亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        N=2超代數(shù)的一類子代數(shù)的研究

        2014-12-02 14:24:08黨佳華高壽蘭
        關鍵詞:子代數(shù)導子自同構

        黨佳華,劉 東,高壽蘭

        (1.杭州電子科技大學理學院,浙江 杭州310018;2.湖州師范學院理學院,浙江 湖州313000)

        0 引 言

        N=2超共行代數(shù)是數(shù)學物理中一類重要的研究對象。截止目前為止,N =2超共行代數(shù)中仍有許多問題值得進一步研究,特別是其表示的分類問題仍是一個公開的難題,許多論文給出了特殊結論和各種猜想。文獻[1]刻畫了N=2超共行代數(shù);文獻[2]討論了階化線性空間和李超代數(shù)的基本性質,給出了經典李超代數(shù)的分類及基本經典李超代數(shù)的Kac-Dynkin 圖,特別是介紹了如何運用廣義的不可約張量算符及Wiger-Eckart 定理,求經典李超代數(shù)不可約表示的方法;文獻[3]介紹了有限維李代數(shù)的中心擴張和導子代數(shù);本文對復數(shù)域上基為Lm,Mm,Gp的李超代數(shù)N的結構性質進行討論并給出相關結論。

        1 預備知識

        本文主要討論了李超代數(shù)N的2-上同調群,導子代數(shù),自同構群等結構問題。在本文中,令S*表示任意集合S的非零元素集合,分別用C,Z 來表示復數(shù)集和整數(shù)集。

        2 泛中心擴張

        李超代數(shù)N 上的二上循環(huán)是復數(shù)域C 上雙線性函數(shù)ψ:N×N →C,并且有ψ(x1,x2)=對任意的

        記N的二上循環(huán)和二上邊界的線性空間分別為A2(N,C),B2(N,C)。定義N的二階上同調群為商空間H2(N,C)=A2(N,C)/B2(N,C)。

        定理1 dimH2(N,C)=3,其中關于N的常見的不平凡二上循環(huán)如下φ(Mm,Mn)=mδm+n,0C2,φ(Lm,Mn)=m(m-1)δm+n,0C3,φ(Lm,Gp)=φ(Mm,Gp)=φ(Gp,Gr)=0,對任意的成立。

        3 李超代數(shù)N的導子

        令V是一個N-模。從N 到V的線性映射φ 叫做導子,如果對任意的x,y∈N,有φ[x,y]=xφ(y)-yφ(y)。當v∈V,映射φ:x→x·v 稱做內導子,用Der(N,V)和Ιnn(N,V)分別表示所有導子和內導子的向量空間。定義V中的N的一階上同調群為:H1(N,V)=DerC(N,V)/InnC(N,V)[3]。

        定理2 Der(N)=ad(N)。

        證明 對任意的D∈Der(N,V)0,設D(Ln)=(a(n+1)-bn)Mn,D(Mn)=cMn。這里任意的n∈Z,a,b,c∈C[4]。對任意的設D(Gr)=CrGr,其中Cr∈C。將D 作用到[M0,Gr]=Gr,得到c=0和Cr=C1,其中C1∈C*。那么D(Gr)= C1Gr。將D 作用到[L0,Gr]= rGr上,得aGr+rC1Gr=rC1Gr,比較系數(shù)得知a=0。將D 作用到上,得b =0。D(Ln)=0,D(Mn)=0,D(Gr)=C1Gr。令D0=ad(C1M0),則D0(Ln)=0,D0(Mn)=0,D0(Gr)=C1Gr,結論得證。

        4 自同構群

        定義ΑutN為自同構群,對任意σ∈AutN和x,y∈N,有

        定理3 令σ∈AutN,則存在a,b∈C*和ε∈{±1}滿足下列各式:

        反之,若σ是N 上的一個線性函數(shù)滿足式(1),ε∈{±1}和a,b∈C*,則σ∈AutN。

        證明 因σ(N0)=N0,設σ(L0)=εL0,σ(Ln)=εanLεn+εan(nc+d)Mεn,σ(Mn)=aneMεn,其中a,e∈C*,c,d∈C[5]。只需考慮σ 作用在Gr上的關系。假設其中,λk∈C*,r1,r2∈Z+將σ 作用在[L0,Gr]= rGr上,有比較Gk系數(shù),得εk=r,即σ(Gr)=λrGεr。將σ 作用在[M0,Gr]=Gr上,得e=1。那么aλr=λr+1,所以設λr=bar-1,b∈C*。再將σ 作用在[Ln,Gr]上,令n=0,得d=0,再觀察等式左右,得到c =0。綜上,可知σ∈AutN 滿足式(1)。定理的另一半證明是顯然的。

        定義N的自同構σ(ε,a,b)滿足式(1),有σ(ε1,a1,b1)σ(ε2,a2,b2)=σ(ε1ε2,a1ε2a2,b1b2),σ(ε,a,b)-1=σ(ε,a-ε,b-1),當且僅當ε1=ε2,a1=a2,b1=b2。

        推論 ΑutN=Z2∝(C*×C*)。

        5 結束語

        研究李超代數(shù)的主要動機是這種代數(shù)上存在上同調理論,相應的關系式將在物理系統(tǒng)和代數(shù)學中有廣泛的具體應用和物理解釋。上同調問題一直是代數(shù)結構與表示論的研究中比較重要的問題之一,對李超代數(shù)的結構和表示的研究起重要作用。

        [1]Dobrev V K.Characters of the unitarizable highest weight modules over the N =2 superconformal algebras[J].Physics Letters B,1987,186(1):43-51.

        [2]孫洪洲,韓其智.李超代數(shù)綜述[J].物理學進展,1983,3(1):81-125.

        [3]Farnsteiner R.Derivations and central extensions of finitely generated graded Lie algebra[J].Journal of Algebra,1988,118(1):33-45.

        [4]Liu D,Zhu L.Generalized Heisenberg-Virasoro algebras[J].Frontiers of Mathemat-ics in China,2009,4(2):297-310.

        [5]Shen R,Jiang C.The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra[J].Communications in Algebra?,2006,34(7):2 547-2 558.

        猜你喜歡
        子代數(shù)導子自同構
        素*-環(huán)上可乘混合斜Lie(Jordan)導子的可加性
        *-代數(shù)上ξ-*-Jordan-型非線性導子
        一類無限?ernikov p-群的自同構群
        擴張的圈Schr?dinger-Virasoro代數(shù)的導子
        關于有限Abel p-群的自同構群
        剩余有限Minimax可解群的4階正則自同構
        四元數(shù)辛李代數(shù)MAD子代數(shù)的共軛性
        Cartan型李代數(shù)W(n;m)的一類Borel子代數(shù)
        有限秩的可解群的正則自同構
        n-李代數(shù)的廣義Frattini子代數(shù)及其擴張
        亚洲熟女一区二区三区250p| 国产女奸网站在线观看| 国产精品亚洲av国产| 男女做那个视频网站国产| 疯狂做受xxxx国产| 又黄又爽的成人免费视频| 久久er这里都是精品23| 中文字幕综合一区二区| 日本熟妇色xxxxx日本妇| 1717国产精品久久| 无码人妻少妇久久中文字幕| 五月激情四射开心久久久| 黑人巨茎大战俄罗斯美女| av无码精品一区二区三区四区| 亚洲无码啊啊啊免费体验| 日本视频在线观看一区二区| 热久久美女精品天天吊色| japanese无码中文字幕| 宅男久久精品国产亚洲av麻豆| 91偷拍与自偷拍亚洲精品86| 亚洲国产av玩弄放荡人妇系列| 亚洲免费不卡| 粗大挺进孕妇人妻在线| 久久久久人妻精品一区二区三区| 大肉大捧一进一出好爽视色大师| 色噜噜狠狠色综合中文字幕| 日本一二三区在线不卡| 久久午夜羞羞影院免费观看| 久久tv中文字幕首页| 人妻少妇喷水意淫诱惑| 国产香蕉一区二区三区在线视频| 精品久久欧美熟妇www| 亚洲精品123区在线观看| 久久av一区二区三区黑人| 亚洲国产成人一区二区精品区 | 中文字幕日韩人妻高清在线| 女同性恋一区二区三区av| 国产探花在线精品一区二区| 国产偷2018在线观看午夜| 日韩精品一区二区亚洲专区| 国产精品成人免费视频一区|