亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        泥質(zhì)砂巖液相滲透率計(jì)算新方法

        2015-03-07 03:59:07王亮毛志強(qiáng)孫中春羅興平宋永王振林
        地球物理學(xué)報 2015年10期
        關(guān)鍵詞:礦化度泥質(zhì)陽離子

        王亮, 毛志強(qiáng), 孫中春, 羅興平, 宋永, 王振林

        1 西南石油大學(xué)地球科學(xué)與技術(shù)學(xué)院, 成都 610500 2 國土資源部沉積盆地與油氣資源重點(diǎn)實(shí)驗(yàn)室, 成都 610081 3 油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室, 北京 102249 4 北京市地球探測與信息技術(shù)重點(diǎn)實(shí)驗(yàn)室, 北京 102249 5 新疆油田公司勘探開發(fā)研究院, 新疆克拉瑪依 834000

        ?

        泥質(zhì)砂巖液相滲透率計(jì)算新方法

        王亮1,2, 毛志強(qiáng)3,4, 孫中春5, 羅興平5, 宋永5, 王振林5

        1 西南石油大學(xué)地球科學(xué)與技術(shù)學(xué)院, 成都 610500 2 國土資源部沉積盆地與油氣資源重點(diǎn)實(shí)驗(yàn)室, 成都 610081 3 油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室, 北京 102249 4 北京市地球探測與信息技術(shù)重點(diǎn)實(shí)驗(yàn)室, 北京 102249 5 新疆油田公司勘探開發(fā)研究院, 新疆克拉瑪依 834000

        液相滲透率描述了巖石的滲流特性,是評價儲層與預(yù)測油氣產(chǎn)能的重要參數(shù).液相滲透率是指鹽水溶液在巖石孔隙中流動且與巖石孔隙表面黏土礦物發(fā)生物理化學(xué)作用時所測得的滲透率;液相滲透率的實(shí)驗(yàn)測量條件更加接近實(shí)際地層泥質(zhì)砂巖的條件,使得液相滲透率更能反映地層條件下泥質(zhì)砂巖的滲流特性;然而,現(xiàn)有的液相滲透率評價模型較少,且模型未能揭示液相滲透率與溶液礦化度之間的關(guān)系.基于此,開展了液相滲透模型推導(dǎo)與計(jì)算方法研究;文中首先將巖石等效為毛管束模型,推導(dǎo)建立了液相滲透率與比表面、喉道曲折度、總孔隙度、黏土束縛水孔隙度等參數(shù)之間的關(guān)系;其次,根據(jù)巖石物理體積模型,推導(dǎo)建立了黏土束縛水孔隙度與陽離子交換容量、溶液礦化度等參數(shù)的關(guān)系;最終,將黏土束縛水孔隙度引入液相滲透率計(jì)算公式,建立了基于總孔隙度、陽離子交換容量、溶液礦化度、比表面、喉道曲折度等參數(shù)的液相滲透率理論計(jì)算模型.液相滲透率計(jì)算模型與兩組實(shí)驗(yàn)數(shù)據(jù)均表明,液相滲透率隨陽離子交換容量的增大而降低,隨溶液礦化度的增大而增大.然而,液相滲透率理論計(jì)算模型的實(shí)際應(yīng)用中喉道曲折度、比表面等參數(shù)求取困難,直接利用理論模型計(jì)算液相滲透率受到限制.在分析液相滲透率與孔隙滲透率模型的基礎(chǔ)上,建立了液相滲透率與空氣滲透率之間的轉(zhuǎn)換模型,形成了利用轉(zhuǎn)化模型計(jì)算液相滲透率的新方法.為進(jìn)一步驗(yàn)證液相滲透率與空氣滲透率轉(zhuǎn)化模型的準(zhǔn)確性,基于兩組實(shí)驗(yàn)數(shù)據(jù),利用轉(zhuǎn)換模型計(jì)算了液相滲透率;液相滲透率計(jì)算結(jié)果與巖心測量液相滲透率實(shí)驗(yàn)結(jié)果對比顯示,液相滲透率計(jì)算結(jié)果與實(shí)際巖心測量結(jié)果吻合較好,文中建立的液相滲透率與空氣滲透率轉(zhuǎn)化模型合理可靠.

        液相滲透率;陽離子交換容量;溶液礦化度;泥質(zhì)砂巖

        1 引言

        滲透率描述了流體在巖石內(nèi)部流動的難易程度,是評價泥質(zhì)砂巖滲流特性與預(yù)測油氣產(chǎn)能的重要參數(shù).目前,對泥質(zhì)砂巖滲透率的評價主要集中在絕對滲透率與液相滲透率的評價兩個方面(匡立春等, 2002).絕對滲透率是指單一流體在巖石孔隙中流動而與巖石沒有發(fā)生物理化學(xué)作用時所測得的滲透率(孫建孟和閆國亮, 2012; 景成等, 2013; 閆國亮等, 2014).在滲透率實(shí)驗(yàn)測量中,由于空氣與巖石難以發(fā)生物理化學(xué)作用;因此,通常將空氣滲透率作為巖石的絕對滲透率.液相滲透率是指鹽水溶液在巖石孔隙中流動且與巖石孔隙表面黏土礦物發(fā)生物理化學(xué)作用時所測得的滲透率(匡立春等, 2002).由于液相滲透率的測量條件更加接近實(shí)際地層泥質(zhì)砂巖的條件,使得液相滲透率更能反映地層條件下泥質(zhì)砂巖的滲流特性(Macary, 1999; 謝偉彪等, 2014).

        對絕對滲透率計(jì)算方法的研究國內(nèi)外眾多學(xué)者做了大量工作,研究的思路可總結(jié)為:①根據(jù)巖石物理實(shí)驗(yàn)數(shù)據(jù),在分析影響絕對滲透率主控因素的基礎(chǔ)上,建立絕對滲透率的統(tǒng)計(jì)模型.②基于毛管束模型與Darcy定律,推導(dǎo)建立絕對滲透率的理論模型.大量巖心實(shí)驗(yàn)數(shù)據(jù)表明,影響絕對滲透率的參數(shù)較多,主要有孔隙度、束縛水飽和度、顆粒分選性與平均粒徑、礦物組分、巖石比表面、孔隙曲折度、喉道半徑等.基于這些影響因素,眾多學(xué)者建立了大量的滲透率統(tǒng)計(jì)模型.Jennings與Lucia(2001)、焦翠華與徐朝暉(2006)根據(jù)孔隙度與滲透率的冪函數(shù)與指數(shù)函數(shù)關(guān)系,分別建立了基于孔隙度參數(shù)的絕對滲透率統(tǒng)計(jì)模型.Krumbein和Monk(1943)提出了考慮顆粒分選性與平均粒徑的絕對滲透率統(tǒng)計(jì)模型.Herron(1987)提出了考慮礦物組成的絕對滲透率統(tǒng)計(jì)模型.Timur(1968)、Coates與Denoo(1981)建立了基于孔隙度、束縛水飽和度等參數(shù)的絕對滲透率評價模型.Kenyon(1997)、Kenyon 等(1988)、Coates等(1991)、陳剛等(2012)在Timur公式的基礎(chǔ)上,提出了SDR模型、Coates模型與孔隙空間集中分布模型.考慮喉道半徑對絕對滲透率的作用,Schowalter(1979)、Thompson與Raschke (1987)、Pittman(1992)、Swanson(1981)、成志剛等(2014)根據(jù)壓汞曲線分別用R10、R35、Swanson等參數(shù)計(jì)算絕對滲透率.Waxman 與Smits(1968)提出陽離子交換容量(Qv)對泥質(zhì)砂巖導(dǎo)電性的影響以后,眾多學(xué)者注意到了陽離子交換容量對滲透率的影響.De Lima (1995)、Sen等(1990)根據(jù)陽離子交換容量與絕對滲透率之間的統(tǒng)計(jì)關(guān)系,建立了絕對滲透率的統(tǒng)計(jì)模型.對滲透率理論模型的研究主要體現(xiàn)在Kozeny-Carman(KC)模型的建立.Kozeny (1927)基于毛管束理論,提出了Kozeny絕對滲透率計(jì)算公式.Carman (1937)對Kozeny公式進(jìn)行了證明,并進(jìn)一步修改得到了KC模型.由于KC模型中比表面與喉道曲折度等參數(shù)求取困難,KC模型的使用受到限制.Nooruddin與Hossain(2012)根據(jù)喉道曲折度與膠結(jié)指數(shù)、地層因素的關(guān)系,提出了基于膠結(jié)指數(shù)、地層因素等參數(shù)的改進(jìn)KC模型.Amaefule等(1993)、宋寧等(2013)在分析KC模型的基礎(chǔ)上,提出了基于劃分流動單元的絕對滲透率計(jì)算方法.Shan和Chen(1993)、Grunau等(1993)、Chen等(1998)、He等(1999)基于格子Boltzmann方法探索了流體的流動及多相滲透率.

        目前,對液相滲透率計(jì)算方法的研究還不夠深入.液相滲透率的計(jì)算模型較少,且均為統(tǒng)計(jì)模型.Macary(1999)建立了液相滲透率與空氣滲透率之間的關(guān)系式.Goode與Sen(1988)根據(jù)Waxman與Smits(1968)測量的液相滲透率、陽離子交換容量等實(shí)驗(yàn)數(shù)據(jù),提出了利用陽離子交換容量、孔隙度等參數(shù)計(jì)算液相滲透率的統(tǒng)計(jì)模型.匡立春等(2002)對泥質(zhì)砂巖巖心開展多礦化度溶液液相滲透率實(shí)驗(yàn)測量發(fā)現(xiàn),溶液礦化度對液相滲透率有較大影響.但是,Macary(1999)、Goode與Sen(1988)建立的液相滲透率計(jì)算模型均未能體現(xiàn)溶液礦化度對液相滲透率的影響.

        本文綜合考慮了陽離子交換容量、溶液礦化度、喉道曲折度、比表面等因素對滲透率的影響,在毛管束模型與巖石物理體積模型的基礎(chǔ)上,推導(dǎo)建立了基于陽離子交換容量、溶液礦化度、比表面、喉道曲折度等參數(shù)的液相滲透率理論計(jì)算模型.同時,考慮到運(yùn)用理論模型計(jì)算液相滲透率時,模型中比表面、喉道曲折度等參數(shù)求取困難的問題,進(jìn)一步建立了空氣滲透率與液相滲透率的轉(zhuǎn)換模型.最終,確立了在準(zhǔn)確求取空氣滲透率的基礎(chǔ)上,利用空氣滲透率與液相滲透率轉(zhuǎn)換模型計(jì)算液相滲透率的新方法.

        2 泥質(zhì)砂巖液相滲透率理論計(jì)算模型

        2.1 泥質(zhì)砂巖液相滲透率與黏土束縛水飽和度的關(guān)系

        將長度為L,截面積為A的多孔介質(zhì)巖石等效為個數(shù)為n,半徑為r的平行毛細(xì)管束模型(Kozeny, 1927; Carmen, 1937; Nooruddin and Hossain, 2011; 葛新明等, 2011).基于泊肅葉方程,可得到純巖石的毛細(xì)管模型:

        (1)

        式中,n為毛細(xì)管個數(shù),無量綱;r為毛細(xì)管的半徑(cm);ΔP為毛細(xì)管兩端的壓差(Pa);μ為黏度(×10-3Pa·s);q為流量(cm3);l為毛細(xì)管的滲流長度(cm).

        通常情況下,多孔介質(zhì)巖石中毛細(xì)管滲流長度大于巖石的長度.為此,引入曲折度τ,表示孔隙的復(fù)雜程度:

        (2)

        式中,L、l分別為毛細(xì)管長度與毛細(xì)管滲流長度(cm).因此,式(1)可以進(jìn)一步表示為

        (3)

        純砂巖總孔隙度可表示為

        (4)

        式中,φt純砂巖總孔隙度(%).VP、V分別為孔隙體積與巖石體積(cm3).

        基于達(dá)西滲透率定律,可得到毛細(xì)管模型的絕對滲透率:

        (5)

        式中,K為絕對滲透率(10-3μm2).根據(jù)式(3)、式(4)、式(5)可得:

        (6)

        在泥質(zhì)砂巖中,當(dāng)泥質(zhì)或者黏土分散地存在于孔隙空間時,認(rèn)為泥質(zhì)或黏土附著在巖石孔隙的表面(葛新明等,2011).由于黏土礦物表面帶負(fù)電,因而一旦把它放入溶液中,溶液中的陽離子就會被吸附到黏土礦物表面以保持電中性,在黏土礦物表面形成水膜,這些水膜中的水稱為黏土束縛水(HillandMillburn,1956;Clavieretal.,1984;Juhasz,1979,1986;Senetal.,1990;Lonnesetal.,2003).假設(shè)水膜厚度為d,則有效的毛細(xì)管滲流半徑減小為r-d(圖1).此時,得到泥質(zhì)砂巖的液相滲透率為

        (7)

        式中,Kw為泥質(zhì)砂巖液相滲透率(10-3μm2).

        將公式(7)代入式(6)可得:

        圖1 泥質(zhì)砂巖毛細(xì)管模型示意圖Fig.1 Capillary model of shaly sandstone

        (8)

        式中,(1-d/r)4代表泥質(zhì)對巖石滲透率產(chǎn)生的影響,即泥質(zhì)引起的束縛水堵塞了孔隙滲流通道,使得有效滲流半徑減小,滲透率降低.

        根據(jù)圖1中的泥質(zhì)砂巖模型,黏土表面束縛水孔隙度可表示為

        (9)

        式中,φCBW為黏土束縛水孔隙度(%);VCBW為黏土束縛水體積(cm3).

        將式(9)代入式(4)可得黏土束縛水孔隙度與總孔隙度的比值:

        (10)

        將式(10)代入式(8),并整理可得:

        (11)

        定義Svp為以巖石孔隙體積為基準(zhǔn)的比面(cm2/cm3).則多孔巖石中Svp可以表示為

        (12)

        式中,As多孔巖石毛管表面積(cm2);

        定義Svgr為巖石骨架體積為基準(zhǔn)的比面(cm2/cm3).則多孔巖石中Svgr可以表示為

        (13)

        將式(4)、式(12)代入式(13)可得:

        (14)

        公式(11)可以表達(dá)為

        (15)

        將式(14)代入式(15)得到:

        (16)

        2.2 泥質(zhì)砂巖黏土束縛水飽和度與陽離子交換容量、溶液礦化度的關(guān)系

        根據(jù)泥質(zhì)砂巖巖石物理體積模型(圖2),可以將泥質(zhì)砂巖看成由砂巖骨架、干黏土和總孔隙度三部分組成,其中總孔隙度φt可以進(jìn)一步分為黏土束縛水孔隙度φCBW和有效孔隙度φe.

        根據(jù)黏土束縛水孔隙度的定義,可知:

        (17)

        式中,mCBW為黏土束縛水質(zhì)量,g.ρCBW為黏土束縛水密度,假設(shè)為1 g·cm-3.引入?yún)?shù)Ws,代表每單位質(zhì)量干巖樣含有的黏土活化水的質(zhì)量,即

        (18)

        式中,mG為干巖樣質(zhì)量(g).mG/V可表示為

        (19)

        式中,ρG為巖石顆粒密度(g·cm-3).將式(19)、式(17)代入式(18),可得:

        φCBW=WsρG(1-φt).

        (20)

        陽離子交換容量Qv可以表示為(Juhasz,1979):

        圖2 泥質(zhì)砂巖巖石物理體積模型Fig.2 Physical volume model of shaly sandstone

        (21)

        式中,CEC為陽離子交換能力(mmol·g-1);Qv為陽離子交換量(mmol·cm-3).將式(20)代入式(21)可得:

        φt.

        (22)

        Hill等(1979)、Juhasz(1979)、Schofield(1947)、Martin與Dacy(2004)依據(jù)擴(kuò)散偶電層理論,提出:

        (23)

        式中,S為溶液礦化度(g·L-1).將式(22)代入式(23),可得:

        (24)

        2.3 泥質(zhì)砂巖液相滲透率理論計(jì)算模型

        將式(24)代入式(16),并整理可得

        (25)

        將式(25)寫成一般形式,可以表示為

        (26)

        式中,m為與孔隙形狀有關(guān)的因子;當(dāng)m=2時,孔隙形狀為毛管模型.

        式(26)等式右邊第一部分:

        (27)

        即為Kozeny-Carman(KC)公式.式(26)表明:液相滲透率模型由KC模型與(1-(0.084S-1/2+0.22)Qv)m兩部分組成;(1-(0.084S-1/2+0.22)Qv)m代表黏土束縛水使有效滲流半徑減小,進(jìn)而對絕對滲透率造成的影響.式(26)顯示,與絕對滲透率相比,液相滲透率除了受巖石孔隙度、比表面、喉道曲折度等因素影響外,還受到溶液礦化度、巖石陽離子交換容量的影響.匡立春等(2002)對10塊泥質(zhì)砂巖巖心樣品陽離子交換容量、空氣滲透率以及兩種礦化度溶液液相滲透率實(shí)驗(yàn)測量結(jié)果證實(shí)(表1):隨著陽離子交換容量的增大,液相滲透率呈現(xiàn)降低的規(guī)律(圖3);隨著礦化度的降低,液相滲透率降低(圖4).

        圖3 液相滲透率與陽離子交換容量的關(guān)系Fig.3 Relationship between cation exchange capacity and fluid permeability

        圖4 不同溶液礦化度條件下的滲透率變化特征Fig.4 Characteristics of fluid permeability with different salinity

        3 泥質(zhì)砂巖液相滲透率與空氣滲透率轉(zhuǎn)化模型

        液相滲透率理論計(jì)算模型揭示了孔隙度、曲折度、比表面、陽離子交換容量、溶液礦化度與液相滲透率之間的理論關(guān)系.但是,在實(shí)際液相滲透率評價過程中,由于模型中曲折度、比表面等參數(shù)求取困難,直接利用理論模型計(jì)算液相滲透率困難.因此,為解決液相滲透率因理論模型中部分參數(shù)不易求取,造成計(jì)算液相滲透率困難的問題,可采用如下的思路:①準(zhǔn)確求取空氣滲透率;②在液相滲透率理論模型的基礎(chǔ)上,建立液相滲透率與空氣滲透率的轉(zhuǎn)換模型;利用空氣滲透率與液相滲透率之間的轉(zhuǎn)換模型計(jì)算液相滲透率.

        3.1 液相滲透率與空氣滲透率的轉(zhuǎn)換模型

        在巖心空氣滲透率測量過程中,由于空氣與黏土不發(fā)生電化學(xué)反應(yīng),在黏土表面不會形成水膜,即空氣滲透率不受黏土表面束縛水的影響(Juhasz,1979;Hill et al.,1979).此時,公式(26)中(1-(0.084S-1/2+0.22)Qv)m值為1.因此,空氣滲透率可以表示為

        (28)

        結(jié)合式(28)與式(26),可得泥質(zhì)砂巖液相滲透率與空氣滲透率轉(zhuǎn)化模型:

        Kw=Kair(1-(0.084S-1/2+0.22)Qv)m.

        (29)

        3.2 液相滲透率與空氣滲透率轉(zhuǎn)換模型的刻度

        式(29)表明,在確定模型系數(shù)m以后,可通過式(29)評價液相滲透率.根據(jù)表1中的實(shí)驗(yàn)測量結(jié)果,采用回歸分析方法確定了模型系數(shù)m,得到液相滲透率與空氣滲透率的轉(zhuǎn)化模型:

        Kw=Kair(1-(0.084S-1/2+0.22)Qv)22.895,

        R2=0.89.

        (30)

        式(30)中,相關(guān)系數(shù)R較高,表明建立的模型精度較高.

        3.3 液相滲透率與空氣滲透率轉(zhuǎn)換模型的有效性驗(yàn)證

        為進(jìn)一步驗(yàn)證液相滲透率與空氣滲透率轉(zhuǎn)化模型的準(zhǔn)確性,根據(jù)表1以及Waxman與Smits(1968)

        文獻(xiàn)中的巖心實(shí)驗(yàn)數(shù)據(jù)(表2),利用空氣滲透率、溶液礦化度以及陽離子交換容量計(jì)算了液相滲透率,將液相滲透率計(jì)算結(jié)果與巖心液相滲透率實(shí)驗(yàn)結(jié)果進(jìn)行對比(圖5).圖5中模型計(jì)算結(jié)果與實(shí)驗(yàn)測量結(jié)果對比顯示,液相滲透率計(jì)算結(jié)果與實(shí)際巖心測量吻合較好.表明文中建立的液相滲透率與空氣滲透率轉(zhuǎn)化模型合理可靠,模型計(jì)算結(jié)果精度較高.

        圖5 巖心液相滲透率與模型計(jì)算液相滲透率交會圖Fig.5 Cross plot of core analyzed fluid permeability and estimated fluid permeability

        4 結(jié)論

        1) 液相滲透率理論計(jì)算模型由KC模型與(1-(0.084S-1/2+0.22)Qv)m兩部分組成;與絕對滲透率相比,液相滲透率除了受到巖石孔隙度、比表面、喉道曲折度等影響因素外,還受溶液礦化度、巖石陽離子交換容量的影響.液相滲透率隨陽離子交換容量的增大而降低,隨溶液礦化度的降低而降低.

        表1 巖心基本物性參數(shù)與兩種不同溶液礦化度液相滲透率測量結(jié)果(匡立春等,2002)Table 1 Physical parameters of cores and its fluid permeability with two salinity

        表2 巖心基本物性參數(shù)與液相滲透率測量結(jié)果 (S=12 g·L-1) (Waxman與Smits, 1968)Table 2 Physical parameters of cores and its fluid permeability with one salinity (S=12 g·L-1)

        2) 液相滲透率理論計(jì)算模型中喉道曲折度、比表面等參數(shù)求取困難,直接利用理論模型計(jì)算液相滲透率困難.利用液相滲透率與空氣滲透率之間的轉(zhuǎn)換模型,可有效計(jì)算液相滲透率.

        Amaefule J O, Altunbay M, Tiab D, et al. 1993. Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. SPE 26436.

        Carmen P C. 1937. Fluid flow through granular beds.TransactionsoftheInstitutionofChemicalEngineers, 15: 150-166.

        Chen S Y, Doolen G D. 1998. Lattice Boltzmann method for fluid flows.AnnualReviewofFluidMechanics, 30(1): 329-364.

        Chen G, Pan B Z, Wang C P, et al. 2012. Permeability evaluation method for complex pore structure reservoir.WellLoggingTechnology(in Chinese), 36(4): 382-386.

        Cheng Z G, Luo S C, Du Z W, et al. 2014. The method to calculate tight sandstone reservoir permeability using pore throat characteristic parameters.WellLoggingTechnology(in Chinese), 38(2): 185-189.Clavier C, Coates G, Dumanoir J. 1984. Theoretical and experimental bases for the dual-water model for interpretation of shaly sands.SocietyofPetroleumEngineersJournal, 24(2): 153-158.

        Coates G, Denoo S. 1981. The producibility answer product.TheTechnicalReview, 29(2): 54-63.

        Coates R G, Miller M, Gillen M, et al. 1991. An investigation of a new magnetic resonance imaging log. ∥ SPWLA 32ndAnnual Logging Symposium. Midland, Texas.

        De Lima O A L. 1995. Water saturation and permeability from resistivity, dielectric, and porosity logs.Geophysics, 60(6): 1756-1764.

        Ge X M, Fan Y Y, Deng S G. 2011. Research on T2 cutoff-value determination method for shaly sand based on experiments.WellLoggingTechnology(in Chinese), 35(4): 308-313.

        Goode P, Sen P N. 1988. Charge density and permeability in clay-bearing sandstones.Geophysics, 53(12): 1610-1612.

        Grunau D, Chen S Y, Eggert K. 1993. A lattice Boltzmann model for multiphase fluid flows.Phys.FluidsA, 5(10): 2557-2562.

        He X Y, Chen S Y, Zhang R Y. 1999. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability.JournalofComputationalPhysics, 152(2): 642-663.Herron M M. 1987. Estimating the intrinsic permeability of clastic sediments from geochemical data. ∥ SPWLA 28thAnnual Logging Symposium. London, England.

        Hill H J, Millburn J D. 1956. Effect of clay and water salinity on electrochemical behavior of reservoir rocks.AIMEPetroleumTransaction, 207(3): 65-72.

        Hill H J, Shirley O J, Klein G E. 1979. Bound water in shaly sands-its relation toQvand other formation properties.TheLogAnalyst, 20(3): 13-19.

        Jennings J W Jr, Lucia F J. 2001. Predicting permeability from well logs in carbonates with a link to geology for interwell permeability mapping.SocietyofPetroleumEngineersJournal, 6(4): 215-225.Jiao C H, Xu C H. 2006. An approach to permeability prediction based on flow zone index.WellLoggingTechnology(in Chinese), 30(4): 317-319.

        Jing C, Song Z Q, Pu C S, et al. 2013. Refined permeability of tight gas reservoir based on petrophysical facies classification — taking the study of tight gas reservoir permeability in the eastern of Sulige for an example.ProgressinGeophysics(in Chinese), 28(6): 3222-3230, doi: 10.6038/pg20130649.

        Juhasz I. 1979. The central role of Qvand formation-water salinity in the evaluation of shaly formations.TheLogAnalyst, 20(4): 3-13.

        Juhasz I. 1986. Conversion of routine air permeability data into stressed brine permeability data. ∥ 10thEuropean Formation Evaluation Symposium.

        Kenyon W E, Day P I, Straley C, et al. 1988. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones.SPEFormationEvaluation, 3(3): 622-636.

        Kenyon W E. 1997. Petrophysical principles of applications of NMR logging.TheLogAnalyst, 38(2): 21-43.

        Kozeny J. 1927. über kapillare leitung des wassers im boden.SitzungsberichtederWienerAkademiederWissenschaften, 136(2a): 271-306.

        Krumbein W C, Monk G D. 1943. Permeability as a function of the size parameters of unconsolidated sand.TransactionsoftheAIME, 151(1): 153-163.

        Kuang L C, Mao Z Q, Sun Z C. 2002. On the controlling factors of irreducible water saturation in the low resistivity pay zone of cretaceous formation in Lu 9 area, Junggar basin.WellLoggingTechnology(in Chinese), 26(1): 14-17.

        Lonnes S, Angel G, Holland R. 2003. NMR petrophysical predictions on cores. ∥ SPWLA 44thAnnual Logging Symposium.Macary S M. 1999. Conversion of air permeability to liquid permeabilities extracts huge source of information for reservoir studies. ∥ Middle East Oil Show and Conference. February, Bahrain: SPE.

        Martin P, Dacy J. 2004. EffectiveQvby NMR tests. ∥ SPWLA 45thAnnual Logging Symposium. Noordwijk, Netherlands.

        Nooruddin H A, Hossain M E. 2011. Modified Kozeny-Carmen correlation for enhanced hydraulic flow unit characterization.JournalofPetroleumScienceandEngineering, 80(1): 107-115.

        Pittman E D. 1992. Relationship of porosity and permeability to various parameters derived from mercury injection capillary pressure curves for sandstones.AAPGBulletin, 76(2): 191-198. Schofield R K. 1947. Calculation of surface areas from measurements of negative adsorption.Nature, 160(4064): 408-410.Schowalter T T. 1979. Mechanics of secondary hydrocarbon migration and entrapment.AAPGBulletin, 63(5): 723-760.

        Sen P N, Straley C, Kenyon W E, et al. 1990. Surface-to-volume ratio, charge density, nuclear magnetic relaxation, and permeability in clay-bearing sandstones.Geophysics, 55(1): 61-69.

        Shan X W, Chen H D. 1993. Lattice Boltzmann model for simulating flows with multiple phases and components.

        PhysicalReviewE, 47(3): 1815-1819.

        Song N, Liu Z, Zhang J F, et al. 2013. Permeability prediction of heterogeneous sand reservoir based on flow units classification.Science&TechnologyReview(in Chinese), 31(2): 68-71.

        Sun J M, Yan G L. 2012. Review on absolute permeability model.WellLoggingTechnology(in Chinese), 36(4): 329-335.

        Swanson B F. 1981. A simple correlation between permeabilities and mercury capillary pressures.JournalofPetroleumTechnology, 33(12): 2498-2504.Thompson A H, Raschke R A. 1987. Estimation of absolute permeability from capillary pressure measurements. ∥ SPE Annual Technical Conference and Exhibition. Dallas, Texas: SPE.

        Timur A. 1968. An investigation of permeability, porosity, and residual water saturation relationship for sandstone reservoirs.TheLogAnalyst, 9(4): 8-17.

        Waxman M H, Smits L J M. 1968. Electrical conductivities in oil-bearing shaly sands.SocietyofPetroleumEngineersJournal, 8(3): 107-122.Xie W B, Zhou F M, Si Z W, et al. 2014. New calculation model of permeability in sandstone formation by the mathematical derivation.WellLoggingTechnology(in Chinese), 38(5): 553-557.

        Yan G L, Sun J M, Liu X F, et al. 2014. Characterization of microscopic pore structure of reservoir rock and its effect on permeability.WellLoggingTechnology(in Chinese), 38(1): 28-32.

        附中文參考文獻(xiàn)

        陳剛, 潘保芝, 王翠平等. 2012. 復(fù)雜孔隙結(jié)構(gòu)儲層滲透率評價方法研究. 測井技術(shù), 36(4): 382-386.

        成志剛, 羅少成, 杜支文等. 2014. 基于儲層孔喉特征參數(shù)計(jì)算致密砂巖滲透率的新方法. 測井技術(shù), 38(2): 185-189.

        葛新民, 范宜仁, 鄧少貴. 2011. 基于實(shí)驗(yàn)分析的泥質(zhì)砂巖T2截止值確定方法研究. 測井技術(shù), 35(4): 308-313.

        焦翠華, 徐朝暉. 2006. 基于流動單元指數(shù)的滲透率預(yù)測方法. 測井技術(shù), 30(4): 317-319.

        景成, 宋子齊, 譜春生等. 2013. 基于巖石物理相分類確定致密氣儲層滲透率—以蘇里格東區(qū)致密氣儲層滲透率研究為例. 地球物理學(xué)進(jìn)展, 28(6): 3222-3230, doi: 10.6038/pg20130649.

        匡立春, 毛志強(qiáng), 孫中春. 2002. 準(zhǔn)噶爾盆地Lu9井區(qū)白堊系低電阻率油層束縛水飽和度控制因素研究. 測井技術(shù), 26(1): 14-17.

        宋寧, 劉振, 張劍風(fēng)等. 2013. 基于流動單元分類的非均質(zhì)砂巖儲集層滲透率預(yù)測. 科技導(dǎo)報, 31(2): 68-71.

        孫建孟, 閆國亮. 2012. 滲透率模型研究進(jìn)展. 測井技術(shù), 36(4): 329-335.

        謝偉彪, 周鳳鳴, 司兆偉等. 2014. 基于數(shù)理推導(dǎo)的砂巖地層滲透率計(jì)算新模型. 測井技術(shù), 38(5): 553-557.

        閆國亮, 孫建孟, 劉學(xué)鋒等. 2014. 儲層巖石微觀孔隙結(jié)構(gòu)特征及其對滲透率影響. 測井技術(shù), 38(1): 28-32.

        (本文編輯 汪海英)

        A new method for calculating fluid permeability of shaly sandstone

        WANG Liang1,2, MAO Zhi-Qiang3,4, SUN Zhong-Chun5, LUO Xing-Ping5, SONG Yong5, WANG Zhen-Lin5

        1SchoolofGeoscienceandTechnology,SouthwestPetroleumUniversity,Chengdu610500,China2KeyLaboratoryofSedimentaryBasinandOilandGasResources,MinistryofLandandResources,Chengdu610081,China3StateKeyLaboratoryofPetroleumResourcesandProspecting,ChinaUniversityofPetroleum,Beijing102249,China4KeyLaboratoryofEarthProspectingandInformationTechnology(Beijing),ChinaUniversityofPetroleum,Beijing102249,China5ResearchInstituteofExplorationandDevelopment,XinjiangOilfieldCompany,PetroChina,XinjiangKaramay834000,China

        The fluid permeability describes the flow characteristics of rock, which is an important parameter in the evaluation of reservoirs and prediction of oil and gas production. The fluid permeability can be measured when brine solution flow in pores and has physical and chemical effects with clays which adhere to or coat the grains. The measurement conditions of fluid permeability are similar to the actual conditions of shale sandstone reservoirs, so this parameter is considered to be better expression of the flow characteristics of shale sandstone reservoirs. However, there are few evaluation models of fluid permeability reported, and the existing models cannot reveal the relationship between fluid permeability and salinity of solution. To address this issue, this paper presents a model for fluid permeability calculation.In this study, based on the assumption that the shaly sand can be simplified as a capillary tubes model, a expression of fluid permeability in terms of the surface area, tortuosity of throat, total porosity, and bound water porosity of clay is deduced. In addition, according to the physics volume model, the relationship of bound water porosity of clay to cation exchange capacity and salinity of solution is derived. Finally, by means of introducing the bound water porosity of clay to the expression of fluid permeability, a theoretical model of fluid permeability in terms of total porosity, cation exchange capacity, salinity of solution, surface area, and tortuosity of throat is deduced. The theoretical model and two sets of experimental data of fluid permeability show that the fluid permeability decreases with the increasing cation exchange capacity, and increases with the growing salinity of solution.However, in the application of the model of fluid permeability, it is difficult to calculate the parameters of the surface area and tortuosity of throat. So the application of the theoretical model to calculate the fluid permeability is limited. Based on the analysis of the models of fluid permeability and air permeability, a transformation model of fluid permeability and air permeability is established. Then, with the help of the transformation model, a new method for calculating fluid permeability is suggested. In order to verify the accuracy of the transformation model of fluid permeability and air permeability, two sets of experimental data are used to calculate fluid permeability. Comparison of the calculated fluid permeability and core measured fluid permeability shows that the calculated fluid permeability matches fairly well with core measured results, which indicates that the transformation model in this study is credible.

        Fluid permeability; Cation exchange capacity; Fluid salinity; Shaly sandstone

        10.6038/cjg20151033.Wang L, Mao Z Q, Sun Z C, et al. 2015. A new method for calculating fluid permeability of shaly sandstone.ChineseJ.Geophys. (in Chinese),58(10):3837-3844,doi:10.6038/cjg20151033.

        國家自然科學(xué)基金(41504108),國土資源部沉積盆地與油氣資源重點(diǎn)實(shí)驗(yàn)室(zdsys2015003),西南石油大學(xué)青年教師“過學(xué)術(shù)關(guān)”基金(201499010020),四川省教育廳科技項(xiàng)目資助(15ZB0057)聯(lián)合資助.

        王亮,男,1986年生,博士,講師,主要從事地球物理測井技術(shù)研究.E-mail:wangliang_swpu@163.com

        10.6038/cjg20151033

        P631

        2014-02-25,2015-09-06收修定稿

        ≤≥? ?圖7 (b) Upscaled facies sequence;王亮, 毛志強(qiáng), 孫中春等. 2015. 泥質(zhì)砂巖液相滲透率計(jì)算新方法.地球物理學(xué)報,58(10):3837-3844,

        猜你喜歡
        礦化度泥質(zhì)陽離子
        離子組成及礦化度對低礦化度水驅(qū)采收率的影響
        巖性油氣藏(2019年5期)2019-09-11 03:54:44
        烷基胺插層蒙脫土的陽離子交換容量研究
        某泵站廠房泥質(zhì)粉砂巖地基固結(jié)沉降有限元分析
        不同泥質(zhì)配比條件下剩余污泥的深度減容研究
        利用綜合測井資料計(jì)算地下水等效NaCl溶液礦化度方法
        低礦化度水驅(qū)技術(shù)增產(chǎn)機(jī)理與適用條件
        陽離子Gemini表面活性劑的應(yīng)用研究進(jìn)展
        高升油田泥質(zhì)細(xì)粉砂綜合防治技術(shù)研究與應(yīng)用
        泥質(zhì)粉砂巖路基填料改良試驗(yàn)研究
        仿生陽離子多烯環(huán)化
        国产亚洲欧美另类第一页| 曰本无码人妻丰满熟妇5g影院| 精品视频一区二区三区在线观看 | 日韩少妇人妻一区二区| 日本精品av中文字幕| 国产黄色一区二区在线看| 文字幕精品一区二区三区老狼| 欧美国产激情二区三区| 免费人成网ww555kkk在线| 国产无套护士在线观看| 国产精品偷伦视频免费手机播放| 欧洲国产成人精品91铁牛tv| 激情视频在线观看国产中文| 日本在线一区二区三区视频| 精品粉嫩av一区二区三区| (无码视频)在线观看| 欧洲熟妇色xxxx欧美老妇多毛网站| 国产亚洲精品自在久久蜜tv| 色婷婷色99国产综合精品| 自拍偷区亚洲综合激情| 大奶白浆视频在线观看| 国产免费艾彩sm调教视频| 国产又滑又嫩又白| 国产最新在线视频| 91久久精品人妻一区二区| 亚洲国产成人av毛片大全| 久久国语露脸国产精品电影| 伊人久久大香线蕉综合影院首页 | 久久精品国产亚洲av一| 就爱射视频在线视频在线| av免费不卡国产观看| 欧妇女乱妇女乱视频| 国产91网址| av在线网站一区二区| 在厨房拨开内裤进入毛片| 天天鲁在视频在线观看| 四虎国产精品永久在线无码| 日本专区一区二区三区| 黄色中文字幕视频网站| 亚洲国产果冻传媒av在线观看| 亚洲va中文字幕|