余卓平,冷 搏,2,熊 璐,2,馮 源
(1.同濟(jì)大學(xué)汽車學(xué)院,上海201804;2.同濟(jì)大學(xué)新能源汽車工程中心,上海201804;3.泛亞汽車技術(shù)中心有限公司,上海201201)
雙線法與橫擺角速度法聯(lián)合的車輛穩(wěn)定性判據(jù)
余卓平1,冷 搏1,2,熊 璐1,2,馮 源3
(1.同濟(jì)大學(xué)汽車學(xué)院,上海201804;2.同濟(jì)大學(xué)新能源汽車工程中心,上海201804;3.泛亞汽車技術(shù)中心有限公司,上海201201)
車輛穩(wěn)定性判據(jù)決定了車輛穩(wěn)定性控制系統(tǒng)的介入與退出時(shí)機(jī),是車輛穩(wěn)定性控制的基礎(chǔ).設(shè)計(jì)了一種基于相平面法的車輛穩(wěn)定性判據(jù),在傳統(tǒng)雙線法確定的穩(wěn)定區(qū)域中引入橫擺角速度法確定的穩(wěn)定區(qū)域,設(shè)計(jì)聯(lián)合車輛穩(wěn)定性判據(jù),協(xié)調(diào)對(duì)質(zhì)心側(cè)偏角和橫擺角速度的控制,并獲取穩(wěn)定性判據(jù)的相應(yīng)閾值變化的數(shù)據(jù)庫(kù),用于在控制過(guò)程中查表獲得車輛的穩(wěn)定區(qū)域邊界.利用質(zhì)心側(cè)偏角和橫擺角速度偏離函數(shù)表征控制變量偏離參考值的程度和車輛狀態(tài)相對(duì)穩(wěn)定區(qū)域邊界的位置.極限工況下,當(dāng)車輛狀態(tài)超出穩(wěn)定區(qū)域邊界時(shí),車輛穩(wěn)定性控制應(yīng)迅速介入,控制車輛狀態(tài)回到穩(wěn)定區(qū)域.
穩(wěn)定性判據(jù);質(zhì)心側(cè)偏角;橫擺角速度;相平面法;穩(wěn)定性控制
長(zhǎng)期以來(lái),汽車的安全性就是伴隨汽車發(fā)展的主題之一.統(tǒng)計(jì)數(shù)據(jù)顯示,車速在80~100km·h-1時(shí),40%的交通事故與車輛側(cè)滑失穩(wěn)有關(guān);當(dāng)車速超過(guò)160km·h-1時(shí),90%以上的事故是車輛側(cè)滑失穩(wěn)造成的[1].因此,各大汽車公司相繼研發(fā)了一系列車輛穩(wěn)定性控制系統(tǒng),其中最具代表性的是博世公司的電子穩(wěn)定程序(electric stability program,ESP)[2].美國(guó)聯(lián)邦政府已于2011年將電子穩(wěn)定性控制(electric stability control,ESC)系統(tǒng)納入新的汽車安全標(biāo)準(zhǔn)[3].
車輛穩(wěn)定性判據(jù)為穩(wěn)定性控制提供了控制目標(biāo)和控制邊界[4],決定了其介入與退出時(shí)機(jī),是車輛穩(wěn)定性控制的基礎(chǔ).Shibahata等[5]提出βmethod,利用穩(wěn)定橫擺轉(zhuǎn)矩及橫擺轉(zhuǎn)矩隨前輪轉(zhuǎn)角增加變化趨勢(shì)表征車輛的穩(wěn)定性,但其考慮的只是比較簡(jiǎn)單的穩(wěn)態(tài)工況,也未提出明確的穩(wěn)定界限.前軸側(cè)偏角后軸側(cè)偏角相圖[6]以及質(zhì)心側(cè)偏角 橫擺角速度相圖[7]確定的穩(wěn)定區(qū)域邊界隨車速變化的規(guī)律較復(fù)雜,不利于分析車速對(duì)車輛穩(wěn)定區(qū)域的影響.考慮到車輛的極限轉(zhuǎn)彎工況本質(zhì)上是與側(cè)偏運(yùn)動(dòng)相關(guān)的,Inagaki等[8]和Koibuchi等[9]提出并發(fā)展了利用質(zhì)心側(cè)偏角 質(zhì)心側(cè)偏角速度(ββ·)相平面圖評(píng)價(jià)車輛的側(cè)偏運(yùn)動(dòng)并分析車輛極限轉(zhuǎn)彎工況下的穩(wěn)定性的方法,并提出了“雙線法”穩(wěn)定性判據(jù):利用相平面上2條平行通過(guò)鞍點(diǎn)的直線作為車輛穩(wěn)定區(qū)域邊界設(shè)計(jì)了穩(wěn)定性控制策略.但其所確定的穩(wěn)定區(qū)域是開(kāi)放型的,這種區(qū)域中距離焦點(diǎn)較遠(yuǎn)的地方包含了較多的不穩(wěn)定軌線.菱形法[10-11]對(duì)穩(wěn)定區(qū)域的判定比雙線法更準(zhǔn)確,但其參數(shù)過(guò)多,并且難以確定.
雙線法判據(jù)參數(shù)少,能夠簡(jiǎn)單有效地判定不同工況下車輛的穩(wěn)定性狀態(tài);但其只針對(duì)質(zhì)心側(cè)偏角的控制,不能對(duì)橫擺角速度控制提供參考的閾值.本文在雙線法的基礎(chǔ)上引入橫擺角速度閾值對(duì)雙線法進(jìn)行補(bǔ)充,協(xié)調(diào)對(duì)質(zhì)心側(cè)偏角和橫擺角速度的控制,設(shè)計(jì)雙線法與橫擺角速度法聯(lián)合的車輛穩(wěn)定性判據(jù)并給出極限工況下車輛穩(wěn)定性控制算法介入和退出的條件;在多種工況下的仿真和實(shí)車試驗(yàn)中驗(yàn)證判據(jù)的有效性.
本文判據(jù)設(shè)計(jì)基于二自由度車輛單軌模型,如圖1所示,圖中點(diǎn)C表示車輛質(zhì)心位置,點(diǎn)O表示車輛轉(zhuǎn)向運(yùn)動(dòng)瞬心位置,αf與αr分別為前后輪側(cè)偏角,β為車輛質(zhì)心側(cè)偏角,δf為前輪轉(zhuǎn)向角,lf和lr分別為前后車軸到質(zhì)心處的距離,γ為車輛橫擺角速度,VCOG為車輛質(zhì)心處速度,F(xiàn)y,f和Fy,r分別表示前軸和后軸側(cè)向力.
圖1 二自由度單軌車輛模型Fig.1 Two degrees of freedom single track vehicle model
二自由度車輛模型的動(dòng)力學(xué)方程如下:
式中:m為整車質(zhì)量;V為車輛質(zhì)心處速度VCOG的縱向分量;β·為車輛質(zhì)心側(cè)偏角速度;Jz為車輛橫擺轉(zhuǎn)動(dòng)慣量.極限工況下,車輛進(jìn)入非線性區(qū),前后軸側(cè)向力Fy,f,F(xiàn)y,r可通過(guò)簡(jiǎn)化的“魔術(shù)公式”輪胎模型[12]計(jì)算,如下:
式中:μ為路面峰值附著系數(shù);Fz,f和Fz,r分別為前軸和后軸垂向載荷;Bi,j(i=1,2;j=f,r)為輪胎特性擬合系數(shù).αf,αr分別與β,γ,δf存在如下運(yùn)動(dòng)學(xué)關(guān)系:
2.1 雙線法確定的穩(wěn)定性區(qū)域
根據(jù)文獻(xiàn)[8]:雙線法邊界在橫軸上的截距表征了雙線法對(duì)穩(wěn)態(tài)質(zhì)心側(cè)偏角的限值,是整個(gè)穩(wěn)定區(qū)域邊界的基點(diǎn);它們分別為相圖兩側(cè)的鞍點(diǎn).雙線法的邊界斜率kβ可由式(7)計(jì)算,表征了對(duì)瞬態(tài)條件下質(zhì)心側(cè)偏角的限值,即不同質(zhì)心側(cè)偏角速度下的質(zhì)心側(cè)偏角限值;斜率絕對(duì)值越小,邊界對(duì)瞬態(tài)條件下質(zhì)心側(cè)偏角的限制越強(qiáng).
左側(cè)(下)邊界
右側(cè)(上)邊界
式中:βl,0和βh,0分別為雙線法邊界在橫軸的左右截距.圖2表示附著系數(shù)1.0、車速30m·s-1時(shí)不同轉(zhuǎn)向角下的ββ·相圖.
與圖2a相比,圖2b小轉(zhuǎn)向角下收斂軌線的數(shù)量沒(méi)有明顯變化,穩(wěn)定焦點(diǎn)向負(fù)方向(轉(zhuǎn)向外側(cè),與側(cè)向加速度方向相反)移動(dòng),軌線位置整體向右上方平移;兩鞍點(diǎn)同時(shí)向轉(zhuǎn)向內(nèi)側(cè)平移,轉(zhuǎn)向側(cè)的穩(wěn)定區(qū)域變窄,另一側(cè)的穩(wěn)定區(qū)域變寬.繼續(xù)增大前輪轉(zhuǎn)角到5°時(shí)(圖2c),兩側(cè)鞍點(diǎn)繼續(xù)向非轉(zhuǎn)向側(cè)移動(dòng).正半軸鞍點(diǎn)內(nèi)側(cè)的軌線進(jìn)一步增加,但受到負(fù)半軸鞍點(diǎn)移動(dòng)的影響,一部分軌線運(yùn)行偏離出穩(wěn)定區(qū)域,最終未能收斂到焦點(diǎn),車輛的右側(cè)的收斂軌線數(shù)量反而減少,兩鞍點(diǎn)之間出現(xiàn)了大片的不穩(wěn)定區(qū)域,因此已不能再利用兩鞍點(diǎn)來(lái)表示穩(wěn)定邊界.在圖2c中以右側(cè)為例,令最外側(cè)收斂軌線與橫軸交點(diǎn)為bc,最內(nèi)側(cè)發(fā)散軌線與橫軸交點(diǎn)為bn,此時(shí)穩(wěn)定邊界在橫軸的截距為
圖2 附著系數(shù)1.0、縱向車速30m·s-1時(shí)的相圖Fig.2 Phase plane whileμ=1.0,V=30m·s-1
取ib=0.1以保證截距靠近穩(wěn)定軌線一側(cè).當(dāng)轉(zhuǎn)向角增大時(shí),收斂軌線全部消失,穩(wěn)定區(qū)域也隨之消失.
由對(duì)雙線法穩(wěn)定性判據(jù)分析可知:
(1)雙線法判據(jù)參數(shù)少,能夠簡(jiǎn)單有效地判定不同工況下車輛的穩(wěn)定性狀態(tài);但其只針對(duì)質(zhì)心側(cè)偏角控制,不能對(duì)橫擺角速度控制提供參考的閾值.
(2)雙線法判據(jù)存在不足,只能判定質(zhì)心側(cè)偏角是否發(fā)散,車輛是否穩(wěn)定;但對(duì)前軸側(cè)滑導(dǎo)致車輛失去轉(zhuǎn)向能力的工況無(wú)法判別,此時(shí)車輛的橫擺角速度響應(yīng)明顯低于駕駛員的期望值,需要引入橫擺角速度閾值對(duì)雙線法進(jìn)行補(bǔ)充.
2.2 橫擺角速度法確定的穩(wěn)定區(qū)域
參考橫擺角速度γd可以設(shè)置為二自由度單軌車輛模型橫擺角速度響應(yīng)穩(wěn)態(tài)值.
式中:l為軸距;K為車輛穩(wěn)定性因數(shù).
由式(1)~(4)計(jì)算質(zhì)心側(cè)偏角速度.
式(12)可以分解為減號(hào)前的非線性部分和減號(hào)后的線性部分.令γ=γd,代入式(12)得
即,在保證車輛跟蹤線性模型橫擺角響應(yīng)條件下,質(zhì)心側(cè)偏角速度變成了關(guān)于路面峰值附著系數(shù)、車速、前輪轉(zhuǎn)角以及質(zhì)心側(cè)偏角的非線性函數(shù),其中隱含了輪胎的非線性特性.在相圖上,當(dāng)確定了前3個(gè)變量后,質(zhì)心側(cè)偏角速度可以表示為僅關(guān)于質(zhì)心側(cè)偏角的函數(shù)
因此,根據(jù)式可以直接將滿足線性橫擺角速度約束的狀態(tài)軌線直接畫在相圖上(圖3).
(1)在轉(zhuǎn)向角為零時(shí),軌線位于第2、第4象限,經(jīng)過(guò)原點(diǎn)并與原點(diǎn)呈中心對(duì)稱曲線呈現(xiàn)與側(cè)偏角 輪胎力曲線類似的非線性特性.
在線性范圍內(nèi)跟蹤線性橫擺角速度能對(duì)質(zhì)心側(cè)偏角有一定的抑制作用.在β 超出一定范圍后,軌線的變化趨于平緩,甚至產(chǎn)生反向的變化.雖然軌線保持在穩(wěn)定區(qū)域內(nèi),但此時(shí)繼續(xù)跟蹤線性橫擺角速度,會(huì)導(dǎo)致迅速增加.
如圖3所示,當(dāng)線性橫擺角速度約束的軌線(以下簡(jiǎn)稱為γd軌線)移動(dòng)到雙線法邊界與橫軸交點(diǎn)時(shí),γd軌線偏移量為最大.設(shè)Δγh和Δγl分別為邊界軌線對(duì)應(yīng)的橫擺角速度相對(duì)于γd的上下偏移量,橫擺角速度法確定的邊界軌線應(yīng)通過(guò)雙線法與橫軸的2個(gè)交點(diǎn).邊界對(duì)應(yīng)的橫擺角速度限值分別如下.
上限值
下限值
上限值γh對(duì)應(yīng)的邊界軌線在γd軌線下方,下限值γl對(duì)應(yīng)的邊界軌線在γd軌線上方.
圖3 基于雙線法與橫擺角速度法聯(lián)合的穩(wěn)定性判據(jù)示意圖Fig.3 Diagram of the joint criterion
2.3 雙線法 橫擺角速度法聯(lián)合穩(wěn)定性判據(jù)
橫擺角速度法定義的穩(wěn)定區(qū)域在β-β·上可以表示為一條與輪胎側(cè)向力特性曲線形狀相似的帶狀區(qū)域,該區(qū)域是一個(gè)沿著橫軸方向無(wú)限延伸的開(kāi)放區(qū)域;而根據(jù)2.1節(jié)中分析,雙線法確定的穩(wěn)定區(qū)域更接近一個(gè)沿著縱軸方向無(wú)限延伸的開(kāi)放區(qū)域.如圖3所示,2種判據(jù)聯(lián)合起來(lái)互補(bǔ)構(gòu)成一個(gè)封閉的穩(wěn)定區(qū)域,雙線法用于限制車輛的質(zhì)心側(cè)偏角,橫擺角速度法用于控制車輛的橫擺角速度跟蹤參考值,形成基于雙線法與橫擺角速度法聯(lián)合的穩(wěn)定性判據(jù).該判據(jù)可以同時(shí)提供橫擺角速度和質(zhì)心側(cè)偏角的控制目標(biāo),協(xié)調(diào)車輛在極限工況下操縱性和穩(wěn)定性.
高附路面上,當(dāng)轉(zhuǎn)向角為0°時(shí)(圖4a),γd軌線位于2條邊界之間,到2條邊界的距離相等,此時(shí)上下限閾值絕對(duì)值大小相等,符號(hào)相反.施加2°的轉(zhuǎn)向角后(圖4b),γd軌線向下移動(dòng),上限閾值的絕對(duì)值減少,下限閾值的絕對(duì)值增加,表現(xiàn)為判據(jù)對(duì)過(guò)多轉(zhuǎn)向的限制更加嚴(yán)格.進(jìn)一步增加轉(zhuǎn)向角到5°時(shí)(圖4c),上限閾值對(duì)應(yīng)的邊界曲線已經(jīng)與γd軌線重合,此時(shí)轉(zhuǎn)向側(cè)閾值為零.當(dāng)轉(zhuǎn)向角到7°時(shí)(圖4d),γd軌線已經(jīng)偏離出了2條橫擺角速度軌線中間,處于不穩(wěn)定軌線的范圍內(nèi);此時(shí)上下限閾值均小于零,車輛的橫擺角速度不再跟蹤γd,而是被限制在一個(gè)更小的范圍內(nèi)以保持車輛的穩(wěn)定性.
圖4 附著系數(shù)1.0、縱向車速30m·s-1時(shí)的穩(wěn)定區(qū)域Fig.4 Stable region whileμ=1.0,V=30m·s-1
與高附路面相比,低附路面上的橫擺角速度法 穩(wěn)定區(qū)域收縮.如圖5所示,路面附著系數(shù)為0.3時(shí),2°輸入工況下,γd軌線已經(jīng)偏離出穩(wěn)定區(qū)域,與高附路面上的7°相比下降明顯,說(shuō)明車輛在低附路面上的機(jī)動(dòng)性能明顯降低.
圖5 附著系數(shù)0.3、轉(zhuǎn)向角2°、縱向車速30m·s-1時(shí)的穩(wěn)定區(qū)域Fig.5 Stable regionμ=0.3,δf=2°,V=30m·s-1
基于雙線法與橫擺角速度法聯(lián)合的車輛穩(wěn)定性判據(jù)的原理如圖6所示.判據(jù)包括如下查表參數(shù):kβ,βl,0,βh,0,γl,γh.
由式(8)和式(9)整理可得,已知kβ,βl,0和βh,0后,根據(jù)當(dāng)前的質(zhì)心側(cè)偏角速度β·,可以得到動(dòng)態(tài)條件下質(zhì)心側(cè)偏角的上下限值βh和βl.
圖6 基于雙線法與橫擺角速度法聯(lián)合的穩(wěn)定性判據(jù)原理Fig.6 Principle of the joint stability criterion
橫擺角速度上下限值γh與γl可由式(16)和式(17)計(jì)算得到.
雙線法邊界斜率可以由路面附著系數(shù)和車速2個(gè)變量查二維Map圖確定(圖7).
圖7 雙線法邊界斜率Map圖Fig.7 Map of the boundary slope in sideslip angle method
穩(wěn)態(tài)質(zhì)心側(cè)偏角限值、橫擺角速度限值需要根據(jù)路面附著系數(shù)、車速以及轉(zhuǎn)向角3個(gè)變量查三維Map圖確定.研究發(fā)現(xiàn),路面附著系數(shù)對(duì)穩(wěn)定區(qū)域影響接近于比例縮放.因此可以先確定幾個(gè)典型的路面附著系數(shù),在一定的路面附著系數(shù)下研究車速和轉(zhuǎn)向角變化對(duì)判據(jù)參數(shù)的影響,再對(duì)比不同路面附著系數(shù)時(shí)參數(shù)的Map圖獲得參數(shù)隨路面附著系數(shù)的變化趨勢(shì).當(dāng)路面附著系數(shù)為1.0時(shí),4個(gè)參數(shù)的變化規(guī)律如圖8所示.
根據(jù)駕駛員對(duì)轉(zhuǎn)向盤轉(zhuǎn)角的輸入選擇線性二自由度模型穩(wěn)態(tài)橫擺角速度作為橫擺角速度參考值γd,同時(shí)利用側(cè)向加速度ay對(duì)參考值進(jìn)行限制.
根據(jù)2.3節(jié)的分析,若選取穩(wěn)態(tài)的質(zhì)心側(cè)偏角(相圖焦點(diǎn)處的質(zhì)心側(cè)偏角)為質(zhì)心側(cè)偏角參考值βd會(huì)存在以下問(wèn)題:一方面可能導(dǎo)致參考值與穩(wěn)定區(qū)域邊界的距離較小,進(jìn)而降低穩(wěn)定性裕度;另一方面也沒(méi)有考慮動(dòng)態(tài)條件下質(zhì)心側(cè)偏角速度對(duì)參考值的影響.因此,根據(jù)穩(wěn)定性判據(jù),設(shè)定參考的質(zhì)心側(cè)偏角為動(dòng)態(tài)條件下質(zhì)心側(cè)偏角的上下限值的中位數(shù).
質(zhì)心側(cè)偏角控制誤差和橫擺角速度誤差分別為
圖8 路面附著系數(shù)為1.0時(shí)判據(jù)參數(shù)Map圖Fig.8 Map of criterion parameters whileμ=1.0
定義質(zhì)心側(cè)偏角偏離函數(shù)dβ和橫擺角速度偏離函數(shù)dγ.
當(dāng)滿足max[dβ,dγ]=1時(shí),車輛狀態(tài)已經(jīng)達(dá)到或超出當(dāng)前的穩(wěn)定區(qū)域邊界,此時(shí)車輛穩(wěn)定性控制(vehicle stability control,VSC)算法的介入標(biāo)志dVSC=1,穩(wěn)定性控制算法及時(shí)介入.
為了防止穩(wěn)定性控制算法頻繁地退出和介入,設(shè)置其退出條件與介入條件不等價(jià):需要滿足max[dβ,dγ]<0.33,并且持續(xù)時(shí)間超過(guò)2s,才判定車輛狀態(tài)恢復(fù)穩(wěn)定,dVSC=0,穩(wěn)定性控制算法退出.
4.1 分布式驅(qū)動(dòng)電動(dòng)汽車
仿真車輛參數(shù)按照同濟(jì)大學(xué)開(kāi)發(fā)的分布式驅(qū)動(dòng)電動(dòng)汽車平臺(tái)參數(shù)設(shè)置.平臺(tái)車采用鋰電池為動(dòng)力源,4個(gè)車輪均裝有可獨(dú)立控制的輪轂電機(jī)以實(shí)現(xiàn)分布式驅(qū)動(dòng).車輛及輪轂電機(jī)參數(shù)如表1所示.
表1 試驗(yàn)車及電機(jī)參數(shù)Tab.1 Electric motor and test vehicle parameters
4.2 雙移線工況仿真
利用CarSim軟件和MATLAB/Simulink軟件在國(guó)際標(biāo)準(zhǔn)ISO 3888 1:1999雙移線工況[13]下進(jìn)行聯(lián)合仿真.根據(jù)表1中車輛參數(shù)設(shè)置通道寬度,選取路面附著系數(shù)為0.8,初始車速為30m·s-1.
車輛的動(dòng)力學(xué)狀態(tài)以及穩(wěn)定性判據(jù)結(jié)果如圖9所示.在駕駛員增加轉(zhuǎn)向盤轉(zhuǎn)角進(jìn)行第1次變線的過(guò)程中,橫擺角速度迅速增加并超過(guò)上限值,橫擺角速度偏離函數(shù)迅速增加到1,dVSC=1并一直保持到工況結(jié)束.
圖9 車輛狀態(tài)及穩(wěn)定性判據(jù)結(jié)果Fig.9 Results of vehicle states and criterion
4.3 低附路面避障工況仿真
[14]中冰雪道路試驗(yàn)方法設(shè)置仿真工況.初始車速15m·s-1,路面附著系數(shù)0.3.車輛狀態(tài)及判據(jù)結(jié)果如圖10所示.
圖10 車輛狀態(tài)及穩(wěn)定性判據(jù)結(jié)果Fig.10 Results of vehicle states and criterion
仿真過(guò)程中質(zhì)心側(cè)偏角和橫擺角速度偏離函數(shù)迅速增加到1,判據(jù)準(zhǔn)確判斷車輛進(jìn)入極限工況并將VSC介入標(biāo)志置1.與2.3節(jié)分析相一致,低附路面上車輛穩(wěn)定性裕度較低,穩(wěn)定性判據(jù)給出的車輛穩(wěn)定區(qū)域收縮.
將本文的穩(wěn)定性判據(jù)與車輛穩(wěn)定性控制算法[15]結(jié)合,參考國(guó)際標(biāo)準(zhǔn)ISO 3888 2:2002[13]避障工況
進(jìn)行實(shí)車試驗(yàn),入口車速為65km·h-1,路面附著系數(shù)為0.8.圖11為施加控制車輛和未施加控制車輛的控制效果對(duì)比.施加控制車輛的控制過(guò)程如圖12所示.試驗(yàn)場(chǎng)地如圖13所示.
圖11 避障工況試驗(yàn)控制效果對(duì)比Fig.11 Results of tests with and without control
圖12 避障工況試驗(yàn)控制過(guò)程Fig.12 Control process of the tests
圖13 避障工況試驗(yàn)場(chǎng)地布置Fig.13 Obstacle avoidance test field
未施加控制車輛的后軸在第1次變線后出現(xiàn)了明顯側(cè)滑,導(dǎo)致車輛質(zhì)心側(cè)偏角增大到接近5°,橫擺角速度也產(chǎn)生了明顯的超調(diào);駕駛員發(fā)現(xiàn)車輛的甩尾傾向后提前將轉(zhuǎn)向盤回正,質(zhì)心側(cè)偏角迅速減小,才沒(méi)有發(fā)生車輛失穩(wěn).施加控制車輛能夠以較小的質(zhì)心側(cè)偏角順利地完成工況.在車輛穩(wěn)定性控制介入后,車輛的橫擺角速度能夠較好地跟隨參考值,橫擺角速度偏離函數(shù)保持在0.5以下.質(zhì)心側(cè)偏角參考值一直保持與實(shí)際值異號(hào),控制對(duì)質(zhì)心側(cè)偏角的抑制效果明顯.避障工況駕駛員未進(jìn)行任何加速踏板輸入,控制過(guò)程中的車輪轉(zhuǎn)矩基本保持左右對(duì)稱,2~3s內(nèi)的車輪轉(zhuǎn)矩出現(xiàn)了較長(zhǎng)時(shí)間的飽和,表明此時(shí)的控制需求最強(qiáng);但隨著變線機(jī)動(dòng)完成后,駕駛員將轉(zhuǎn)向盤回正到中間位置附近,控制需求逐漸降低;由于穩(wěn)定性控制退出條件比介入條件更嚴(yán)格,到5.3s左右,過(guò)渡工況算法判定車輛已經(jīng)足夠穩(wěn)定,車輛穩(wěn)定控制退出.
(1)基于傳統(tǒng)雙線法在ββ·相圖上確定的穩(wěn)定區(qū)域引入橫擺角速度法確定的穩(wěn)定區(qū)域,兩者互補(bǔ)構(gòu)成一個(gè)封閉的穩(wěn)定區(qū)域,形成雙線法與橫擺角速度法聯(lián)合的穩(wěn)定性判據(jù),協(xié)調(diào)對(duì)質(zhì)心側(cè)偏角和橫擺角速度的控制;在考慮路面附著系數(shù)、車速以及轉(zhuǎn)向角變化的條件下獲取穩(wěn)定性判據(jù)的相應(yīng)閾值變化的數(shù)據(jù)庫(kù),用于在控制過(guò)程中查表獲得車輛的穩(wěn)定區(qū)域邊界.
(2)設(shè)計(jì)了質(zhì)心側(cè)偏角和橫擺角速度偏離函數(shù)以表征控制變量偏離參考值的程度和車輛狀態(tài)相對(duì)穩(wěn)定區(qū)域邊界的位置.極限工況下,當(dāng)車輛狀態(tài)超出穩(wěn)定區(qū)域邊界時(shí),車輛穩(wěn)定性控制迅速介入,控制車輛狀態(tài)回到穩(wěn)定區(qū)域.
(3)通過(guò)CarSim軟件和MATLAB/Simulink軟件聯(lián)合仿真以及實(shí)車試驗(yàn)驗(yàn)證了設(shè)計(jì)的車輛穩(wěn)定性判據(jù)的有效性和實(shí)用性.
參考文獻(xiàn):
[1] Frampton R,Thomas P.Electronic stability control:Review of research and regulations[M].Britain:Vehicle Safety Research Center Longhborough University,2007.
[2] Van Zanten A T.Bosch ESP systems:5 years of experience[C]//SAE Automotive Dynamics &Stability Conference.Troy:[s.n.],2000:2000-01-1633.
[3] US Department of Transportation,National Highway Traffic Safety Administration.RIN:2127 AJ77 Electronic stability control systems[S].Washington D C:Federal Motor Vehicle Safety Standard,2006.
[4] Van Zanten A T.Evolution of electronic control systems for improving the vehicle dynamic behavior[C]//Proceedings of the 6th International Symposium on Advanced Vehicle Control.Hiroshima:[s.l.],2002:1-9.
[5] Shibahata T,Shimada K,Tomari T.Improvement of vehicle maneuverability by direct yaw moment control[J].Vehicle System Dynamics,1993,22:465.
[6] Pacejka H B.Non-linearities in road vehicle dynamics[J].Vehicle System Dynamics,1986,15(5):237.
[7] Ko Y,Lee J.Estimation of the stability region of a vehicle in plane motion using a topological approach[J].International Journal of Vehicle Design,2002,30(3):181.
[8] Inagaki S,Kushiro I,Yamamoto M.Analysis on vehicle stability in critical cornering using phase-plane method[J].JSAE Review,1995,16(2):187.
[9] Koibuchi K,Yamamoto M,F(xiàn)ukada Y,et al.Vehicle stability control in limit cornering by active brake[C]//SAE Internaitonal Congress &Exposition.Detroit:[s.n.],1996:960487.
[10] Von Vietinghoff A,Lu H,Kiencke U.Detection of critical driving situations using phase plane method for vehicle lateral dynamics control by rear wheel steering[C]//Proceedings of the 17th World Congress,The International Federation of Automatic Control.Seoul:[s.l.],2008:5694-5699.
[11] Chung T,Yi K.Design and evaluation of side slip angle-based vehicle stability control scheme on a virtual test track[J].Control Systems Technology,2006,14(2):224.
[12] Pacejka H B.Tire and vehicle dynamics[M].3rd ed.Oxford:Butterworth-Heinemann,2012.
[13] British Standard Institution.ISO 3888,Passenger cars-test track for a severe lane-change manoeuvre[S].London:British Standard Institution,2002.
[14] 中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì).ICS42.040.40輕型汽車電子穩(wěn)定性控制系統(tǒng)性能要求及試驗(yàn)方法(征求意見(jiàn)稿)[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2012.Standardization Administration of the People’s Republic of China.ICS 42.040.40 Performance requirements and testing methods for electronic stability control system(ESC)for light vehicles(exposure draft)[S].Beijing:Standards Press of China,2012.
[15] XIONG Lu,YU Zhuoping,WANG Yang,et al.Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation[J].Vehicle System Dynamics,50(6):831.
Vehicle Sideslip Angle and Yaw Rate Joint Criterion for Vehicle Stability Control
YU Zhuoping1,LENG Bo1,2,XIONG Lu1,2,F(xiàn)ENG Yuan3
(1.School of Automotive Studies,Tongji University,Shanghai 201804,China;2.Clean Energy Automotive Engineering Center,Tongji University,Shanghai 201804,China;3.Pan Asia Technical Automotive Center Co.,Ltd.,Shanghai 201201,China)
Vehicle stability criterion is the basis of vehicle stability controls and decides the control intervention time and exit time.A phase-plane method based criterion combing the sideslip angle method and the yaw rate method is proposed,which can coordinate the control of both vehicle sideslip angle and yaw rate.By means of phase-plane method the data bases of the stable region thresholds are obtained,which contributes to establishing look-up tables of the thresholds for real-time control.Deviation functions of the sideslip angle and the yaw rate are designed to indicate the deviation between vehicle actual states and the reference states.Meanwhile,relative positions of the vehicle states and the stable region boundaries are also described by the deviation functions.When the vehicle states are beyond the stable region,the vehicle stability control should intervene timely to make the vehicle back to stable state.
stability criterion;vehicle sideslip angle;yaw rate;phase-plane method;stabilitycontrol
U46
A
0253-374X(2015)12-1841-09
10.11908/j.issn.0253-374x.2015.12.012
2014 11 17
國(guó)家“九七三”重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2011CB711200);國(guó)家自然科學(xué)基金(51475333)
余卓平(1960—),男,教授,博士生導(dǎo)師,工學(xué)博士,主要研究方向?yàn)槠囅到y(tǒng)動(dòng)力學(xué)及控制.E-mail:yuzhuoping@#edu.cn
熊 璐(1978—),男,副教授,博士生導(dǎo)師,工學(xué)博士,主要研究方向?yàn)槠囅到y(tǒng)動(dòng)力學(xué)與控制.E-mail:xiong_lu@#edu.cn
同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版)2015年12期