亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        開放題教學(xué)培養(yǎng)學(xué)生“四能”的路徑與方法初探

        2015-01-12 10:20:00江蘇省鹽城市第一小學(xué)教育集團
        新課程研究 2015年31期
        關(guān)鍵詞:解決問題思維分析

        ◆ 江蘇省鹽城市第一小學(xué)教育集團 李 浩

        開放題教學(xué)培養(yǎng)學(xué)生“四能”的路徑與方法初探

        ◆ 江蘇省鹽城市第一小學(xué)教育集團 李 浩

        因開放題有別于封閉題獨有的特性,在培養(yǎng)學(xué)生“四能”方面存在著獨特的價值。在小學(xué)階段開放題的教學(xué)中,“四能”的培養(yǎng)要重視創(chuàng)設(shè)和諧愉悅的學(xué)習(xí)氛圍,重視問題意識的培養(yǎng),重視發(fā)現(xiàn)問題方法的指導(dǎo);要多為學(xué)生提供自由表達的機會,多給學(xué)生留下提出問題的時空,多為學(xué)生搭建提出問題的平臺;要讓學(xué)生自主分析、深度分析、全面分析;要搭建實踐平臺,創(chuàng)建爭辯舞臺,建立數(shù)學(xué)模型。

        小學(xué)數(shù)學(xué);開放題教學(xué);小學(xué)生“四能”培養(yǎng)

        策劃人語:《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)》最明顯的亮點就是旗幟鮮明地提出了“四基”“四能”的要求,這是在對新課改實驗10年得失成敗的深入反思、總結(jié)后的厘定,指明了今后一段時期義務(wù)教育數(shù)學(xué)課程改革的走向。從現(xiàn)實角度看,理論界關(guān)于“四能”的討論漸趨深入,但對數(shù)學(xué)開放題的學(xué)習(xí)在小學(xué)生“四能”培養(yǎng)中的作用認(rèn)識還未達成一致意見。本專輯依托最近幾年的小學(xué)數(shù)學(xué)開放題教學(xué)實踐,邀約相關(guān)專家、教研員以及一線教師,以開放題學(xué)習(xí)與小學(xué)生“四能”培養(yǎng)為主題,展開一次理論研討和實踐呈現(xiàn)。期冀能從理論視角厘清開放題對學(xué)生“四能”發(fā)展的價值定位、問題解決模型、路徑方法、契機與實現(xiàn)等問題;從實踐層面分別就開放題學(xué)習(xí)對小學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題能力的培養(yǎng)等方面呈現(xiàn)我們的具體做法。

        本專輯將以3期連載的形式,展示數(shù)學(xué)開放題研究團隊的思考與實踐,期待能給關(guān)注開放題學(xué)習(xí)與學(xué)生“四能”培養(yǎng)的老師些許啟示和幫助。

        (策劃組稿:楊傳岡)

        當(dāng)前,開放題與開放題教學(xué)在全世界數(shù)學(xué)教育界得到了廣泛的重視,人們越來越感受到開放題教學(xué)在培養(yǎng)智力、提高能力,特別是在發(fā)展學(xué)生數(shù)學(xué)思維上的特殊作用。數(shù)學(xué)開放題作為推進素質(zhì)教育、培養(yǎng)學(xué)生創(chuàng)新精神的切入口,已日益引起我國數(shù)學(xué)教育界的注意,并逐漸成為數(shù)學(xué)教學(xué)改革的一個熱點,我們對開放題教學(xué)的認(rèn)識也在不斷地提高。《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011)版》明確指出,“通過義務(wù)教育階段的數(shù)學(xué)學(xué)習(xí),學(xué)生能夠體會數(shù)學(xué)知識之間、數(shù)學(xué)與其他學(xué)科之間、數(shù)學(xué)與生活之間的聯(lián)系,運用數(shù)學(xué)的思維方式進行思考,增強發(fā)現(xiàn)問題和提出問題的能力、分析問題和解決問題的能力?!痹谛W(xué)階段,如何通過開放題教學(xué)有效培養(yǎng)學(xué)生的“四能”,自然成為每一個小學(xué)數(shù)學(xué)教師研究的課題。本文擬根據(jù)自身的教學(xué)實踐,就開放題培養(yǎng)學(xué)生“四能”的路徑與方法談一點個人的體會。

        誠然,發(fā)現(xiàn)問題、提出問題、分析問題和解決問題是問題解決中的一個完整的、相對獨立又密切聯(lián)系的過程,只是傳統(tǒng)教學(xué)過于強調(diào)分析問題和解決問題能力的培養(yǎng),忽略了培養(yǎng)學(xué)生的發(fā)現(xiàn)問題和提出問題的能力,從而導(dǎo)致學(xué)生缺乏創(chuàng)新。顯然,“四能”是一個有機的整體,把它們割裂開來,只重視某一項或其中幾項能力,都是不妥的,就現(xiàn)狀而言,培養(yǎng)學(xué)生發(fā)現(xiàn)和提出問題的能力比培養(yǎng)分析和解決問題的能力更重要?!八哪堋笔且粋€有機的整體,“四能”的培養(yǎng)過程也是一個完整的過程。在教學(xué)實踐中,每一個教學(xué)環(huán)節(jié)可能與“四能”的培養(yǎng)都有關(guān)系,只是對某一能力的培養(yǎng)更加突出、更加顯性而已。本文所說的培養(yǎng)路徑正是基于這個意義而言的,分別從“四能”的4個方面來探討。

        一、“三重”——小學(xué)生發(fā)現(xiàn)問題能力的培養(yǎng)路徑

        1. 重視營造和諧、愉悅的學(xué)習(xí)氛圍,讓學(xué)生樂于發(fā)現(xiàn)問題。心理學(xué)研究表明,人會在和諧、愉悅的氛圍中觀察敏銳、想象豐富、思維敏捷。培養(yǎng)學(xué)生的“四能”,首要路徑就是努力營造和諧、愉悅的氛圍,只有在這樣的狀態(tài)下,學(xué)生才能敢問樂問、敢說愿說,“四能”的培養(yǎng)才有可能。開放題不同于封閉題,其獨特的敘述方式、開放的條件與問題、寬松的解題環(huán)境和極富挑戰(zhàn)性的解題策略充滿了趣味,激發(fā)了學(xué)生的好奇心和好勝心,增強了他們學(xué)習(xí)的內(nèi)驅(qū)力。在教學(xué)中,教師要充分利用開放題的這一特性,努力營造和諧的師生關(guān)系、愉悅的學(xué)習(xí)氛圍。設(shè)計開放題時,要考慮到不同層次學(xué)生的水平,而不是局限于少數(shù)尖子生的難題、怪題、偏題;起點要低,既能照顧后進生的解答水平,又能鼓勵優(yōu)等生尋求更多、更好的解答方法,要讓所有學(xué)生都能參與進來,都能感受到自己是課堂的主人,都能感受到數(shù)學(xué)學(xué)習(xí)的魅力,從而積極地投入到數(shù)學(xué)學(xué)習(xí)中來。

        例如在教學(xué)蘇教版一年級“10以內(nèi)的加法表”時(如圖一),讓學(xué)生說說發(fā)現(xiàn)了什么。不同層次的學(xué)生,其發(fā)現(xiàn)可能是不一樣的,能夠按教材的提示說出橫著或豎著看是怎樣排列的固然很好,能夠超出教材說出斜著看是怎么排列的更該表揚,對于發(fā)現(xiàn)“1+1最小”、“第二排2+1和1+2相等”、“第一排1個算式,第二排有2個算式……”“1+7=8,5+3=8,4+4=8”等問題的都應(yīng)肯定,即使說錯了,教師也要給予正確的引導(dǎo),對學(xué)生的積極參與要鼓勵。這樣,孩子們才會有自信,不再畏首畏尾,在課堂上才會勇于發(fā)表自己的意見,思維敏捷,才會發(fā)現(xiàn)更多的有質(zhì)量的問題。

        2. 重視問題意識的培養(yǎng),讓學(xué)生有問題可問。問題是數(shù)學(xué)的心臟,培養(yǎng)學(xué)生的問題意識是開放題教學(xué)的應(yīng)有之義。傳統(tǒng)的封閉題,學(xué)生只是依樣畫葫蘆,按照老師的要求分析解決問題,忽視了問題意識的培養(yǎng)。開放題或條件不充足,或結(jié)論被隱去,或解題方法和依據(jù)不明確,其組成要素是不完備的,容易讓學(xué)生產(chǎn)生問題意識。在教學(xué)中,我們可以利用開放題的非完備性,讓學(xué)生有問題可問。例如,在教學(xué)兩步計算應(yīng)用題時,筆者出了這樣一道題:黃花8朵,紅花6朵,藍花有幾朵?“老師,你錯了!應(yīng)該問兩種花一共有幾朵?”“可以問紅花比黃花少幾朵?”孩子們立即叫了起來?!皩Σ黄?,老師少寫了一個條件,猜猜,少寫的條件是什么呢?”,孩子們的聲音再次響起:“我猜,老師少寫了藍花比紅花多2朵?!薄包S花比藍花多1朵”“藍花比紅花黃花一共的少5朵” ……學(xué)生問題意識的形成是一個循序漸進的過程,需要長期的潛移默化的訓(xùn)練,需要不斷的堅持。

        3. 重視發(fā)現(xiàn)問題方法的指導(dǎo),讓學(xué)生善于發(fā)現(xiàn)問題。學(xué)生之所以不會發(fā)現(xiàn)問題,一方面是沒有問題意識,另一方面是缺少方法。在開放題的教學(xué)中,教師要充分利用其開放的特性,對學(xué)生進行發(fā)現(xiàn)問題的方法指導(dǎo)。教師可以引導(dǎo)學(xué)生在新舊知識的結(jié)合點上找問題,在新舊知識的內(nèi)在聯(lián)系中找問題,在與實際生活的結(jié)合中找問題;引導(dǎo)學(xué)生去發(fā)現(xiàn)條件開放題中多余的條件、隱藏的條件,結(jié)論開放題中不同結(jié)論產(chǎn)生的原因,策略開放題中不同的解題策略,讓學(xué)生在觀察、與同伴的討論、動手操作實踐中去發(fā)現(xiàn)問題。如在教學(xué)“在2、4、 6、 7、10這五個數(shù)中,哪一個數(shù)與眾不同?”時,當(dāng)學(xué)生說出第一個答案:“7與眾不同,它是單數(shù)”,“你從是不是單雙數(shù)的角度找出了7這個與眾不同的數(shù),真了不起!”教師一句簡單的評價,實際上暗含了方法的指導(dǎo),暗示學(xué)生用不同的分類標(biāo)準(zhǔn)對五個數(shù)進行分類。在這樣的方法暗示下,學(xué)生從是不是兩位數(shù)、能不能被3整除、可否寫成兩個相同因數(shù)的積等角度得出了不同的答案。

        二、“三多”——小學(xué)生提出問題能力的培養(yǎng)路徑

        1. 創(chuàng)設(shè)問題情境,多為學(xué)生提供自由表達的機會。開放性問題為學(xué)生提供了獨立思考并用自己的數(shù)學(xué)觀念來表達的機會,這和他們在數(shù)學(xué)學(xué)習(xí)中的發(fā)展要求是一致的。在教學(xué)中,教師要根據(jù)學(xué)生的心理特點,不同層次學(xué)生的知識起點,創(chuàng)設(shè)開放的問題情境,讓他們都有自由表達的機會,從而培養(yǎng)他們的提問能力。如在教學(xué)蘇教版一年級“10以內(nèi)的加法減法”時(如圖二),面對這樣的開放情境,不同的孩子會提出不同的問題,有的會從連加的角度簡單地提問,有的會從連減的角度思考,觀察細心的會從某種小動物不同的狀態(tài)入手,提出加減混合的問題,孩子們在自由表達的過程中不僅敢于提問,而且樂于提問。

        2. 把握課堂節(jié)奏,多給學(xué)生留下提出問題的時空。開放題因其開放性,無形中增加了教學(xué)的容量。有些老師為了完成教學(xué)進度,教學(xué)節(jié)奏過快,只有少數(shù)學(xué)生能夠合上節(jié)拍,多數(shù)學(xué)生無法展開思維。因此,培養(yǎng)學(xué)生的提問能力,教師要把握好課堂節(jié)奏,給學(xué)生留下足夠的思考時空,讓他們不僅能提出問題,而且能提出高質(zhì)量有價值的問題。

        3. 堅持循序漸進,多為學(xué)生搭建提出問題的平臺。學(xué)生提問能力的培養(yǎng)要循序漸進,要根據(jù)小學(xué)生形象思維為主的特點,為他們搭建一些平臺,讓他們不僅有問,而且會問。在教學(xué)中,可利用多媒體技術(shù)再現(xiàn)開放情境,讓學(xué)生在觀察中提問;可提供菜單式開放條件,讓學(xué)生進行不同的選擇,提出不一樣的問題;可借力課堂生成,讓學(xué)生在討論交流中提問;可創(chuàng)設(shè)操作的程序,如給學(xué)生提供3厘米、5厘米、6厘米、9厘米的小棒各一根,要學(xué)生搭建一個三角形,讓學(xué)生在動手實踐中提問??傊眠@些平臺,充分發(fā)揮開放題的優(yōu)勢,培養(yǎng)學(xué)生提問的能力。

        三、“三培”——小學(xué)生分析問題能力的培養(yǎng)路徑

        培養(yǎng)思維的靈活性,讓學(xué)生自主分析。分析問題能力的核心是思維能力,而開放題的核心是開放學(xué)生的思維,拓寬學(xué)生的思維空間。在教學(xué)中,我們可以根據(jù)開放題一題多解、一題多問、一題多變、不拘一格的特點,讓學(xué)生對同一問題展開多向思考,自主分析。開放性問題允許學(xué)生表達他們對問題的深層次的理解。在陳虎老師教學(xué)開放題“一塊正方形麥田邊長 300 米, 如果用射程是 10米的自動旋轉(zhuǎn)噴灌裝置進行噴灌,大約需要多少個這樣的裝置?”的案例中,學(xué)生1和學(xué)生2都是用麥田的面積除以每個裝置的噴灌面積,只是一個用進一法,一個用去尾法,分別得到287和286這兩個答案。而學(xué)生3則認(rèn)為水在流動,只需要按噴灌的直徑去思考,用(300÷20)×(300÷20)得到225個的答案。教師不再拘泥于答案的一致性,沒有判斷3個答案的對錯,然而學(xué)生在討論的過程中,不僅運用所學(xué)的知識,還能聯(lián)系生活實際進行自主分析,學(xué)生真正成了數(shù)學(xué)學(xué)習(xí)的主人。

        培養(yǎng)思維的深刻性,讓學(xué)生深度分析。思維的深刻性是指思維活動的深度、廣度和難度以及思維活動的抽象程度和邏輯水平。在開放題的教學(xué)中,要讓學(xué)生在對問題的分析中感悟數(shù)學(xué)的思想與方法,進行深度的思考。例如,可以選用條件多余型開放題,讓學(xué)生在對條件與問題的深度分析中,辨別出多余的條件,從而培養(yǎng)思維的深刻性。也可選用條件隱藏型開放題,讓學(xué)生綜合各種手段進行分析,找出隱藏條件。如開放題“已知圖中陰影部分面積是2平方厘米,求圓的面積?”(如圖三)。對學(xué)生而言,求圓的面積必須知道圓的半徑(或直徑、周長),這樣才能運用圓的面積公式求出圓的面積。但是在小學(xué)階段是不可能通過已知條件求出半徑的。這時,教師可以引導(dǎo)學(xué)生從圓的面積公式出發(fā),讓學(xué)生發(fā)現(xiàn)圖中陰影部分正方形的面積就等于半徑的平方,進而求出圓的面積。

        圖三

        培養(yǎng)思維的嚴(yán)密性,讓學(xué)生全面分析。開放題因為具有答案不唯一、條件不充足、方法不明確的特性,需要學(xué)生進行細致入微的全方位分析。如在教學(xué)“將一個長10厘米、寬8厘米、高4厘米的長方體切一刀,分成兩個完全一樣的長方體后,表面積增加了多少?”時,要引導(dǎo)學(xué)生分別從長、寬、高的方向進行切割,分成3種情況來思考,同時還要考慮到切割時增加的面是兩個同樣的長方形,要讓學(xué)生在嚴(yán)密的思考過程中養(yǎng)成全面分析問題的能力。

        四、“三建”——小學(xué)生解決問題能力的培養(yǎng)路徑

        搭建實踐平臺,讓學(xué)生在操作中解決問題。小學(xué)生以形象思維為主,動手實踐更能培養(yǎng)學(xué)生解決問題的能力。如在教學(xué)開放題:“一個長方形切去一角后是什么圖形?”時,可以讓學(xué)生在長方形紙上畫畫剪剪,在動手操作的過程中解決問題:可能是三角形、梯形或五邊形。在教學(xué):“一塊長方形鐵皮,長是50厘米,若在它的一端剪去一塊最大的正方形,剩下的長方形的周長是多少厘米?”時,可利用數(shù)形結(jié)合的思想,讓學(xué)生畫一畫,直觀地發(fā)現(xiàn)剩下的長方形長與寬的和就是原來長方形鐵皮的長,從而解決問題(如圖四)。

        圖四

        創(chuàng)建爭辯舞臺,讓學(xué)生在討論中解決問題。培養(yǎng)學(xué)生解決問題能力的一個很重要的路徑就是讓學(xué)生在討論爭辯中解決問題。在教學(xué)中要充分利用開放題的開放性,讓學(xué)生從不同的角度切入,創(chuàng)建爭辯的舞臺。如在教學(xué)開放題“五年級有195人去春游。他們來到汽車公司租車:面包車每輛120元,可容納30人;大客車每輛150元可容納45人。如果由你來負責(zé)租車,聰明的你認(rèn)為怎樣租車最合適呢”時,學(xué)生提出“租5輛面包車,1輛大客車”、“租4輛大客車,1輛面包車”、“租5輛大客車”等不同方案,教師可組織學(xué)生進行討論,讓學(xué)生在爭辯中發(fā)現(xiàn)考慮租車方案時,一要讓所有的人都能上車,二是價格越低越好,在爭論中達成共識,解決問題。

        建立數(shù)學(xué)模型,讓學(xué)生在建模中解決問題。在現(xiàn)實生活中不能用數(shù)學(xué)方法直接解決的實際問題是大量的,對于面臨的實際問題,人們往往難于表述成數(shù)學(xué)的形式,甚至不知道從何處下手。把實際問題恰當(dāng)?shù)爻橄蟪蓴?shù)學(xué)問題,進行數(shù)學(xué)建模,這是一種重要的解決問題的能力。例如在教學(xué)開放題“六年級 6 個班的足球隊進行循環(huán)賽,那么體育教師一共要安排幾場比賽?”時,教師讓孩子們進行的獨立思考,引導(dǎo)學(xué)生用6個點表示6支球隊,兩個隊之間比賽一場,就在兩個點之間連一條線,數(shù)出圖中線段的條數(shù),就是比賽的場數(shù)(如圖五)。進而引導(dǎo)學(xué)生從純數(shù)學(xué)的角度思考,每從一點出發(fā),都有5條線段,共有6個點,一共30條線段,但每條線段都有2個端點,除去重復(fù)的,共有15條線段。進而發(fā)現(xiàn)歸納出解決這類問題的模型:設(shè)有 N 支球隊進行循環(huán)比賽,則比賽的場數(shù) =N×(N-1 )÷2 。

        圖五

        總之,因開放題有別于封閉題獨有的特性,在培養(yǎng)學(xué)生“四能”方面存在著獨特的價值。因此,如何最大限度地發(fā)揮其作用,需要我們做更多的思考與探索。

        [1]楊傳岡.小學(xué)數(shù)學(xué)開放題教學(xué)的現(xiàn)狀分析與對策探尋[J]. 現(xiàn)代中小學(xué)教育,2014(5).

        [2]段志貴.基于小學(xué)數(shù)學(xué)開放題教學(xué)的直覺思維的培養(yǎng)[J]. 新課程研究(上旬刊),2014(02).

        [3]葉淑平.如何培養(yǎng)小學(xué)數(shù)學(xué)低年段學(xué)生的提問能力[J].中國教師(下半月版),2014(4).

        [4]朱廣科.學(xué)則生疑 疑則學(xué)進——學(xué)生“提出問題”的培養(yǎng)策略[J]. 《教學(xué)月刊·中學(xué)版(教學(xué)參考)》,2014(04).

        [5]朱桂鳳,孫朝仁.“ 素養(yǎng)取向” 下數(shù)學(xué)教學(xué)的“ 四能”教育研究與評論[J]. 中學(xué)教育教學(xué),2015(5).

        [6]段志貴.直待凌云始道高——小學(xué)數(shù)學(xué)開放題教學(xué)探微[J]. 江蘇教育(小學(xué)教學(xué)),2015(2).

        [7]陳虎.一題多解 演繹推理 妙趣橫生[J]. 數(shù)學(xué)學(xué)習(xí)與研究,2015(2).

        [8]楊傳岡,徐正洲.小學(xué)數(shù)學(xué)開放題舉一反三[M].南京:南京大學(xué)出版社,2014.

        (策劃組稿:楊傳岡 編輯:胡 璐)

        李浩,中學(xué)高級教師,江蘇省特級教師。曾在《江蘇教育》《內(nèi)蒙古教育》《小學(xué)教學(xué)參考》《中小學(xué)數(shù)學(xué)》等雜志發(fā)表多篇教育教學(xué)論文。

        本文系全國教育規(guī)劃“十二五”教育部重點課題“數(shù)學(xué)開放題對小學(xué)生思維發(fā)展的具體影響評測”研究成果。項目編號:DHA140327.

        G623.5

        A

        1671-0568 (2015) 31-0081-04

        猜你喜歡
        解決問題思維分析
        思維跳跳糖
        思維跳跳糖
        思維跳跳糖
        思維跳跳糖
        聯(lián)系實際 解決問題
        助農(nóng)解決問題增收致富
        在解決問題中理解整式
        隱蔽失效適航要求符合性驗證分析
        電力系統(tǒng)不平衡分析
        電子制作(2018年18期)2018-11-14 01:48:24
        化難為易 解決問題
        波多野结衣中文字幕久久 | 精品极品一区二区三区| 国产成人亚洲综合二区| 99人中文字幕亚洲区三| 亚洲av永久无码精品网址| 97色伦图片97综合影院久久| 国产乱人伦偷精品视频免| 国产对白刺激在线观看| 精品国产中文久久久免费| 亚洲天堂av中文字幕在线观看| 欧美拍拍视频免费大全| 日韩激情无码免费毛片| a在线免费| 色se在线中文字幕视频| 深夜一区二区三区视频在线观看 | 无码国产伦一区二区三区视频| 无码精品人妻一区二区三区影院| 美国黄色片一区二区三区| 99热高清亚洲无码| 色综合久久五十路人妻| 国产精品日日做人人爱| 亚洲精品无码乱码成人| 亚洲伊人久久大香线蕉影院| 久久国产劲爆内射日本| 最新天堂一区二区三区| 日本一区二区三区免费播放| 国产肥熟女视频一区二区三区| 国产日b视频| 国内偷拍第一视频第一视频区| 国内嫩模自拍偷拍视频| 亚洲日韩精品a∨片无码加勒比| 被群cao的合不拢腿h纯肉视频| 91精品91久久久久久| 男女啪啪免费视频网址| 日韩精品综合一本久道在线视频| 亚洲熟妇少妇任你躁在线观看无码| 国产最新网站| 久久天堂精品一区专区av| 精品国产一区二区三区av麻| 边喂奶边中出的人妻| 熟女俱乐部五十路二区av|