胡彬
棱錐的體積只與棱錐的底面積和高有關,而與其形狀無關.求四面體的體積時要注意合理選取底面.同時,計算棱錐的體積也應當注意數(shù)學思想與方法的運用.常用的思想方法有:轉換思想、等積變換思想、分割思想及補形思想.
一、轉換思想
圖1
例1如圖1所示,直三棱柱ABC-A1B1C1的側棱和底面邊長都為a,截面AB1C和截面A1BC1相交于DE,求三棱錐B-B1DE的體積.
分析本題有助于提高空間想象能力,棱錐B-B1DE的位置不利于計算,利用等底面積等高的錐體體積相等的定理把求該棱錐的體積轉化為求其他棱錐的體積.
解直三棱柱各棱長均為a,
∴各側面是正方形,D、E分別是AB1、CB1的中點,在△AB1C中,
S△DB1E=14S△AB1C,棱錐B-AB1C與棱錐B-B1DE等高, ∴VB-DB1E=14VB-AB1C.
又∵VB-AB1C=VB1-ABC=13×
34a2×a=312a3,
∴VB-DB1E=14×312a3=348a3.
評注從以上的解答過程我們可以看到,本題直接計算三棱錐B-B1DE的底面積與高將十分困難,但是,當我們把求三棱錐B-B1DE的體積轉化為求三棱錐B1-ABC的體積時,三棱錐B1-ABC的高與底面積就一目了然了,這樣合理轉化后使計算大大簡化.
二、等積變換思想
圖2
例2如圖2所示,在底面是正三角形的三棱柱ABC-A1B1C1中,高為3,底面邊長為2,D、E分別是AC、BC的中點,求四棱錐A-A1B1ED的體積.
分析直接求四棱錐的底面積和高,再求體積可行,但不如分割成三棱錐后再進行“等積變換”解答簡便.
解連A1E,則S△A1B1E=2S△A1DE,S△ADE=14S△ABC,
故VA-A1B1ED=VA-A1DE+VA-A1B1E=3VA-A1DE =3VA1-ADE=3×13×14×34×22×3=334.
評注“等積變換”一般有兩類:一是對同一個三棱錐,變某一側面為底面;二是對兩個不同的錐體,或頂點不變,在同一平面內變換底面,或底面不變,在與底面平行的直線上或平面內變換頂點的位置.靈活運用“等積變換”,事半功倍.
三、分割與補形思想
例3在三棱錐P-ABC中,已知PA⊥BC,PA=BC=l,PA、BC的公垂線ED=h,求證:三棱錐P-ABC的體積V=16·l2·h.
分析一當一個幾何體的形狀不規(guī)則時,無法直接運用體積公式求解,這時一般通過分割與補形,即將原幾何體分割或補形成較易計算體積的幾何體,從而求出原幾何體的體積,這種方法就稱為割補法.該題的解答就可利用平面EBC(或平面PAD)將三棱錐分割成兩個易求體積的三棱錐.圖3
證法一如圖3所示,
連EB、EC.∵PA⊥BC,PA⊥DE, ∴PA⊥平面EBC,又DE⊥BC.
∴V=VP-EBC+VA-EBC=13S△EBC·PE+13S△EBC·AE=13×12l·h·l=16·l2·h.
分析二將三棱錐補形成三棱柱,則便于利用條件求體積.
圖4
證法二如圖4所示,
以PA為側棱,△ABC為底面將三棱錐補形成三棱柱ABC-PQR,則△BCE為直截面,于是V=13·S△BCE·PA=16·l2·h.
評注(1)本題還可以將三棱錐補形為四棱錐求體積;(2)三棱錐是最簡單的多面體,求多面體的體積時,常將其分割成幾個三棱錐,或將其補形成四棱錐、三棱柱,即采用“割補法”使問題更容易得到解決.
(收稿日期:2014-06-12)
棱錐的體積只與棱錐的底面積和高有關,而與其形狀無關.求四面體的體積時要注意合理選取底面.同時,計算棱錐的體積也應當注意數(shù)學思想與方法的運用.常用的思想方法有:轉換思想、等積變換思想、分割思想及補形思想.
一、轉換思想
圖1
例1如圖1所示,直三棱柱ABC-A1B1C1的側棱和底面邊長都為a,截面AB1C和截面A1BC1相交于DE,求三棱錐B-B1DE的體積.
分析本題有助于提高空間想象能力,棱錐B-B1DE的位置不利于計算,利用等底面積等高的錐體體積相等的定理把求該棱錐的體積轉化為求其他棱錐的體積.
解直三棱柱各棱長均為a,
∴各側面是正方形,D、E分別是AB1、CB1的中點,在△AB1C中,
S△DB1E=14S△AB1C,棱錐B-AB1C與棱錐B-B1DE等高, ∴VB-DB1E=14VB-AB1C.
又∵VB-AB1C=VB1-ABC=13×
34a2×a=312a3,
∴VB-DB1E=14×312a3=348a3.
評注從以上的解答過程我們可以看到,本題直接計算三棱錐B-B1DE的底面積與高將十分困難,但是,當我們把求三棱錐B-B1DE的體積轉化為求三棱錐B1-ABC的體積時,三棱錐B1-ABC的高與底面積就一目了然了,這樣合理轉化后使計算大大簡化.
二、等積變換思想
圖2
例2如圖2所示,在底面是正三角形的三棱柱ABC-A1B1C1中,高為3,底面邊長為2,D、E分別是AC、BC的中點,求四棱錐A-A1B1ED的體積.
分析直接求四棱錐的底面積和高,再求體積可行,但不如分割成三棱錐后再進行“等積變換”解答簡便.
解連A1E,則S△A1B1E=2S△A1DE,S△ADE=14S△ABC,
故VA-A1B1ED=VA-A1DE+VA-A1B1E=3VA-A1DE =3VA1-ADE=3×13×14×34×22×3=334.
評注“等積變換”一般有兩類:一是對同一個三棱錐,變某一側面為底面;二是對兩個不同的錐體,或頂點不變,在同一平面內變換底面,或底面不變,在與底面平行的直線上或平面內變換頂點的位置.靈活運用“等積變換”,事半功倍.
三、分割與補形思想
例3在三棱錐P-ABC中,已知PA⊥BC,PA=BC=l,PA、BC的公垂線ED=h,求證:三棱錐P-ABC的體積V=16·l2·h.
分析一當一個幾何體的形狀不規(guī)則時,無法直接運用體積公式求解,這時一般通過分割與補形,即將原幾何體分割或補形成較易計算體積的幾何體,從而求出原幾何體的體積,這種方法就稱為割補法.該題的解答就可利用平面EBC(或平面PAD)將三棱錐分割成兩個易求體積的三棱錐.圖3
證法一如圖3所示,
連EB、EC.∵PA⊥BC,PA⊥DE, ∴PA⊥平面EBC,又DE⊥BC.
∴V=VP-EBC+VA-EBC=13S△EBC·PE+13S△EBC·AE=13×12l·h·l=16·l2·h.
分析二將三棱錐補形成三棱柱,則便于利用條件求體積.
圖4
證法二如圖4所示,
以PA為側棱,△ABC為底面將三棱錐補形成三棱柱ABC-PQR,則△BCE為直截面,于是V=13·S△BCE·PA=16·l2·h.
評注(1)本題還可以將三棱錐補形為四棱錐求體積;(2)三棱錐是最簡單的多面體,求多面體的體積時,常將其分割成幾個三棱錐,或將其補形成四棱錐、三棱柱,即采用“割補法”使問題更容易得到解決.
(收稿日期:2014-06-12)
棱錐的體積只與棱錐的底面積和高有關,而與其形狀無關.求四面體的體積時要注意合理選取底面.同時,計算棱錐的體積也應當注意數(shù)學思想與方法的運用.常用的思想方法有:轉換思想、等積變換思想、分割思想及補形思想.
一、轉換思想
圖1
例1如圖1所示,直三棱柱ABC-A1B1C1的側棱和底面邊長都為a,截面AB1C和截面A1BC1相交于DE,求三棱錐B-B1DE的體積.
分析本題有助于提高空間想象能力,棱錐B-B1DE的位置不利于計算,利用等底面積等高的錐體體積相等的定理把求該棱錐的體積轉化為求其他棱錐的體積.
解直三棱柱各棱長均為a,
∴各側面是正方形,D、E分別是AB1、CB1的中點,在△AB1C中,
S△DB1E=14S△AB1C,棱錐B-AB1C與棱錐B-B1DE等高, ∴VB-DB1E=14VB-AB1C.
又∵VB-AB1C=VB1-ABC=13×
34a2×a=312a3,
∴VB-DB1E=14×312a3=348a3.
評注從以上的解答過程我們可以看到,本題直接計算三棱錐B-B1DE的底面積與高將十分困難,但是,當我們把求三棱錐B-B1DE的體積轉化為求三棱錐B1-ABC的體積時,三棱錐B1-ABC的高與底面積就一目了然了,這樣合理轉化后使計算大大簡化.
二、等積變換思想
圖2
例2如圖2所示,在底面是正三角形的三棱柱ABC-A1B1C1中,高為3,底面邊長為2,D、E分別是AC、BC的中點,求四棱錐A-A1B1ED的體積.
分析直接求四棱錐的底面積和高,再求體積可行,但不如分割成三棱錐后再進行“等積變換”解答簡便.
解連A1E,則S△A1B1E=2S△A1DE,S△ADE=14S△ABC,
故VA-A1B1ED=VA-A1DE+VA-A1B1E=3VA-A1DE =3VA1-ADE=3×13×14×34×22×3=334.
評注“等積變換”一般有兩類:一是對同一個三棱錐,變某一側面為底面;二是對兩個不同的錐體,或頂點不變,在同一平面內變換底面,或底面不變,在與底面平行的直線上或平面內變換頂點的位置.靈活運用“等積變換”,事半功倍.
三、分割與補形思想
例3在三棱錐P-ABC中,已知PA⊥BC,PA=BC=l,PA、BC的公垂線ED=h,求證:三棱錐P-ABC的體積V=16·l2·h.
分析一當一個幾何體的形狀不規(guī)則時,無法直接運用體積公式求解,這時一般通過分割與補形,即將原幾何體分割或補形成較易計算體積的幾何體,從而求出原幾何體的體積,這種方法就稱為割補法.該題的解答就可利用平面EBC(或平面PAD)將三棱錐分割成兩個易求體積的三棱錐.圖3
證法一如圖3所示,
連EB、EC.∵PA⊥BC,PA⊥DE, ∴PA⊥平面EBC,又DE⊥BC.
∴V=VP-EBC+VA-EBC=13S△EBC·PE+13S△EBC·AE=13×12l·h·l=16·l2·h.
分析二將三棱錐補形成三棱柱,則便于利用條件求體積.
圖4
證法二如圖4所示,
以PA為側棱,△ABC為底面將三棱錐補形成三棱柱ABC-PQR,則△BCE為直截面,于是V=13·S△BCE·PA=16·l2·h.
評注(1)本題還可以將三棱錐補形為四棱錐求體積;(2)三棱錐是最簡單的多面體,求多面體的體積時,常將其分割成幾個三棱錐,或將其補形成四棱錐、三棱柱,即采用“割補法”使問題更容易得到解決.
(收稿日期:2014-06-12)