1A蛋白表達(dá)的缺失可以作為OCCC的最早期表現(xiàn)。
在OCCC中,PIK3CA突變與ARID1A缺失呈正相關(guān):71%存在PIK3CA突變的OCCC存在ARID1A缺失;而在ARID1A缺失的腫瘤細(xì)胞中伴有PIK3CA突變的比例為46%,而在表達(dá)ARID1A的腫瘤中僅有17%的PI3KCA發(fā)生突變[28]。
盡管ARID1A被認(rèn)為是一個(gè)抑癌基因,其突變卻常與活化PIK3CA突變和(或)PTEN表達(dá)缺失共存,且能下調(diào)PI3K/AKT/mTOR信號(hào)通路的活化[29]。此外,在子宮內(nèi)膜癌中已證實(shí)ARID1A表達(dá)的缺失增加了AKT的磷酸化[30]。同樣,伴隨PIK3CA基因突變和PTEN表達(dá)缺失時(shí),在ARID1A表達(dá)缺失的OCCC組織中,AKT磷酸化無(wú)法上調(diào)[28]。這些觀察結(jié)果提示了ARID1A突變和PI3K/AKT通路活化間的相互依賴(lài)性,表明腫瘤細(xì)胞ARID1A的表達(dá)缺失取決于PI3K/AKT途徑的激活作用,因此也可能更易受其抑制[31]。此外,Samartzis等[32]的研究還表明,ARID1A缺失的細(xì)胞系對(duì)PI3K抑制劑(buparlisib)和AKT抑制劑(哌力福新,perifosine)的敏感性明顯增加。
目前對(duì)于OCCC的治療方案仍與漿液性卵巢癌一致,然而OCCC的5年生存率卻明顯低于漿液性卵巢癌。造成OCCC預(yù)后差的主要原因是對(duì)目前所用的化療藥物耐藥。PI3K/AKT/mTOR信號(hào)通路在OCCC的發(fā)生和發(fā)展過(guò)程中發(fā)揮著重要作用。目前,對(duì)該通路的調(diào)節(jié)機(jī)制及具體作用的認(rèn)識(shí)尚不完全,還需要更多的、更全面的、綜合的研究來(lái)進(jìn)一步探索。隨著對(duì)PI3K/AKT/mTOR信號(hào)通路在OCCC中研究的逐漸深入,以及抑制劑的發(fā)現(xiàn)和試驗(yàn),針對(duì)該信號(hào)通路開(kāi)發(fā)新的治療藥物以及靶向基因治療方法,將對(duì)OCCC的治療具有深遠(yuǎn)意義。
[1] Siegel R,Naishadham D,Jemal A.Cancer statistics,2012[J].CA Cancer J Clin,2012,62(1):10-29.
[2] Anglesio MS,Carey MS,K觟bel M,et al.Clear cell carcinoma of the ovary:a report from the first Ovarian Clear Cell Symposium,June 24th,2010[J].Gynecol Oncol,2011,121(2):407-415.
[3] Japanese Gynecologic Cancer Committee.The annual report of the Japanese Society of Obstetrics and Gynecology 2010[J].Acta Obstet Gynecol Jpn,2012,64(7):1029-1141.
[4] Okamoto A,Glasspool RM,Mabuchi S,et al.Gynecologic Cancer InterGroup(GCIG)consensus review for clear cell carcinoma of the ovary[J].Int J Gynecol Cancer,2014,24(9 Suppl 3):20-25.
[5] Jin Y,Li Y,Pan L.The target therapy of ovarian clear cell carcinoma[J].Onco Targets Ther,2014,7:1647-1652.
[6] Takano M,Sugiyama T,Yaegashi N,et al.Low response rate of second-line chemotherapy for recurrent or refractory clear cell carcinoma of the ovary:a retrospective Japan Clear Cell Carcinoma Study[J].Int J Gynecol Cancer,2008,18(5):937-942.
[7] Penson RT,Dizon DS,Birrer MJ,et al.Clear cell cancer of the ovary[J].Curr Opin Oncol,2013,25(5):553-557.
[8] Yamamoto S,Tsuda H,Takano M,et al.PIK3CA mutations and loss of ARID1A protein expression are early events in the development of cystic ovarian clear cell adenocarcinoma [J].Virchows Arch,2012,460(1):77-87.
[9] Kuo KT,Mao TL,Jones S,et al.Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma[J].Am J Pathol,2009,174(5):1597-1601.
[10] Yamamoto S,Tsuda H,Takano M,et al.PIK3CA mutation is an early event in the development of endometriosis-associated ovarian clear cell adenocarcinoma[J].J Pathol,2011,225(2):189-194.
[11] Kinross KM,Montgomery KG,Kleinschmidt M,et al.An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice[J].J Clin Invest,2012,122(2):553-557.
[12] Tan DS,Iravani M,McCluggage WG,et al.Genomic analysis reveals the molecular heterogeneity of ovarian clear cell carcinomas[J].Clin Cancer Res,2011,17(6):1521-1534.
[13] Hisamatsu T,Mabuchi S,Matsumoto Y,et al.Potential role of mTORC2 as a therapeutic target in clear cell carcinoma of the ovary[J].Mol Cancer Ther,2013,12(7):1367-1377.
[14] Lin YH,Chen BY,Lai WT,et al.The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells[J].Naunyn Schmiedebergs Arch Pharmacol,2015,388(1):19-31.
[15] Mabuchi S,Kawase C,Altomare DA,et al.mTOR is a promising therapeutic target both in cisplatin-sensitive and cisplatin-resistant clear cell carcinoma of the ovary[J].Clin Cancer Res,2009,15(17):5404-5413.
[16] Oishi T,Itamochi H,Kudoh A,et al.The PI3K/mTOR dual inhibitor NVP-BEZ235 reduces the growth of ovarian clear cell carcinoma[J].Oncol Rep,2014,32(2):553-558.
[17] Kashiyama T,Oda K,Ikeda Y,et al.Antitumor activity and induction of TP53 -dependent apoptosis toward ovarian clear cell adenocarcinoma by the dual PI3K/mTOR inhibitor DS-7423[J].PLoS One,2014,9(2):e87220.
[18] National Cancer Institute.Temsirolimus,carboplatin,and paclitaxel as first-line therapy in treating patients with newly diagnosed stageⅢ-Ⅳ clear cell ovarian cancer[EB/OL].[2014-06-23].https://clinicaltrials.gov/ct2/show/NCT01196429.
[19] Hudes G,Carducci M,Tomczak P,et al.Temsirolimus,Interferon Alfa,or Both for Advanced Renal-Cell Carcinoma[J].N Engl J Med,2007,356(22):2271-2281.
[20] 鄭重,趙艷,董麗華,等.丙戊酸聯(lián)合替西羅莫司抑制彌漫大B細(xì)胞淋巴瘤細(xì)胞生長(zhǎng)的機(jī)制研究 [J].中國(guó)實(shí)驗(yàn)血液學(xué)雜志,2013,21(6):1441-1447.
[21] Katagiri A,Nakayama K,Rahman MT,et al.Loss of ARID1A expression is related toshorter progression-free survival and chemoresistance in ovarianclear cell carcinoma [J].Mod Pathol 2012,25(2):282-288.
[22] Wilson BG,Roberts CW.SWI/SNF nucleosome remodellers and cancer[J].Nat Rev Cancer,2011,11(7):481-492.
[23] Reisman D,Glaros S,Thompson EA.The SWI/SNF complex and cancer[J].Oncogene,2009,28(14):1653-1668.
[24] Mamo A,Cavallone L,Tuzmen S,et al.An integrated genomic approach identifies ARID1A as a candidate tumor-suppressor gene in breast cancer[J].Oncogene,2012,31(16):2090-2100.
[25] Shain AH,Giacomini CP,Matsukuma K,et al.Convergent structural alterationsdefine SWItch/Sucrose NonFermentable (SWI/SNF)chromatin remodeler as a central tumor suppressive complex in pancreatic cancer[J].Proc Natl Acad Sci U S A,2012,109(5):E252-E259.
[26] Shain AH,Pollack JR.The spectrum of SWI/SNF mutations,ubiquitous in human cancers[J].PLoS One,2013,8(1):e55119.
[27] Yamamoto S,Tsuda H,Takano M,et al.Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations[J].Mod Pathol,2012,25(4):615-624.
[28] Wiegand KC,Hennessy BT,Leung S,et al. A functional proteogenomic analysis of endometrioid and clear cell carcinomas using reverse phase protein array and mutation analysis:protein expression is histotype-specific and loss of ARID1A/BAF250a is associated with AKT phosphorylation[J].BMC Cancer,2014,14:120.
[29] Yamamoto S,Tsuda H,Takano M,et al.PIK3CA mutations and loss of ARID1A protein expression are early events in the development of cystic ovarian clear cell adenocarcinoma [J].Virchows Arch,2012,460(1):77-87.
[30] LiangH,CheungLW,LiJ,etal.Whole-exomesequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer[J].Genome Res,2012,22(11):2120-2129.
[31] Samartzis EP,Noske A,Dedes KJ,et al.ARID1A mutations and PI3K/AKT pathway alterations in endometriosis and endometriosisassociated ovarian carcinomas[J].Int J Mol Sci,2013,14(9):18824-18849.
[32] SamartzisEP,GutscheK,DedesKJ,etal.LossofARID1A expression sensitizes cancer cells to PI3K-and AKT-inhibition[J].Oncotarget,2014,5(14):5295-5303.