閆東娟, 曹振東, 付世建
重慶師范大學(xué), 進(jìn)化生理與行為學(xué)實(shí)驗(yàn)室, 動(dòng)物生物學(xué)重慶市重點(diǎn)實(shí)驗(yàn)室, 重慶 401331
尾鰭缺失和恢復(fù)生長(zhǎng)對(duì)不同生境的兩種鯉科魚(yú)類(lèi)快速啟動(dòng)游泳能力的影響
閆東娟, 曹振東, 付世建*
重慶師范大學(xué), 進(jìn)化生理與行為學(xué)實(shí)驗(yàn)室, 動(dòng)物生物學(xué)重慶市重點(diǎn)實(shí)驗(yàn)室, 重慶 401331
為了考查尾鰭切除及其恢復(fù)生長(zhǎng)對(duì)偏好靜水環(huán)境的鯽魚(yú)(Carassiusauratus)與偏好激流環(huán)境的寬鰭鱲(Zaccoplatypus)兩種鯉科魚(yú)類(lèi)快速啟動(dòng)游泳能力的影響,將鯽魚(yú)幼魚(yú)((6.34 ± 0.02) cm)和寬鰭鱲幼魚(yú)((6.26 ± 0.12) cm)各16尾,其中8尾在(25.0 ± 0.5) ℃的條件下分別進(jìn)行尾鰭切除、20 d恢復(fù)生長(zhǎng)、再次切除處理,另外8尾作為對(duì)照組;測(cè)量計(jì)算兩種實(shí)驗(yàn)魚(yú)的相關(guān)形態(tài)參數(shù)并采用電刺激方式,通過(guò)高速攝像機(jī)獲取實(shí)驗(yàn)魚(yú)的影像資料,分析計(jì)算后獲得快速啟動(dòng)相關(guān)參數(shù)。結(jié)果顯示:鯽魚(yú)的細(xì)度比(FR)顯著小于寬鰭鱲(P< 0.01),尾鰭指數(shù)(FI)卻顯著大于寬鰭鱲(P<0.01),兩種實(shí)驗(yàn)魚(yú)的快速啟動(dòng)最大線速度(Vmax)、移動(dòng)距離(d)、相對(duì)旋轉(zhuǎn)半徑(RTr)和彎曲指數(shù)(BC)均無(wú)顯著差異;尾鰭切除后,兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)的Vmax、d和RTr與正常組相比均呈現(xiàn)顯著下降(P<0.01),其中鯽魚(yú)Vmax下降39%而寬鰭鱲下降24%;經(jīng)過(guò)20 d的恢復(fù)生長(zhǎng),兩種實(shí)驗(yàn)魚(yú)的尾鰭面積均恢復(fù)至切除前的60%,而快速啟動(dòng)的Vmax、d、RTr和BC卻與正常組(同樣經(jīng)過(guò)20 d生長(zhǎng))無(wú)顯著差異;尾鰭再次切除后與正常組相比,鯽魚(yú)和寬鰭鱲Vmax的下降幅度(17%和9%)與首次切除后的(39%和24%)相比均呈現(xiàn)降低的趨勢(shì),其中鯽魚(yú)的下降幅度更大;尾鰭再次切除后與正常組相比,寬鰭鱲的BC顯著增大(P= 0.046)。結(jié)果表明:(1)鯽魚(yú)尾鰭對(duì)快速啟動(dòng)能力的作用大于寬鰭鱲;(2)而偏好急流環(huán)境的寬鰭鱲經(jīng)過(guò)恢復(fù)生長(zhǎng)表現(xiàn)出更加明顯的功能補(bǔ)償現(xiàn)象。
尾鰭切除; 再生; 鯉科魚(yú)類(lèi); 快速啟動(dòng)游泳能力; 生境
魚(yú)類(lèi)為滿足不同生境的運(yùn)動(dòng)需求,經(jīng)過(guò)長(zhǎng)期適應(yīng)性進(jìn)化會(huì)出現(xiàn)體型特化的現(xiàn)象[1-2]。自然界水體的水流速度存在較大的差異,水流速度在魚(yú)類(lèi)表型進(jìn)化過(guò)程中常常起著關(guān)鍵作用,偏好激流環(huán)境的魚(yú)類(lèi)具有較強(qiáng)的持續(xù)游泳能力,體型通常更趨向流線型[3-4];而在緩流或靜水水體中生存的魚(yú)類(lèi),運(yùn)動(dòng)更加靈活,具有較大的體高[1-2,5]??焖賳?dòng)是魚(yú)類(lèi)面臨捕食或逃逸時(shí)所采用的一種迅速而短暫的加速運(yùn)動(dòng)方式,盡管這種運(yùn)動(dòng)方式持續(xù)時(shí)間很短,移動(dòng)距離也有限,然而對(duì)魚(yú)類(lèi)在各種環(huán)境下的生存和生長(zhǎng)卻至關(guān)重要[6]。根據(jù)快速啟動(dòng)過(guò)程中首次肌肉收縮結(jié)束時(shí)魚(yú)體姿態(tài)的不同,可將其劃分為“C”型和“S”型啟動(dòng)[6],多數(shù)魚(yú)類(lèi)通常表現(xiàn)為“C”型啟動(dòng)方式[7]。
不同種類(lèi)魚(yú)的尾鰭大小和形狀不盡相同。尾鰭作為魚(yú)類(lèi)運(yùn)動(dòng)系統(tǒng)的重要器官在游泳過(guò)程中具有推進(jìn)及導(dǎo)向等重要作用[8],其大小和形狀在很大程度上影響?hù)~(yú)類(lèi)的游泳能力[9],較大的尾鰭面積和較低尾鰭縱橫比有助于魚(yú)類(lèi)的快速啟動(dòng)游泳能力[1,10]。由于種內(nèi)的爭(zhēng)斗[11]、種間捕食[12]以及病原體感染[13]等均會(huì)導(dǎo)致尾鰭的部分缺失,進(jìn)而導(dǎo)致魚(yú)類(lèi)運(yùn)動(dòng)能力的下降[12,14]。不同魚(yú)類(lèi)尾鰭缺失后的運(yùn)動(dòng)能力下降的程度存在明顯差異[15-16]。為了揭示生活在不同水流環(huán)境中兩種鯉科魚(yú)的尾鰭對(duì)運(yùn)動(dòng)能力的影響,本研究選用生活在寬闊水體中的鯽魚(yú)與偏好急流環(huán)境的寬鰭鱲為實(shí)驗(yàn)對(duì)象,考查其尾鰭形態(tài)的差異及尾鰭切除對(duì)快速啟動(dòng)游泳能力的影響。
魚(yú)類(lèi)尾鰭缺失后會(huì)在一段時(shí)間內(nèi)通過(guò)組織增生使缺失部分能夠在一定程度上得以恢復(fù)[17-18]。魚(yú)類(lèi)尾鰭恢復(fù)生長(zhǎng)及其對(duì)運(yùn)動(dòng)能力影響的相關(guān)資料鮮有報(bào)道。為了比較兩種實(shí)驗(yàn)魚(yú)的尾鰭恢復(fù)能力,考查恢復(fù)生長(zhǎng)的尾鰭對(duì)快速啟動(dòng)運(yùn)動(dòng)能力的影響;本研究將實(shí)驗(yàn)魚(yú)恢復(fù)生長(zhǎng)一段時(shí)間后,測(cè)量恢復(fù)生長(zhǎng)的尾鰭面積并再次評(píng)估恢復(fù)生長(zhǎng)的尾鰭對(duì)兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)運(yùn)動(dòng)能力的影響。
本實(shí)驗(yàn)選取鯉科魚(yú)類(lèi)寬鰭鱲和鯽魚(yú)為研究對(duì)象,通過(guò)尾鰭切除、20 d恢復(fù)生長(zhǎng)、再次切除處理;測(cè)量并計(jì)算兩種實(shí)驗(yàn)魚(yú)的相關(guān)形態(tài)參數(shù);并采用電刺激方式,通過(guò)高速攝像機(jī)獲取實(shí)驗(yàn)魚(yú)的影像資料,分析計(jì)算后獲得快速啟動(dòng)相關(guān)參數(shù),以揭示不同水流生境的兩種魚(yú)類(lèi)尾鰭在快速啟動(dòng)過(guò)程中的作用,考查恢復(fù)生長(zhǎng)情況及相關(guān)功能的變化。
1.1 實(shí)驗(yàn)魚(yú)的來(lái)源及馴化
寬鰭鱲捕捉于野外,鯽魚(yú)購(gòu)于重慶市北碚區(qū)歇馬鎮(zhèn)養(yǎng)殖場(chǎng)。將兩種魚(yú)放入實(shí)驗(yàn)室自?xún)艋h(huán)控溫水槽(1.2 m × 0.55 m × 0.55 m,實(shí)際水量250 L)馴養(yǎng)2周,期間以曝氣后的自來(lái)水作為實(shí)驗(yàn)用水,日換水量約為總水體的10%,馴化溫度為(25 ± 0.5)℃,光照周期為14 L: 10 D,溶氧水平 ≥ 7 mgO2/L,每天用商業(yè)顆粒餌料飽足投喂實(shí)驗(yàn)魚(yú)1次。馴養(yǎng)結(jié)束后,分別挑選身體健康、體重和體長(zhǎng)接近的兩種鯉科魚(yú)各16尾作為實(shí)驗(yàn)魚(yú),實(shí)驗(yàn)魚(yú)體重和體長(zhǎng)情況如表1。
表1 兩種實(shí)驗(yàn)魚(yú)不同實(shí)驗(yàn)組的體重和體長(zhǎng)(平均值±標(biāo)準(zhǔn)誤, n=8)Table 1 Body mass and body length of different groups of pale chub and crucian carp
1.2 實(shí)驗(yàn)方案
隨機(jī)選取兩種實(shí)驗(yàn)魚(yú)各16尾,其中8尾分別進(jìn)行尾鰭切除、20 d恢復(fù)生長(zhǎng)、再次切除處理,另外8尾作為對(duì)照組,對(duì)照組的左側(cè)位照片獲取形態(tài)參數(shù);首次切除處理后的兩種實(shí)驗(yàn)魚(yú)分別放回水體恢復(fù)2 d[19],拍攝整個(gè)快速啟動(dòng)過(guò)程并計(jì)算兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)指標(biāo);隨后進(jìn)行20 d的恢復(fù)生長(zhǎng),20 d后分別測(cè)量并計(jì)算兩種實(shí)驗(yàn)魚(yú)尾鰭形態(tài)參數(shù)及快速啟動(dòng)指標(biāo);最后將恢復(fù)尾鰭再次切除,并測(cè)量快速啟動(dòng)相關(guān)指標(biāo)。實(shí)驗(yàn)魚(yú)進(jìn)行尾鰭切除操作時(shí)均采用氨基甲酸乙酯(MS-222,50 mg/L)進(jìn)行麻醉處理。
1.3 形態(tài)參數(shù)測(cè)量與計(jì)算
采用軟件(tpsDig2)分析兩種實(shí)驗(yàn)魚(yú)的左側(cè)位照片,獲取兩種實(shí)驗(yàn)魚(yú)的基礎(chǔ)形態(tài)指標(biāo)。通過(guò)公式計(jì)算兩種實(shí)驗(yàn)魚(yú)的相關(guān)形態(tài)參數(shù)。
魚(yú)體細(xì)度比(FR):
FR=L/H
(1)
式中,L表示魚(yú)體體長(zhǎng),H表示魚(yú)體體高。
尾鰭縱橫比(AR):
AR=h2/S尾
(2)
式中,h表示尾鰭高度,S尾表示尾鰭面積。
尾鰭指數(shù)(FI):
FI=S尾/L2
(3)
式中,S尾表示尾鰭面積,L表示魚(yú)體體長(zhǎng)。
尾鰭相對(duì)面積S相對(duì)尾:
S相對(duì)尾=S尾/(S尾+S側(cè))
(4)
1.4 快速啟動(dòng)相關(guān)參數(shù)測(cè)量與計(jì)算
采用已報(bào)道方法[20-21]對(duì)兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)運(yùn)動(dòng)過(guò)程進(jìn)行測(cè)定,采用軟件(tpsDig2)分析圖片并獲取實(shí)驗(yàn)魚(yú)的質(zhì)心坐標(biāo)。用Excel(2003)處理采集的坐標(biāo)數(shù)據(jù),求得兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)的最大線速度(Vmax)、移動(dòng)距離(d)和質(zhì)心旋轉(zhuǎn)半徑(Tr)。Tr的計(jì)算公式為[22]:
Tr=D/2cos[(π-θ)/2]
(5)
式中,D為相鄰圖片質(zhì)心的移動(dòng)距離;θ為相鄰兩個(gè)質(zhì)心坐標(biāo)的向量夾角。由于質(zhì)心旋轉(zhuǎn)半徑隨魚(yú)體體長(zhǎng)成比例增加[6],因此采用旋轉(zhuǎn)半徑與體長(zhǎng)的比值來(lái)求得魚(yú)體的相對(duì)旋轉(zhuǎn)半徑(RTr)。彎曲指數(shù)(BC)為實(shí)驗(yàn)魚(yú)在快速啟動(dòng)第一階段末的最大彎曲度,用來(lái)反映魚(yú)類(lèi)提供給快速啟動(dòng)第二階段推力的大小[23],它的計(jì)算公式為[24]:
BC= 1 -CL/L
(6)
式中,BC表示快速啟動(dòng)第一階段末魚(yú)體彎曲系數(shù);CL表示快速啟動(dòng)第一階段末魚(yú)體吻段到尾端的長(zhǎng);L表示魚(yú)體體長(zhǎng)。
1.5 數(shù)據(jù)處理
實(shí)驗(yàn)數(shù)據(jù)采用Excel(2003)進(jìn)行常規(guī)計(jì)算,采用SPSS(17.0)軟件將每種實(shí)驗(yàn)魚(yú)各處理組的快速啟動(dòng)參數(shù)和兩種實(shí)驗(yàn)魚(yú)的形態(tài)參數(shù)進(jìn)行t-檢驗(yàn),單因素、雙因素方差分析;統(tǒng)計(jì)數(shù)值以平均值±標(biāo)準(zhǔn)誤(Mean ± SE)表示,顯著性水平規(guī)定為P<0.05。
2.1 不同水流生境中的兩種實(shí)驗(yàn)魚(yú)相關(guān)形態(tài)參數(shù)及恢復(fù)生長(zhǎng)后的變化
寬鰭鱲的FR顯著高于鯽魚(yú)(P<0.001)(表2,圖1),鯽魚(yú)的尾鰭面積和FI均顯著大于寬鰭鱲(P<0.01)。經(jīng)過(guò)20 d的恢復(fù)生長(zhǎng)兩種魚(yú)的AR和FI均顯著低于切除前(P<0.001),其中寬鰭鱲和鯽魚(yú)尾鰭面積分別恢復(fù)至原面積的62.60%和64.66%。
表2 魚(yú)種和尾鰭處理對(duì)兩種實(shí)驗(yàn)魚(yú)形態(tài)參數(shù)的影響(平均值±標(biāo)準(zhǔn)誤,n=8)Table 2 The effects of fish species and treatment on the morphological parameters of pale chub and crucian carp
*同一行數(shù)值間差異顯著(P< 0.05)
圖1 寬鰭鱲和鯽魚(yú)尾鰭完整、尾鰭切除及20 d尾鰭恢復(fù)照片F(xiàn)ig.1 The photos of caudal-fin-intact, caudal-fin-lost and 20d-regenerated pale chub and crucian carp
圖2 尾鰭切除對(duì)兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)最大線速度(Vmax)、移動(dòng)距離(d)、相對(duì)旋轉(zhuǎn)半徑(TRr)和彎曲指數(shù)(BC)的影響(平均值 ± 標(biāo)準(zhǔn)誤, n=8)Fig.2 The effect of caudal fin loss on maximum linear velocity (Vmax), moving distance (d), relative turning radius (TRr) and bending coefficient (BC) of fast-start process in pale chub and crucian carp
2.2 尾鰭切除對(duì)兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)運(yùn)動(dòng)參數(shù)的影響
兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)Vmax、d、RTr和BC均無(wú)顯著差異(圖2)。尾鰭切除后,兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)的Vmax、d和RTr均顯著下降(P< 0.01),其中寬鰭鱲Vmax、d和TRr的下降幅度分別為24%、33%和62%,鯽魚(yú)的下降幅度分別為39%、42%和65%;尾鰭切除后兩種實(shí)驗(yàn)魚(yú)的BC與正常組相比均無(wú)顯著差異(圖2)。
2.3 尾鰭恢復(fù)生長(zhǎng)及其對(duì)兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)運(yùn)動(dòng)參數(shù)的影響
經(jīng)過(guò)20 d的恢復(fù)生長(zhǎng),寬鰭鱲和鯽魚(yú)的快速啟動(dòng)Vmax、d、RTr和BC與經(jīng)過(guò)20 d生長(zhǎng)的正常組相比均無(wú)顯著差異(圖3)。寬鰭鱲恢復(fù)組的Vmax和d基本恢復(fù)完全,RTr恢復(fù)至正常組的89%,鯽魚(yú)恢復(fù)組的Vmax、d和RTr分別恢復(fù)至正常組的97%、85%和98%。
圖3 20 d的恢復(fù)生長(zhǎng)和尾鰭再次切除對(duì)兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)最大線速度(Vmax)、移動(dòng)距離(d)、相對(duì)旋轉(zhuǎn)半徑(TRr) 和彎曲指數(shù)(BC)的影響(平均值 ± 標(biāo)準(zhǔn)誤,寬鰭鱲正常組n=7,其余均n=8)Fig.3 The 20 d-recovery and caudal fin re-amputation on maximum linear velocity (Vmax), moving distance (d), relative turning radius (TRr) and bending coefficient (BC) in pale chub and crucian carp
2.4 尾鰭再次切除對(duì)兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)運(yùn)動(dòng)參數(shù)的影響
尾鰭再次切除后,寬鰭鱲快速啟動(dòng)Vmax、d和RTr與恢復(fù)組相比均顯著下降(圖3)(P<0.05),而B(niǎo)C卻顯著上升(P= 0.042),鯽魚(yú)僅Vmax呈現(xiàn)顯著下降(圖3),寬鰭鱲和鯽魚(yú)Vmax的下降幅度分別為14.72%和14.62%;與經(jīng)過(guò)20 d生長(zhǎng)的正常組相比,鯽魚(yú)快速啟動(dòng)Vmax和d呈現(xiàn)顯著下降(P<0.05),寬鰭鱲和鯽魚(yú)Vmax的下降幅度分別9%和17%,寬鰭鱲的BC顯著增加(P= 0.046),而鯽魚(yú)的BC有所增加,但不顯著(圖3)。
3.1 尾鰭對(duì)快速啟動(dòng)游泳能力的影響
一般認(rèn)為尾鰭面積的缺失使魚(yú)體向前的加速能力降低[9,12]。尾鰭部分切除或全部切除會(huì)導(dǎo)致鳊魚(yú)(Parabramispekinensis)、金魚(yú)(Carassiusauratus)、鯉魚(yú)(Cyprinuscarpio)和中華倒刺鲃(Spinibarbussinensis)有氧持續(xù)游泳能力下降[16,25];雄性食蚊魚(yú)(Gambusiaholbrooki)在天敵追捕下的無(wú)氧爆發(fā)游泳速度也會(huì)隨著尾鰭面積的減小而顯著降低[12]。有關(guān)尾鰭對(duì)快速啟動(dòng)游泳能力的研究鮮有報(bào)道,僅在虹鱒(Salmogardneri)的研究發(fā)現(xiàn)奇鰭被不同程度切除后,實(shí)驗(yàn)魚(yú)的快速啟動(dòng)能力顯著下降且與切除面積呈正相關(guān)[26]。本研究的兩種實(shí)驗(yàn)魚(yú)尾鰭切除后快速啟動(dòng)能力均顯著下降(圖2),可見(jiàn)尾鰭在兩種實(shí)驗(yàn)魚(yú)的快速啟動(dòng)能力方面起到重要作用。由于水流環(huán)境的不同使本研究的兩種實(shí)驗(yàn)魚(yú)體型產(chǎn)生很大差異,它們的尾鰭相對(duì)面積卻十分接近。然而在尾鰭缺失后,鯽魚(yú)的Vmax下降幅度為39%而寬鰭鱲僅下降24%,表明鯽魚(yú)的尾鰭在快速啟動(dòng)游泳中起的作用更大。鯽魚(yú)尾鰭在快速啟動(dòng)運(yùn)動(dòng)中的作用較大可能與其生存的水環(huán)境及由此適應(yīng)性進(jìn)化所形成的扁平的體型有關(guān)。
魚(yú)類(lèi)逃逸反應(yīng)的成功不僅與最大線速度有關(guān),還與魚(yú)類(lèi)快速啟動(dòng)過(guò)程的靈活性有關(guān)。RTr是評(píng)價(jià)魚(yú)類(lèi)快速啟動(dòng)靈活性的重要指標(biāo)[27],半徑越小則魚(yú)類(lèi)逃逸的靈活性越高。本研究發(fā)現(xiàn),尾鰭切除后兩種實(shí)驗(yàn)魚(yú)快速啟動(dòng)的RTr顯著下降(圖2),出現(xiàn)靈活性明顯增加的現(xiàn)象。表明這兩種實(shí)驗(yàn)魚(yú)尾鰭缺失后,最大速度的下降導(dǎo)致逃逸策略向靈活性增加的方向改變。
3.2 恢復(fù)生長(zhǎng)對(duì)快速啟動(dòng)游泳能力的影響
鰭缺失后魚(yú)類(lèi)通過(guò)組織的增生進(jìn)行恢復(fù)生長(zhǎng)[18],以盡快消除產(chǎn)生的不利影響。剽鱸(Etheostomaedwini)右胸鰭或尾鰭半葉進(jìn)行切除后,兩個(gè)月后缺失部分可完全恢復(fù)生長(zhǎng)至初始大小[17]。盡管尾鰭對(duì)兩種魚(yú)快速啟動(dòng)能力影響不同,本研究的兩種實(shí)驗(yàn)魚(yú)尾鰭恢復(fù)生長(zhǎng)速度卻沒(méi)有顯著差異(經(jīng)過(guò)20 d的恢復(fù)生長(zhǎng)尾鰭面積恢復(fù)至切除前的62%—64%)。盡管本研究的兩種實(shí)驗(yàn)魚(yú)尾鰭面積沒(méi)有完全恢復(fù),但它們的快速啟動(dòng)運(yùn)動(dòng)能力卻得到了全面恢復(fù)(圖3)。另外,尾鰭再次切除后與經(jīng)過(guò)20 d生長(zhǎng)的正常組相比,寬鰭鱲和鯽魚(yú)的快速啟動(dòng)的Vmax下降幅度(9%和17%)均小于初次尾鰭切除后(24%和39%),由此推論除恢復(fù)尾鰭面積作用以外,兩種實(shí)驗(yàn)魚(yú)還可能存在其他方面的功能補(bǔ)償,如尾鰭縱橫比的顯著降低(表2),生理生化功能的顯著增強(qiáng)(肌纖維變粗),運(yùn)動(dòng)姿態(tài)的更加協(xié)調(diào)等。更為有趣的是,盡管本研究寬鰭鱲和鯽魚(yú)尾鰭(60%)和快速啟動(dòng)能力(100%)的恢復(fù)速度相似,然而鯽魚(yú)尾鰭再次切除后快速啟動(dòng)Vmax下降幅度(17%)大于寬鰭鱲(9%),表明寬鰭鱲其他方面的功能補(bǔ)償作用更大。尾鰭切除后在快速啟動(dòng)能力的行為補(bǔ)償方面彎曲指數(shù)是一個(gè)常常被關(guān)注的指標(biāo),通常認(rèn)為彎曲指數(shù)的增加有助于提高動(dòng)物的快速啟動(dòng)能力[23-24]。蜥蜴(Euryceabislineata)成體通過(guò)增加彎曲指數(shù)來(lái)補(bǔ)償因變態(tài)導(dǎo)致推力的降低[24];鳊魚(yú)、鯉魚(yú)和中華倒刺鲃在尾鰭半切除和全切除后,通過(guò)增大擺幅(彎曲指數(shù)增加)來(lái)彌補(bǔ)尾鰭切除造成的不利影響[16,25]。本研究顯示,尾鰭再次切除后寬鰭鱲的彎曲指數(shù)與經(jīng)過(guò)20 d生長(zhǎng)的正常組相比呈顯著上升(P= 0.046),而鯽魚(yú)的卻無(wú)顯著變化(圖3),表明寬鰭鱲尾鰭恢復(fù)生長(zhǎng)后存在著明顯的行為補(bǔ)償現(xiàn)象。
尾鰭作為主要運(yùn)動(dòng)器官對(duì)魚(yú)類(lèi)的運(yùn)動(dòng)能力具有重要作用。生活開(kāi)闊水體中的鯽魚(yú)體型更趨側(cè)扁,尾鰭對(duì)快速啟動(dòng)游泳能力的作用更大;而生活在激流環(huán)境中的寬鰭鱲體型則更趨細(xì)長(zhǎng)的流線型,尾鰭恢復(fù)生長(zhǎng)后的快速啟動(dòng)能力表現(xiàn)出更明顯的補(bǔ)償現(xiàn)象,其中行為補(bǔ)償可能具有較大的權(quán)重。
[1] Langerhans R B, Layman C A, Shokrollahi A M, DeWitt T J. Predator-driven phenotypic diversification inGambusiaaffinis. Evolution, 2004, 58(10): 2305-2318.
[2] Fu S J, Cao Z D, Yan G J, Fu C, Pang X. Integrating environmental variation, predation pressure, phenotypic plasticity and locomotor performance. Oecologia, 2013, 173(2): 343-54.
[3] Langerhans R B, Chapman L J, DeWitt T J. Complex phenotype-environment associations revealed in an East African cyprinid. Journal of Evolutionary Biology, 2007, 20(3): 1171-1181.
[4] Yan G J, He X K, Cao Z D, Fu S J. An interspecific comparison between morphology and swimming performance in Cyprinids. Journal of Evolutionary Biology, 2013, 26(8): 1806-1815.
[5] Haas T C, Blum M J, Heins D C. Morphological responses of a stream fish to water impoundment. Biology Letters, 2010, 6(6): 803-806.
[6] Domenici P, Blake R W. The kinematics and performance of fish fast-start swimming. The Journal of Experimental Biology, 1997, 200(8): 1165-1178.
[7] Domenici P, Batty R S. Escape manoeuvres of schoolingClupeaharengus. Journal of Fish Biology, 1994, 45(SA): 97-110.
[8] Handegard N O, Pedersen G, Brix O. Estimating tail-beat frequency using split-beam echosounders. ICES Journal of Marine Science, 2009, 66(6): 1252-1258.
[9] Plaut I. Critical swimming speed: its ecological relevance. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2001, 131(1): 41-50.
[10] Domenici P, Turesson H, Brodersen J, Br?nmark C. Predator-induced morphology enhances escape locomotion in crucian carp. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1631): 195-201.
[11] Winemiller K O. Caudal eyespots as deterrents against fin predation in the Neoptropical Cichlid cichlidAstronotusocellatus. Copeia, 1990, (3): 665-673.
[12] Sinclair E L E, Ward A J W, Seebacher F. Aggression-induced fin damage modulates trade-offs in burst and endurance swimming performance of mosquitofish. Journal of Zoology, 2011, 283(4): 243-248.
[13] Ziskowski J, Mercaldo-Allen R, Pereira J J, Kuropat C, Goldberg R. The effects of fin rot disease and sampling method on blood chemistry and hematocrit measurements of winter flounder,Pseudopleuronectesamericanusfrom New Haven Harbor (1987—1990). Marine Pollution Bulletin, 2008, 56(4): 740-750.
[14] Ward D L. Effects of marking techniques and handling on swimming ability of Bonytail Chub. Journal of the Arizona-Nevada Academy of Science, 2003, 36(1): 34-36.
[15] Kasapi M, Domenici P, Blake R W, Harper D G. The kinematics and performance of the escape response in the knife fish (Xenomystusnigri). Canadian Journal of Zoology, 1993, 71(1): 189-195.
[16] Fu C, Cao Z D, Fu S J. The effects of caudal fin loss and regeneration on the swimming performance of three cyprinid fish species with different swimming capacities. The Journal of Experimental Biology, 2013, 216(16): 3164-3174.
[17] Champagne C E, Austin J D, Jelks H L, Jordan F. Effects of fin clipping on survival and position-holding behavior of brown darters (Etheostomaedwini). Copeia, 2008, (4): 916-919.
[18] B?ckelmann P K, Ochandio B S, Bechara I J. Histological study of the dynamics in epidermis regeneration of the carp tail fin (Cyprinuscarpio, Linnaeus, 1758). Brazilian Journal of Biology, 2010, 70(1): 217-223.
[19] Fu C, Cao Z D, Fu S J. The effects of caudal fin amputation on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2013, 164(3): 456-465.
[20] 王芳, 曹振東, 付世建, 陳波見(jiàn). 中華倒刺鲃?dòng)佐~(yú)的快速啟動(dòng)與逃逸行為. 生態(tài)學(xué)雜志, 2010, 29(11): 2181-2186.
[21] Yan G J, He X K, Cao Z D, Fu S J. The trade-off between steady and unsteady swimming performance in six cyprinids at two temperatures. Journal of Thermal Biology, 2012, 37(6): 424-431.
[22] Domenici P, Blake R W. The kinematics and performance of the escape response in the angelfish (Pterophyllumeimekei). The Journal of Experimental Biology, 1991, 156: 187-205.
[23] Webb P W. Fast-start performance and body form in seven species of teleost fish. The Journal of Experimental Biology, 1978, 74: 211-226.
[24] Azizi E, Landberg T. Effects of metamorphosis on the aquatic escape response of the two-lined salamander (Euryceabislineata). The Journal of Experimental Biology, 2002, 205(6): 841-849.
[25] 楊晗, 曹振東, 付世建. 尾鰭切除對(duì)鳊魚(yú)幼魚(yú)游泳能力、能量效率與行為的影響. 水生生物學(xué)報(bào), 2013, 37(1): 157-163.
[26] Webb P W. Effects of median-fin amputation on fast-start performance of rainbow trout (Salmogairdneri). The Journal of Experimental Biology, 1977, 68: 123-135.
[27] Domenici P. Escape responses in fish: Kinematics, performance and behavior//Domenici P, Kapoor B G, eds. Fish Locomotion: An Eco-ethological Perspective. Enfield: Science Publishers, 2010: 123-170.
The effects of caudal fin loss and regeneration on fast-start performance in juveniles of two cyprinid fish species
YAN Dongjuan, CAO Zhendong, FU Shijian*
LaboratoryofEvolutionaryPhysiologyandBehaviour,ChongqingKeyLaboratoryofAnimalBiology,ChongqingNormalUniversity,Chongqing401331,China
Swimming performance is an important capacity for fish species because it is closely related to the ability to gain food, to predator avoidance and to other daily activities. As an important locomotive organ for most fish species, the caudal fin plays a crucial role in propelling and guiding fish during swimming and thus the shape, size and stiffness of the caudal fin are all expected to strongly affect swimming performance. In nature, the caudal fins of fish species are frequently lost to some extent by aggressive behaviour, predation and diseases. To investigate the effects of caudal fin loss and regeneration on fast-start performance of crucian carp (Carassiusauratus, inhabiting in still water) and pale chub (Zaccoplatypus, inhabiting in rip current), 16 juveniles of both crucian carp (body length, (6.27 ± 0.04) cm) and pale chub (body length, (6.14 ± 0.12) cm) were allocated to two groups, respectively. One group (8 fish for each treatment) for the treatment of caudal-fin-amputation-regeneration (20 days) and re-amputation, the other group (8 fish for each treatment) for control. The movement of each fish was recorded by a high-speed camera after an electric stimulation for the analysis of fast-start parameter. Furthermore, the morphological parameters such as body length (L), body height (H), fitness ratio (FR), caudal fin aspect ratio (AR), relative caudal fin area ratio and caudal fin index (FI) in the two cyprinid fish species were measured. The experimental water temperature was maintained at (25.0 ± 0.5)℃. The results showed that the crucian carp showed a significant lowerFRand higherFIthan pale chub (P< 0.01), but the maximum linear velocity (Vmax), escape distance (d), relative turning radius (TRr) and bending coefficient (BC) showed no significant difference between the two cyprinid fish species. TheVmax,dandTRrduring fast-start process of both fish species decreased significantly after caudal fin loss (P< 0.01), with theVmaxof crucian carp decreased by 39% while that of pale chub decreased by 24% after caudal fin loss. After 20 days′ recovery, the areas of caudal fin of both fish species recovered about 60% those of the caudal-fin-intact fish. However, theVmax,d,RTrandBCof both caudal-fin-regenerated crucian carp and pale chub showed no significant difference compared with those of the control groups, respectively. Compared to the caudal-fin-intact fish, the decrease ofVmaxof crucian carp and pale chub after the second amputation (17% and 9%) was smaller than the first amputation (39% and 24%). The decrease ratio between the first and the second caudal fin amputation in crucian carp was larger than that of pale chub. However, the bending coefficient (BC) of pale chub increased significantly after the second caudal fin amputation compared with those of fin-intact group (P= 0.046). The results indicated that (1) the caudal fin of crucian carp played a more important role than that of pale chub during fast-start movement; and (2) the pale chub which prefer to rip current habitat showed more significant functional compensation after 20 days′ recovery.
caudal-fin-amputation; regeneration; cyprinids; fast-start swimming performance; habitat
國(guó)家自然科學(xué)基金項(xiàng)目(31172096); 重慶市自然科學(xué)基金重點(diǎn)項(xiàng)目(cstc2013jjB20003); 重慶市教委科研項(xiàng)目(KJ130624)
2013-05-17;
日期:2014-04-25
10.5846/stxb201305171097
*通訊作者Corresponding author.E-mail: shijianfu9@hotmail.com
閆東娟,曹振東,付世建.尾鰭缺失和恢復(fù)生長(zhǎng)對(duì)不同生境的兩種鯉科魚(yú)類(lèi)快速啟動(dòng)游泳能力的影響.生態(tài)學(xué)報(bào),2015,35(6):1947-1954.
Yan D J, Cao Z D, Fu S J.The effects of caudal fin loss and regeneration on fast-start performance in juveniles of two cyprinid fish species.Acta Ecologica Sinica,2015,35(6):1947-1954.