亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        α—半乳糖苷酶基因工程菌細(xì)胞破碎條件的篩選

        2015-01-14 17:29:29林莉萍等
        農(nóng)業(yè)科技與裝備 2014年10期
        關(guān)鍵詞:溶菌酶

        林莉萍等

        摘要:研究大腸桿菌表達(dá)的水稻α-半乳糖苷酶基因工程菌菌體破碎的條件。以菌液酶活性為指標(biāo),用超聲波破碎、溶菌酶降解及菌體反復(fù)凍融3種方法破碎細(xì)胞。結(jié)果表明:超聲波功率為200 W、破碎時(shí)間為1 min時(shí)測(cè)得的菌液酶的活性最大,為7.757 7

        U/mL,細(xì)胞破碎效果最好;菌體反復(fù)凍融條件下測(cè)得的菌液酶活性隨凍融次數(shù)的增加而增大,但樣品處理時(shí)間過長(zhǎng);菌液酶活性隨加入溶菌酶濃度增加而增加,但有處理時(shí)間長(zhǎng)、用量大、細(xì)胞破碎不完全的缺點(diǎn)。

        關(guān)鍵詞:α-半乳糖苷酶;超聲波破碎;溶菌酶;反復(fù)凍融

        中圖分類號(hào):Q55 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1674-1161(2014)10-0037-03

        α-半乳糖苷酶(α-Galactosidase, EC 3.2.1.22)屬外切糖苷酶,其專一性地催化半乳聚糖中非還原末端α-半乳糖苷鍵的水解,并能作用于含有α-半乳糖苷的糖蛋白和糖脂質(zhì),廣泛存在于植物、動(dòng)物和微生物中,在食品、醫(yī)藥、飼料等諸多領(lǐng)域有廣泛的應(yīng)用。許多微生物來源的或用基因工程菌表達(dá)的α-半乳糖苷酶屬胞內(nèi)酶,需要破碎細(xì)胞壁以釋放其活性。細(xì)胞壁的破碎方法很多,已有研究者用研磨、超聲波、高壓勻漿、酸洗玻璃珠漩渦振蕩、反復(fù)凍融、酶解、煮沸等方法來破碎細(xì)胞壁提取胞內(nèi)活性物質(zhì)。

        本研究以大腸桿菌表達(dá)的水稻α-半乳糖苷酶基因工程菌為對(duì)象,比較采用超聲波破碎、溶菌酶降解及菌體反復(fù)凍融3種方法破碎菌體對(duì)酶活性釋放的影響,篩選最適的破碎條件,為進(jìn)一步實(shí)現(xiàn)酶的純化奠定基礎(chǔ)。

        1 材料與方法

        1.1 供試材料

        水稻α-半乳糖苷酶基因工程菌(pET32-84411/Origami),由沈陽(yáng)師范大學(xué)食品生物技術(shù)實(shí)驗(yàn)室提供;所用試劑購(gòu)自北京鼎國(guó)昌盛生物技術(shù)有限責(zé)任公司。

        1.2 儀器設(shè)備

        潔凈工作臺(tái),全溫培養(yǎng)振蕩器,恒溫水浴槽,超聲波細(xì)胞破碎機(jī),冷凍離心機(jī),制冰機(jī),紫外可見分光光度計(jì)。

        1.3 試驗(yàn)方法

        1.3.1 菌體制備 將水稻α-半乳糖苷酶基因工程菌按接種量5.0%接種于LB液體培養(yǎng)基(含氨芐青霉素50.0 μg/mL、卡那霉素15.0 μg/mL、四環(huán)素12.5

        μg/mL)中,加入0.7%的IPTG,20 ℃下誘導(dǎo)表達(dá)48 h,然后在4 ℃下以5 000 r/min離心15min,獲得菌體沉淀。

        1.3.2 α-半乳糖苷酶基因工程菌細(xì)胞破碎條件 按所獲得固體菌體質(zhì)量的4倍體積加入HEPES緩沖液(pH=7.0),采用以下3種方法進(jìn)行菌體破碎,然后在4 ℃下以10 000 r/min離心20 min,取上清液待測(cè)。破碎方法:1) 在超聲波條件下破碎細(xì)胞。將超聲波功率分別設(shè)置為100 W,200 W,300 W,400 W,處理時(shí)間30~180 s。2) 在反復(fù)凍融條件下破碎細(xì)胞。將加有緩沖液的菌體放入-80 ℃的冰箱里快速凍結(jié),之后置于冰浴溶解,凍融的次數(shù)分別為1次、3次、5次、7次、9次。3) 在加溶菌酶條件下破碎細(xì)胞。將溶菌酶按濃度1,2,3,4,5 mg/mL加入重懸菌液中,于室溫下處理1,2,3,4,5 h。

        1.3.3 α-半乳糖苷酶活性的測(cè)定 測(cè)定方法參照文獻(xiàn)[1]。

        2 結(jié)果與分析

        2.1 超聲波對(duì)菌體細(xì)胞破碎的影響

        4種超聲波功率不同時(shí)間下菌體細(xì)胞破碎結(jié)果如圖1所示。

        由圖1可見:200 W超聲波破碎處理下酶的活性最強(qiáng);隨作用時(shí)間的延長(zhǎng)菌液的酶活性增強(qiáng),破碎時(shí)間在90 s之后酶活性的增長(zhǎng)趨于緩慢。說明破碎功率過大或過小對(duì)α-半乳糖苷酶活性都會(huì)有負(fù)效應(yīng)。

        2.2 反復(fù)凍融對(duì)菌體細(xì)胞破碎的影響

        反復(fù)凍融條件下菌體細(xì)胞破碎結(jié)果如圖2所示。

        由圖2可見,隨著凍融次數(shù)的增加酶活性釋放顯著增強(qiáng),5次以后趨于平緩。

        2.3 溶菌酶對(duì)菌體細(xì)胞破碎的影響

        溶菌酶對(duì)菌體細(xì)胞壁的作用如圖3和圖4所示。

        由圖3和圖4可見:當(dāng)溶菌酶的作用時(shí)間達(dá)到3 h,濃度達(dá)到2 mg/mL之后,酶活性趨于穩(wěn)定。但總體而言,對(duì)α-半糖苷酶酶活性影響有限。

        2.4 不同破碎條件對(duì)菌體細(xì)胞破碎影響的比較

        就酶活性而言,圖5對(duì)比了5種不同破碎條件對(duì)α-半糖苷酶酶活性的影響。可見,超聲波功率為200 W時(shí)破碎1 min時(shí)獲得菌液的酶活性是最高的,而溶菌酶處理及菌體反復(fù)凍融均沒有取得理想效果。

        3 結(jié)論

        超聲波對(duì)大腸桿菌表達(dá)的α-半乳糖苷酶菌體細(xì)胞的破碎是最為有效的,當(dāng)破碎時(shí)間為1 min、功率為200 W時(shí),α-半乳糖苷酶基因工程菌菌液酶活性最高達(dá)到7.757 7 U/mL,且操作簡(jiǎn)單,處理時(shí)間短。反復(fù)凍融和溶菌酶處理雖然也是破碎菌體細(xì)胞壁的有效方法,但對(duì)酶活性的負(fù)效應(yīng)較大。

        參考文獻(xiàn)

        [1] 李蘇紅,朱旻鵬,李拖平.重組水稻α-半乳糖苷酶的分離純化及酶學(xué)性質(zhì)研究[J].食品科學(xué),2010,31(21):304-307.

        [2] BOZENA C,ANNEKATRIN D,KARIN K.Regulation of alpha-galactosidase gene expression in primary foliage leaves of barley

        (Hordeum vulgare L.) during dark-induced senescence[J].Planta,2004,218(5):886-889.

        [3] CHROST B,KRUPINSKA K.Gene with homologies to known α-galactosidase are expressed during senescence of barley leaves[J].

        Physiol.Plant,2000(110):111-119.

        [4] BEUTLER E,KUHL W.Purification and properties of human α-galactosidase[J].Bio.Chem.,1972(247):7 195-7 200.

        [5] PUCHART V,VRSANSKA M,MAHAKINGESHWARA KB,etal.Purification and characterization of α-galactosidase from a

        thermophilic fungus Themomyces lanuginosus[J].Biochem.Biophys.Acta,2000(1524):27-37.

        [6] 楊翠竹,李艷,阮南,等.酵母細(xì)胞破壁技術(shù)研究與應(yīng)用進(jìn)展[J].食品科技,2006(7):138-142.

        [7] 李蘭,張明霞,袁金輝.不同破壁方法對(duì)細(xì)菌產(chǎn)SOD活性的影響[J].食品工業(yè)科技,2008,29(10):108-111.

        Abstract: The research studies the E.coli expressed rice. It studied cell disruption conditions of α-Galactosidase Gene Engineering. It used 3 methods for the examination: ultrasonic-break, lysozyme treatment, and thalli repeated freeze-thaw to disrupt cells, using liquid enzyme activity as indicator. The results showed that the optimal disruption is ultrasonic-breaking at power 200 W for 1 min and the α-galactosidase activity was yield at 7.757 7 U/mL; under the condition of thalli repeated freeze-thaw, the liquid enzyme activity increased with the number of freeze-thaw increasing, but the treatment time is too long; similarly, the α-galactosidase activity was enhanced by a rise of the lysozyme concentration and prolongation of treatment time, whereas, it was limited by longer treating time, higher lysozyme dosage and incomplete cell break.

        Key words: α-galactosidase; ultrasonic-breaking; lysozyme; freeze-thawing

        Physiol.Plant,2000(110):111-119.

        [4] BEUTLER E,KUHL W.Purification and properties of human α-galactosidase[J].Bio.Chem.,1972(247):7 195-7 200.

        [5] PUCHART V,VRSANSKA M,MAHAKINGESHWARA KB,etal.Purification and characterization of α-galactosidase from a

        thermophilic fungus Themomyces lanuginosus[J].Biochem.Biophys.Acta,2000(1524):27-37.

        [6] 楊翠竹,李艷,阮南,等.酵母細(xì)胞破壁技術(shù)研究與應(yīng)用進(jìn)展[J].食品科技,2006(7):138-142.

        [7] 李蘭,張明霞,袁金輝.不同破壁方法對(duì)細(xì)菌產(chǎn)SOD活性的影響[J].食品工業(yè)科技,2008,29(10):108-111.

        Abstract: The research studies the E.coli expressed rice. It studied cell disruption conditions of α-Galactosidase Gene Engineering. It used 3 methods for the examination: ultrasonic-break, lysozyme treatment, and thalli repeated freeze-thaw to disrupt cells, using liquid enzyme activity as indicator. The results showed that the optimal disruption is ultrasonic-breaking at power 200 W for 1 min and the α-galactosidase activity was yield at 7.757 7 U/mL; under the condition of thalli repeated freeze-thaw, the liquid enzyme activity increased with the number of freeze-thaw increasing, but the treatment time is too long; similarly, the α-galactosidase activity was enhanced by a rise of the lysozyme concentration and prolongation of treatment time, whereas, it was limited by longer treating time, higher lysozyme dosage and incomplete cell break.

        Key words: α-galactosidase; ultrasonic-breaking; lysozyme; freeze-thawing

        Physiol.Plant,2000(110):111-119.

        [4] BEUTLER E,KUHL W.Purification and properties of human α-galactosidase[J].Bio.Chem.,1972(247):7 195-7 200.

        [5] PUCHART V,VRSANSKA M,MAHAKINGESHWARA KB,etal.Purification and characterization of α-galactosidase from a

        thermophilic fungus Themomyces lanuginosus[J].Biochem.Biophys.Acta,2000(1524):27-37.

        [6] 楊翠竹,李艷,阮南,等.酵母細(xì)胞破壁技術(shù)研究與應(yīng)用進(jìn)展[J].食品科技,2006(7):138-142.

        [7] 李蘭,張明霞,袁金輝.不同破壁方法對(duì)細(xì)菌產(chǎn)SOD活性的影響[J].食品工業(yè)科技,2008,29(10):108-111.

        Abstract: The research studies the E.coli expressed rice. It studied cell disruption conditions of α-Galactosidase Gene Engineering. It used 3 methods for the examination: ultrasonic-break, lysozyme treatment, and thalli repeated freeze-thaw to disrupt cells, using liquid enzyme activity as indicator. The results showed that the optimal disruption is ultrasonic-breaking at power 200 W for 1 min and the α-galactosidase activity was yield at 7.757 7 U/mL; under the condition of thalli repeated freeze-thaw, the liquid enzyme activity increased with the number of freeze-thaw increasing, but the treatment time is too long; similarly, the α-galactosidase activity was enhanced by a rise of the lysozyme concentration and prolongation of treatment time, whereas, it was limited by longer treating time, higher lysozyme dosage and incomplete cell break.

        Key words: α-galactosidase; ultrasonic-breaking; lysozyme; freeze-thawing

        猜你喜歡
        溶菌酶
        關(guān)于溶菌酶含量測(cè)定方法的教學(xué)研究*
        廣州化工(2022年20期)2022-01-01 07:36:18
        溶菌酶及其應(yīng)用研究進(jìn)展
        沙門菌噬菌體溶菌酶LysSHWT1的制備及抑菌活性分析
        偶氮類食品著色劑誘惑紅與蛋溶菌酶的相互作用研究
        致病菌抵抗溶菌酶機(jī)制的研究進(jìn)展分析
        熒光光譜法研究亮藍(lán)與溶菌酶的相互作用
        山東化工(2019年11期)2019-06-26 03:26:46
        光譜法研究石墨烯-TiO2與溶菌酶的相互作用及對(duì)酶活性的影響
        溶菌酶在食品工業(yè)中的研究進(jìn)展
        動(dòng)物型溶菌酶研究新進(jìn)展
        漁用溶菌酶制品的穩(wěn)定性研究
        日韩人妻精品无码一区二区三区 | 波多野结衣亚洲一区二区三区| 天堂AV无码AV毛片毛| 国产我不卡在线观看免费| 成人免费播放视频777777| 国产乱xxⅹxx国语对白| 久久AV中文综合一区二区| 国产一区二区三区涩涩| 国产亚洲精品av久久| 国产免费av片在线播放 | 欧美亚洲另类国产18p| 精品国产乱子伦一区二区三| 国产成人av乱码在线观看| 免费a级毛片无码a| 被暴雨淋湿爆乳少妇正在播放| 今井夏帆在线中文字幕| 日韩日韩日韩日韩日韩| 狠狠色婷婷久久一区二区| 国产一区二区精品网站看黄| av成人一区二区三区| 久久99国产精一区二区三区| 999国产精品亚洲77777| 日本道免费一区日韩精品| 文字幕精品一区二区三区老狼| 极品av麻豆国产在线观看| 无码毛片高潮一级一免费| 中文乱码字幕人妻熟女人妻| 老妇高潮潮喷到猛进猛出| 亚洲一本大道无码av天堂| 国产午夜精品美女裸身视频69| 中文字幕人妻日韩精品| 成人精品视频一区二区三区尤物 | 日产分东风日产还有什么日产| 久久久久人妻一区精品| 亚洲欧美成人a∨| 亚洲一区二区三区综合网| 欧美又大粗又爽又黄大片视频| 亚洲av综合av国产av| 精品无码人妻久久久一区二区三区| 阴唇两边有点白是怎么回事| 免费大黄网站|