宋海峰
(江蘇省天一中學(xué),江蘇 無(wú)錫 214101)
電磁感應(yīng)問(wèn)題中焦耳熱的求解初探
宋海峰
(江蘇省天一中學(xué),江蘇無(wú)錫214101)
摘要:在高中物理電磁感應(yīng)的教學(xué)中,電流產(chǎn)生熱量是一類常見(jiàn)的問(wèn)題,在近年的高考試題中出現(xiàn)頻率較高,本文通過(guò)實(shí)例歸納總結(jié)了各種情形下焦耳熱的求解方法.
關(guān)鍵詞:焦耳熱;電動(dòng)勢(shì);電流;電阻
在高中物理電磁感應(yīng)的教學(xué)中,電流產(chǎn)生熱量是一類常見(jiàn)且綜合性較強(qiáng)的問(wèn)題,由于此類問(wèn)題能考察學(xué)生對(duì)概念的理解及綜合分析問(wèn)題的能力,近年來(lái)頻頻出現(xiàn)在高考試題中.以下結(jié)合本人的教學(xué)實(shí)踐,就此類問(wèn)題的求解作一歸納總結(jié),以期能對(duì)教學(xué)有所幫助.
1直接利用焦耳定律Q=I2Rt求解
1.1.1切割情景
圖1
例1如圖1所示,兩根相距d=0.2m的平行金屬長(zhǎng)導(dǎo)軌固定在同一水平面內(nèi),并處于豎直方向的勻強(qiáng)磁場(chǎng)中,磁場(chǎng)的磁感應(yīng)強(qiáng)度B=0.20T,導(dǎo)軌上橫放著兩條金屬細(xì)桿,構(gòu)成矩形回路,每條金屬細(xì)桿的電阻為r=0.25Ω,回路中其余部分的電阻可不計(jì).已知兩金屬細(xì)桿在平行于導(dǎo)軌的拉力的作用下沿導(dǎo)軌朝相反方向勻速平移,速度大小都是v=5m/s.不計(jì)導(dǎo)軌上的摩擦,求兩金屬細(xì)桿在間距增加ΔL=0.4m的滑動(dòng)過(guò)程中共產(chǎn)生的熱量.
1.1.2磁場(chǎng)變化情景
例2如圖2甲所示,在一個(gè)正方形金屬線圈區(qū)域內(nèi),存在著磁感應(yīng)強(qiáng)度B隨時(shí)間變化的勻強(qiáng)磁場(chǎng),磁場(chǎng)的方向與線圈平面垂直.金屬線圈所圍的面積S=200cm2,匝數(shù)n=1000,線圈電阻r=1.0Ω.線圈與電阻R構(gòu)成閉合回路,電阻R=4.0Ω.勻強(qiáng)磁場(chǎng)的磁感應(yīng)強(qiáng)度隨時(shí)間變化的情況如圖2乙所示,求:
圖2
(1) 在t=2.0s時(shí)刻,通過(guò)電阻R的感應(yīng)電流的大??;
(2) 在t=2.0s時(shí)刻,電阻R消耗的電功率;
(3) 0~6.0s內(nèi)整個(gè)閉合電路中產(chǎn)生的熱量.
(2) 同理,在4.0s~6.0s時(shí)間內(nèi),線圈中產(chǎn)生的感應(yīng)電動(dòng)勢(shì)E2=4V,t2=5.0s時(shí)閉合回路中的感應(yīng)電流I2=0.8A,電阻消耗的電功率P2=I22R=2.56W.
(3) 0~4.0s內(nèi)閉合電路中產(chǎn)生的熱量Q1=I12(r+R)Δt1=0.8J;4.0~6.0s內(nèi)閉合電路中產(chǎn)生的熱量Q2=I22(r+R)Δt2=6.4J;0~6.0s內(nèi)閉合電路中產(chǎn)生的熱量Q=Q1+Q2=7.2J.
圖3
例3如圖3所示,頂角=45°的金屬導(dǎo)軌MON固定在水平面內(nèi),導(dǎo)軌處在方向豎直、磁感應(yīng)強(qiáng)度為B的勻強(qiáng)磁場(chǎng)中.一根與ON垂直的導(dǎo)體棒在水平外力作用下以恒定速度v0沿導(dǎo)軌MON向左滑動(dòng),導(dǎo)體棒的質(zhì)量為m,導(dǎo)軌與導(dǎo)體棒單位長(zhǎng)度的電阻均為r.導(dǎo)體棒與導(dǎo)軌接觸點(diǎn)的a和b,導(dǎo)體棒在滑動(dòng)過(guò)程中始終保持與導(dǎo)軌良好接觸.t=0時(shí),導(dǎo)體棒位于頂角O處,求:
(1) t時(shí)刻流過(guò)導(dǎo)體棒的電流強(qiáng)度I和電流方向.
(2) 導(dǎo)體棒作勻速直線運(yùn)動(dòng)時(shí)水平外力F的表達(dá)式.
(3) 導(dǎo)體棒在0~t時(shí)間內(nèi)產(chǎn)生的焦耳熱Q.
1.3.1正弦式交流電
當(dāng)導(dǎo)體棒垂直切割磁感線運(yùn)動(dòng)時(shí),產(chǎn)生的動(dòng)生電動(dòng)勢(shì)E=BLv,公式中B、L、v只要一個(gè)物理量隨時(shí)間t按正弦(余弦)規(guī)律變化,回路中就會(huì)產(chǎn)生正弦式交流電,此時(shí)就可以用電流的有效值來(lái)計(jì)算焦耳熱.
1.3.1.1B隨t正弦變化
圖4
(1) 導(dǎo)體棒在水平向右的拉力F作用下,以速度v0=1m/s勻速穿過(guò)磁場(chǎng)區(qū),求此過(guò)程中感應(yīng)電流的最大值Im.
(2) 在(1)的情況下,求棒穿過(guò)磁場(chǎng)過(guò)程中拉力所做的功W以及電阻R上產(chǎn)生的熱量Q.
解析:(1) 當(dāng)導(dǎo)體棒運(yùn)動(dòng)到到x=0.5m處時(shí),線圈的感應(yīng)電動(dòng)勢(shì)最大.Em=BmLv0=0.6V,
1.3.1.2L隨t正弦變化
圖5
(1) 拉力F的最大功率是多少?
(2) 拉力F要做多少功才能把線框拉過(guò)磁場(chǎng)區(qū)?
1.3.1.3v隨t正弦變化
圖6
(1) 棒到達(dá)最低點(diǎn)時(shí)的速度大小和通過(guò)電阻R的電流;
(2) 棒從PQ下滑到MN過(guò)程中回路中產(chǎn)生的焦耳熱和通過(guò)R的電荷量
(3) 若棒在拉力作用下,從MN開(kāi)始以速度v0向右沿軌道做勻速圓周運(yùn)動(dòng),則在到達(dá)PQ的過(guò)程中拉力做功為多少?
圖7
1.3.2非正弦式交流電
當(dāng)導(dǎo)體棒垂直切割磁感線運(yùn)動(dòng)時(shí),產(chǎn)生的感應(yīng)電流不斷變化但不是正弦式交流電,這時(shí)也可以嘗試微元法來(lái)計(jì)算焦耳熱.
圖8
例7如圖8所示,兩根足夠長(zhǎng)的光滑直金屬導(dǎo)軌MN、PQ平行固定在傾角θ=37°的絕緣斜面上,兩導(dǎo)軌間距L=1m,導(dǎo)軌的電阻可忽略.M、P兩點(diǎn)間接有阻值為R的電阻.一根質(zhì)量m=1kg、電阻r=0.2Ω的均勻直金屬桿ab放在兩導(dǎo)軌上,與導(dǎo)軌垂直且接觸良好.整套裝置處于磁感應(yīng)強(qiáng)度B=0.5T的勻強(qiáng)磁場(chǎng)中,磁場(chǎng)方向垂直斜面向下.自圖示位置起,桿ab受到大小為F=0.5v+2(式中v為桿ab運(yùn)動(dòng)的速度)、方向平行導(dǎo)軌沿斜面向下的拉力作用,由靜止開(kāi)始運(yùn)動(dòng),測(cè)得通過(guò)電阻R的電流隨時(shí)間均勻增大.
(1) 試判斷金屬桿ab在勻強(qiáng)磁場(chǎng)中做何種運(yùn)動(dòng),并請(qǐng)寫出推理過(guò)程;
(2) 求電阻的阻值R;
(3) 金屬桿ab自靜止開(kāi)始下滑通過(guò)位移x=1m所需的時(shí)間t和該過(guò)程中整個(gè)回路產(chǎn)生的焦耳熱Q.
2根據(jù)能量關(guān)系求解
電磁感應(yīng)問(wèn)題中焦耳熱的求解是教學(xué)的重點(diǎn),同時(shí)也是難點(diǎn),本人通過(guò)以上實(shí)例,從不同角度,用不同方法闡述了如何求解焦耳熱,以此開(kāi)闊學(xué)生的解題思路.
·試題研究·