亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        不同供鉀水平下Na+對(duì)棉花幼苗根系生長(zhǎng)和K、Ca、Mg、Na含量的影響

        2014-12-02 11:32:27胡澤彬卜晶晶王素芳張志勇
        湖北農(nóng)業(yè)科學(xué) 2014年19期
        關(guān)鍵詞:生長(zhǎng)水平

        胡澤彬+卜晶晶+王素芳+張志勇

        摘要:在水培條件下研究了不同NaCl濃度(10.5和50.5 mmol/L)對(duì)不同鉀供應(yīng)水平(0.05和2.50 mmol/L)下棉花幼苗根系生長(zhǎng)及K、Ca、Mg、Na含量的影響。結(jié)果表明,0.05 mmol/L K條件下,NaCl降低了根系中Ca、K和Mg含量,降低了K/Na值,但兩種濃度的NaCl均顯著提高了根系干物質(zhì)量、根系總長(zhǎng)度和表面積,其中直徑≤0.2 mm的細(xì)根長(zhǎng)度和表面積增加幅度最大,而2.50 mmol/L K條件下,僅10.5mmol/L的NaCl顯著促進(jìn)了根系總長(zhǎng)度和表面積,但對(duì)根系干物質(zhì)量沒(méi)有顯著影響,并且10.5 mmol/L的NaCl顯著降低了K/Na值,而對(duì)Ca、K和Mg含量無(wú)顯著影響。

        關(guān)鍵詞:棉花幼苗;NaCl脅迫;供鉀水平;根系生長(zhǎng);鉀、鈉、鈣、鎂含量

        中圖分類(lèi)號(hào):S562.062;Q945.78 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2014)19-4543-04

        DOI:10.14088/j.cnki.issn0439-8114.2014.19.009

        Effects of Na+ on Root Growth of Cotton Seedlings and Contents of K,Ca,Mg

        under Different Potassium Availability

        HU Ze-bin,BU Jing-jing,WANG Su-fang,ZHANG Zhi-yong

        (School of Life Science and Technology/Cotton Research Institute, Henan Institute of Science and Technology, Xinxiang 453003, Henan,China)

        Abstract: The effects of NaCl with low concentration(10.5 and 50.5 mmol/L) on root growth of cotton seedling and contents of K, Ca, Mg and Na were studied under different K levels (0.05 and 2.5 mmol/L). Under 0.05 mmol/L K, NaCl reduced the contents of Ca, K and Mg and K/Na value, but significantly increased weight of dry root and total root length and surface area. Among which, fine root with diameter≤0.2 mm was enhanced with the highest margin. Under 2.5 mmol/L K, only 10.5 mmol/L NaCl significantly increased total root length and surface area with no significant effects on weight of dry root. 10.5 mmol/L NaCl significantly inhibited K/Na Value with no significant effects on contents of Ca, K and Mg.

        Key words: cotton seedlings; NaCl stress; K level; root growth; K, Na, Ca, Mg contents

        對(duì)動(dòng)物而言,Na是一種必需元素,在飲食中必須以相對(duì)大的數(shù)量存在。但是,按照Arnon等[1]和Epstein[2]對(duì)必需元素的定義,除特定的C4植物之外,Na目前并沒(méi)有顯示是大多高等植物的必需元素。盡管Na并沒(méi)符合必需元素的要求,但在植物營(yíng)養(yǎng)方面發(fā)揮著獨(dú)特的作用。因此,在植物上,Subbarao等[3]將Na離子定義為功能性離子。

        棉花是喜K作物,K缺乏會(huì)降低纖維產(chǎn)量和品質(zhì)[4]。同時(shí),和玉米、大豆相比,棉花對(duì)Na的耐受性更強(qiáng)些[5,6],但是大量研究也表明,鹽漬化大幅度抑制了棉花的營(yíng)養(yǎng)生長(zhǎng)[7,8]。在整個(gè)生長(zhǎng)發(fā)育周期中,在幼苗期棉花對(duì)鹽最敏感[9]。

        隨著世界人民對(duì)食物需求的增加和可耕地面積的減少,棉花種植向鹽堿地轉(zhuǎn)移。生產(chǎn)上,棉花經(jīng)常早衰,在鹽堿地上,這種情況更加嚴(yán)重。鉀缺乏抑制了根系生長(zhǎng)[10,11],而Na也抑制了根系生長(zhǎng)[12,13],但是鉀缺乏時(shí)Na對(duì)根系生長(zhǎng)的作用目前尚未見(jiàn)報(bào)道。因此,在不同K供應(yīng)水平條件下,研究了低濃度Na對(duì)棉花幼苗根系生長(zhǎng)和根系K、Ca、Mg和Na含量的影響。

        1 材料與方法

        1.1 材料與方法

        供試材料為國(guó)審棉百棉1號(hào)(河南科技學(xué)院選育)。培養(yǎng)室培養(yǎng)條件:光照時(shí)間/黑暗時(shí)間為14 h/10 h,光照為350 μmol/(m2·s),晝/夜溫度為30~33 ℃/ 23~26 ℃。

        挑選飽滿(mǎn)的種子,用9%的雙氧水消毒30 min后,取出用去離子水將種子沖洗干凈,置于裝有濕潤(rùn)沙子的盆缽中萌發(fā),上面用塑料薄膜覆蓋,并打少量孔以利通氣,待子葉長(zhǎng)出后,揭去薄膜,噴清水保持濕潤(rùn),萌發(fā)1 d后從盆缽將萌發(fā)的幼苗轉(zhuǎn)移到調(diào)整好的營(yíng)養(yǎng)液中。盛放營(yíng)養(yǎng)液的容器規(guī)格:長(zhǎng)×寬×高為20 cm×13 cm×15 cm,容器的外層用鋁泊紙包裹,其上有鉆孔泡沫定植板,棉花幼苗用海綿包莖固定于泡沫板的孔洞中。待移栽后,在水培條件下培養(yǎng),每天連續(xù)通氣。營(yíng)養(yǎng)液組成為:2.5 mmol/L的Ca(NO3 )2,1 mmol/L的MgSO4,0.5 mmol/L的NaH2PO4,2×10-4 mmol/L的CuSO4,1×10-3 mmol/L的ZnSO4,0.1mmol/L的EDTAFeNa,2×10-2 mmol/L的H3BO3,5×10-6 mmol/L的(NH4) 6Mo7O24和1×10-3 mmol/L的MnSO4和不同濃度的KCl和NaCl。K處理設(shè)兩個(gè)水平:低鉀0.05 mmol/L和高鉀2.50 mmol/L,兩個(gè)鉀濃度下,NaCl處理設(shè)3個(gè)水平:0.5 mmol/L(CK),10.5 mmol/L,50.5 mmol/L。

        1.2 棉花幼苗干重、根系形態(tài)、根系礦質(zhì)元素含量測(cè)定

        處理7 d后,選擇大小、長(zhǎng)勢(shì)基本一致的幼苗用于棉花幼苗根干重、根系形態(tài)、礦質(zhì)元素含量的測(cè)定。將整株幼苗的根系剪下,分散置于根系掃描盤(pán)中,利用根系掃描分析儀(Epson perfection 4990 PHOTO)透掃,將圖像存為JPEG格式,用根系分析軟件(WinRhizo pro 2007)自動(dòng)分析根系總長(zhǎng)、表面積、體積等。根據(jù)根系直徑,將根系分為細(xì)根(直徑≤0.2 mm)、中根(0.2 mm﹤直徑≤0.45 mm)和粗根(直徑>0.45 mm) [14]。

        掃描后的根系在恒溫烘箱中70 ℃下烘干后稱(chēng)重。將烘干后的棉花幼苗根系樣品放入研缽中研磨,稱(chēng)取約0.1 g左右研磨后的棉花幼苗根系樣品于樣品瓶中,加入10 mL鹽酸加蓋擰緊,浸泡5 h后放置于HY-2往復(fù)振蕩器上振蕩30 min,提取上清液至事先編號(hào)的離心管中。采用電荷偶感等離子體發(fā)射光譜儀(型號(hào)PE-optima 2100 DV,USA)測(cè)定溶液中Mg、Na、Ca和K的含量。

        1.3 試驗(yàn)設(shè)計(jì)和統(tǒng)計(jì)分析

        以培養(yǎng)盒為單位,1盒為1次重復(fù)。每處理設(shè)4次重復(fù),每盒8株。每個(gè)處理取樣6次重復(fù)。所有數(shù)據(jù)采用SAS統(tǒng)計(jì)軟件(8.0)的SNK多重比較法進(jìn)行統(tǒng)計(jì)分析。

        2 結(jié)果與分析

        2.1 不同鉀供應(yīng)水平下,NaCl對(duì)棉花幼苗根系生長(zhǎng)的影響

        如表1所示,在低K供應(yīng)水平下,10.5 mmol/L的NaCl顯著增加了棉花幼苗根系干物質(zhì)量,50.5 mmol/L的NaCl 進(jìn)一步顯著增加了棉花幼苗根系干物質(zhì)量;在高K供應(yīng)水平下,10.5 mmol/L的NaCl對(duì)棉花幼苗根系干物質(zhì)量沒(méi)有影響,而50.5 mmol/L的NaCl顯著抑制了棉花幼苗根系干物質(zhì)量。

        如表1所示,在低K供應(yīng)水平下,NaCl脅迫顯著提高了根系總長(zhǎng)度、表面積和體積,10.5 mmol/L 和50.5 mmol/L NaCl條件下的根總長(zhǎng)度、表面積、體積間差異不顯著。在高K供應(yīng)水平下,10.5 mmol/L NaCl處理的根系總長(zhǎng)度、表面積、體積均顯著高于0.5和50.5 mmol/L NaCl處理的根系總長(zhǎng)度、表面積、體積。

        2.2 不同鉀供應(yīng)水平下,NaCl對(duì)棉花幼苗不同直徑根生長(zhǎng)的影響

        如表2所示,在低K供應(yīng)水平下,NaCl促進(jìn)了細(xì)根和中根的根長(zhǎng)度和根表面積,顯著促進(jìn)了粗根長(zhǎng)度而對(duì)其表面積的增加沒(méi)達(dá)到顯著水平;50.5 mmol/L NaCl 相對(duì)于10.5 mmol/L NaCl,顯著促進(jìn)了細(xì)根長(zhǎng)度而抑制了粗根長(zhǎng)度,對(duì)細(xì)、中和粗根的表面積沒(méi)有顯著影響。在高K供應(yīng)水平下,NaCl對(duì)細(xì)根長(zhǎng)度無(wú)顯著影響,10.5 mmol/L NaCl促進(jìn)了中根和粗根的長(zhǎng)度以及粗根的表面積。

        2.3 不同鉀供應(yīng)水平下,NaCl對(duì)棉花幼苗根系中礦質(zhì)元素含量的影響

        如表3所示,在低K供應(yīng)水平下,與對(duì)照相比,10.5 mmol/L 顯著抑制了鉀的吸收和增加了Na的吸收,對(duì)Ca和Mg吸收沒(méi)有顯著影響, 顯著降低了K/Na值; 50.5 mmol/L NaCl顯著抑制K、Ca和Mg的吸收和促進(jìn)了Na的吸收,顯著降低了K/Na值。在高K供應(yīng)水平下,與對(duì)照相比, 10.5 mmol/L NaCl對(duì)根系吸收礦質(zhì)元素Ca、Mg、K、Na的影響不顯著,顯著降低了K/Na值;50.5 mmol/L NaCl顯著促進(jìn)Ca、Mg和Na的吸收而抑制了K的吸收,顯著降低了K/Na值。

        3 討論

        K是植物代謝和生長(zhǎng)所需要的大量元素[15]。Na不僅在化學(xué)性質(zhì)和結(jié)構(gòu)方面與K相似,而且在某種程度上可以替代鉀的許多功能,如內(nèi)部滲透調(diào)節(jié)[16]。并且,已有研究顯示,Na對(duì)生長(zhǎng)有益,可以提高產(chǎn)量[17-20],甚至改善品質(zhì)[21,22]。但是,隨著鹽水平增加,棉花[23]和小麥[24]幼苗根系長(zhǎng)度減少,兩項(xiàng)研究中使用的最低NaCl濃度分別是50和100 mmol/L。此次的研究結(jié)果表明,低鉀條件下,NaCl(10.5和50.5 mmol/L)促進(jìn)了根系生長(zhǎng),顯著提高了根系干物質(zhì)量和根系總長(zhǎng)度,根系總長(zhǎng)度中,細(xì)根長(zhǎng)度增加幅度最大,而高鉀條件下,僅10.5 mmol/L顯著促進(jìn)了根系總長(zhǎng)度,對(duì)根系干物質(zhì)量沒(méi)有顯著影響。這表明,鉀缺乏時(shí),一定濃度的Na可以替代鉀的功能,促進(jìn)根系的生長(zhǎng),但不一定是內(nèi)部滲透調(diào)節(jié)功能替代,因?yàn)殁浫狈l件下,0.5 mmol/L Na時(shí),K和Na含量之和為39.7 mg/g(DW),而50.5 mmol/L Na時(shí),兩者含量之和為36.1 mg/g(DW),兩者之間無(wú)明顯差異。

        Na處理降低了K/Na值,降低了缺鉀條件下Ca和Mg的含量。同樣,其他研究也表明,Na增加降低了棉花根系和莖葉中K和Ca的含量[25]。K和Na選擇性弱化和Na誘導(dǎo)的K缺乏是鹽脅迫條件下生長(zhǎng)抑制和產(chǎn)量降低的主要原因[26],也是隨著鹽水平增加K/Na值降低的原因。Na削弱Ca吸收的原因或許是因?yàn)镹a置換了細(xì)胞膜中的Ca和改變了膜的完整性[27]。在大多數(shù)植物中,離子積累具有毒性作用,打破了離子平衡[28],離子毒性導(dǎo)致細(xì)胞膜不可逆轉(zhuǎn)的損害[29]。K充分條件下,Na增加卻增加了根系中Ca和Mg的含量,或許是因?yàn)镹a抑制了K的吸收,因?yàn)镵是Ca和Mg吸收的強(qiáng)烈抑制劑[19,30]。

        參考文獻(xiàn):

        [1] ARNON D I, STOUT P R. The essentiality of certain elements in minute quantity for plants with special reference to copper [J]. Plant Physiology, 1939, 14(2): 371-375.

        [2] EPSTEIN E. Mineral metabolism[A]. BONNER J AND VARNER J E. Plant Biochemistry[C]. New York:Academic Press, 1965.

        [3] SUBBARAO G V, ITO O, BERRY W L, et al. Sodium-a functional plant nutrient[J]. Critical Reviews in Plant Sciences, 2003, 22(5): 391-416.

        [4] CASSMAN K G, KERBY T A, ROBERTS B A, et al. Differential response of two cotton cultivars to fertilizer and soil potassium [J]. Agronomy Journal, 1989, 81(6): 870-876.

        [5] PEARSON G A. Tolerance of crops to exchangeable sodium [J]. Agriculture Information Bulletin, 1960, 216: 1-4.

        [6] MAAS E V. Crop salt tolerance[A].TANJI K K . Agricultural Assessment and Management[C]. New York :American Society for Civil Engineers, 1990.

        [7] KHAN A N, QURESHI R H, AHMAD N. Selection of cotton cultivars for salinity tolerance at seedling stage[J]. Sarhad Journal of Agriculture, 1995, 1: 153-159.

        [8] 葉武威, 劉金定, 樊寶相, 等. 鹽分(NaCl)對(duì)陸地棉纖維性狀的影響 [J]. 中國(guó)棉花, 1997, 24: 17-18.

        [9] ABUI-NAAS A A, OMRAN M S. Salt tolerance of seventeen cotton cultivars during germination and early seedling development [J]. Z Ack Pflanzenbau, 1974, 140: 229-236.

        [10] ARMENGAUD P, BREITLING R, AMTMANN A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling[J]. Plant Physiol, 2004, 136(1): 2556-2576.

        [11] ZHANG Z Y, YANG F Q, LI B, et al. Coronatine-induced lateral-root formation in cotton (Gossypium hirsutum) seedlings under potassium-sufficient and -deficient conditions in relation to auxin[J]. Journal of Plant Nutrition and Soil Science, 2009, 172: 435-444.

        [12] CRAMER G R, L?魧UCHLI A, EPSTEIN E. Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton[J]. Plant Physiology, 1986, 81(3): 792-797.

        [13] MAI W X, TIAN C Y, LO L. Localized salt accumulation: the main reason for cotton root length decrease during advanced growth stages under drip irrigation with mulch film in a saline soil [J]. Journal of Arid Land, 2014, 6(3): 361-370.

        [14] 張志勇, 王清連, 李召虎, 等. 缺鉀對(duì)棉花幼苗根系生長(zhǎng)的影響及其生理機(jī)制 [J]. 作物學(xué)報(bào), 2009, 35(4): 718-723.

        [15] HSIAO T C, LAUCHLI A. Role of potassium in plant-water relations[A]. Advances in Plant Nutrition.Vol 2[C]. New York:Praeger Scientific,1986.281-312.

        [16] GLENN E, PFISTER R, BROWN J J, et al. Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes[J]. American Journal of Botany, 1996: 997-1005.

        [17] GALEEV R R. Application of sodium humate to potatoes[J]. Kartofel′I Ovoshchi, 1990 (2): 12-13.

        [18] TAKAHASHI E, MAEJIMA K. Comparative research on sodium as a beneficial element for crop plants[J]. Memoirs of the Faculty of Agriculture of Kinki University, 1998,31:57-72.

        [19] MARSCHNER H. Mineral Nutrition of Higher Plants [M]. London:Academic Press, 1995.

        [20] HANEKLAUS S, KNUDSEN L, SCHNUG E. Relationship between potassium and sodium in sugar beet [J]. Communications in Soil Science & Plant Analysis, 1998, 29(11-14): 1793-1798.

        [21] VON BOBERFELD W O, SCHLOSSER M, LASER H. Effect of Na amounts on forage quality and feed consumption on Lolium perenne depending on fertilizer and nutrient ratio [J]. Agribiological Research, 1999, 52(3-4): 261-270.

        [22] CHIY P C, PHILLIPS C J C. Sodium fertilizer application to pasture. 8. Turnover and defoliation of leaf tissue [J]. Grass and Forage Science, 1999, 54(4): 297-311.

        [23] CHACHAR Q I, SOLANGI A G, VERHOEF A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L.)[J]. Pakistan Journal of Botany, 2008, 40(1): 183-197.

        [24] ALMANSOURI M, KINET J M, LUTTS S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.) [J]. Plant and Soil, 2001, 231(2): 243-254.

        [25] KENT L M, L?魧UCHLI A. Germination and seedling growth of cotton: Salinity-calcium interactions [J]. Plant,Cell & Environment, 1985, 8(2): 155-159.

        [26] GRATTAN S R, GRIEVE C M. Mineral nutrient acquisition and response by plants grown in saline environments[A]. PESSARAKLI M .Handbook of Plant and Crop Stress[C]. New York: Marcel Dekker, 1999.203-229.

        [27] LYNCH J, CRAMER G R, LAUCHLI A. Salinity reduces membrane-associated calcium in corn root protoplasts [J]. Plant Physiology, 1987, 83: 390-394.

        [28] HASEGAWA P M, BRESSAN R A, ZHU J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Biology, 2000, 51: 463-499.

        [29] SERRANO R, GAXIOLA R. Microbial models and salt stress tolerance in plants [J]. Critical Reviews in Plant Sciences, 1994, 13(2): 121-138.

        [30] GARCIA M, DAVEREDE C, GALLEGO P, et al. Effect of various potassium-cacium ratios on cation nutrition of grape grown hydroponically[J]. Journal of Plant Nutrition, 1999, 22(3): 417-425.

        [17] GALEEV R R. Application of sodium humate to potatoes[J]. Kartofel′I Ovoshchi, 1990 (2): 12-13.

        [18] TAKAHASHI E, MAEJIMA K. Comparative research on sodium as a beneficial element for crop plants[J]. Memoirs of the Faculty of Agriculture of Kinki University, 1998,31:57-72.

        [19] MARSCHNER H. Mineral Nutrition of Higher Plants [M]. London:Academic Press, 1995.

        [20] HANEKLAUS S, KNUDSEN L, SCHNUG E. Relationship between potassium and sodium in sugar beet [J]. Communications in Soil Science & Plant Analysis, 1998, 29(11-14): 1793-1798.

        [21] VON BOBERFELD W O, SCHLOSSER M, LASER H. Effect of Na amounts on forage quality and feed consumption on Lolium perenne depending on fertilizer and nutrient ratio [J]. Agribiological Research, 1999, 52(3-4): 261-270.

        [22] CHIY P C, PHILLIPS C J C. Sodium fertilizer application to pasture. 8. Turnover and defoliation of leaf tissue [J]. Grass and Forage Science, 1999, 54(4): 297-311.

        [23] CHACHAR Q I, SOLANGI A G, VERHOEF A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L.)[J]. Pakistan Journal of Botany, 2008, 40(1): 183-197.

        [24] ALMANSOURI M, KINET J M, LUTTS S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.) [J]. Plant and Soil, 2001, 231(2): 243-254.

        [25] KENT L M, L?魧UCHLI A. Germination and seedling growth of cotton: Salinity-calcium interactions [J]. Plant,Cell & Environment, 1985, 8(2): 155-159.

        [26] GRATTAN S R, GRIEVE C M. Mineral nutrient acquisition and response by plants grown in saline environments[A]. PESSARAKLI M .Handbook of Plant and Crop Stress[C]. New York: Marcel Dekker, 1999.203-229.

        [27] LYNCH J, CRAMER G R, LAUCHLI A. Salinity reduces membrane-associated calcium in corn root protoplasts [J]. Plant Physiology, 1987, 83: 390-394.

        [28] HASEGAWA P M, BRESSAN R A, ZHU J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Biology, 2000, 51: 463-499.

        [29] SERRANO R, GAXIOLA R. Microbial models and salt stress tolerance in plants [J]. Critical Reviews in Plant Sciences, 1994, 13(2): 121-138.

        [30] GARCIA M, DAVEREDE C, GALLEGO P, et al. Effect of various potassium-cacium ratios on cation nutrition of grape grown hydroponically[J]. Journal of Plant Nutrition, 1999, 22(3): 417-425.

        [17] GALEEV R R. Application of sodium humate to potatoes[J]. Kartofel′I Ovoshchi, 1990 (2): 12-13.

        [18] TAKAHASHI E, MAEJIMA K. Comparative research on sodium as a beneficial element for crop plants[J]. Memoirs of the Faculty of Agriculture of Kinki University, 1998,31:57-72.

        [19] MARSCHNER H. Mineral Nutrition of Higher Plants [M]. London:Academic Press, 1995.

        [20] HANEKLAUS S, KNUDSEN L, SCHNUG E. Relationship between potassium and sodium in sugar beet [J]. Communications in Soil Science & Plant Analysis, 1998, 29(11-14): 1793-1798.

        [21] VON BOBERFELD W O, SCHLOSSER M, LASER H. Effect of Na amounts on forage quality and feed consumption on Lolium perenne depending on fertilizer and nutrient ratio [J]. Agribiological Research, 1999, 52(3-4): 261-270.

        [22] CHIY P C, PHILLIPS C J C. Sodium fertilizer application to pasture. 8. Turnover and defoliation of leaf tissue [J]. Grass and Forage Science, 1999, 54(4): 297-311.

        [23] CHACHAR Q I, SOLANGI A G, VERHOEF A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L.)[J]. Pakistan Journal of Botany, 2008, 40(1): 183-197.

        [24] ALMANSOURI M, KINET J M, LUTTS S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.) [J]. Plant and Soil, 2001, 231(2): 243-254.

        [25] KENT L M, L?魧UCHLI A. Germination and seedling growth of cotton: Salinity-calcium interactions [J]. Plant,Cell & Environment, 1985, 8(2): 155-159.

        [26] GRATTAN S R, GRIEVE C M. Mineral nutrient acquisition and response by plants grown in saline environments[A]. PESSARAKLI M .Handbook of Plant and Crop Stress[C]. New York: Marcel Dekker, 1999.203-229.

        [27] LYNCH J, CRAMER G R, LAUCHLI A. Salinity reduces membrane-associated calcium in corn root protoplasts [J]. Plant Physiology, 1987, 83: 390-394.

        [28] HASEGAWA P M, BRESSAN R A, ZHU J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Biology, 2000, 51: 463-499.

        [29] SERRANO R, GAXIOLA R. Microbial models and salt stress tolerance in plants [J]. Critical Reviews in Plant Sciences, 1994, 13(2): 121-138.

        [30] GARCIA M, DAVEREDE C, GALLEGO P, et al. Effect of various potassium-cacium ratios on cation nutrition of grape grown hydroponically[J]. Journal of Plant Nutrition, 1999, 22(3): 417-425.

        猜你喜歡
        生長(zhǎng)水平
        張水平作品
        碗蓮生長(zhǎng)記
        小讀者(2021年2期)2021-03-29 05:03:48
        作家葛水平
        火花(2019年12期)2019-12-26 01:00:28
        共享出行不再“野蠻生長(zhǎng)”
        生長(zhǎng)在哪里的啟示
        加強(qiáng)上下聯(lián)動(dòng) 提升人大履職水平
        野蠻生長(zhǎng)
        NBA特刊(2018年21期)2018-11-24 02:48:04
        生長(zhǎng)
        文苑(2018年22期)2018-11-19 02:54:14
        《生長(zhǎng)在春天》
        老虎獻(xiàn)臀
        亚洲欧美另类精品久久久| 欧美日韩一区二区三区在线观看视频| 亚洲色精品aⅴ一区区三区| 欧美成人小视频| 精品人妻一区二区蜜臀av| 亚洲精品一区二区高清| 久热国产vs视频在线观看| 国内精品九九久久久精品| 永久免费的拍拍拍网站| 亚洲av成人一区二区| 麻豆婷婷狠狠色18禁久久 | 无套内内射视频网站| 国产人妻精品一区二区三区不卡 | 亚洲永久无码动态图| 美腿丝袜一区二区三区| 24小时在线免费av| 免费看黄a级毛片| 亚洲a∨天堂男人无码| 日本伦理美乳中文字幕| 国产精品天天看天天狠| 人妻在线日韩免费视频| 久久久久一| 一区二区三区日韩蜜桃| 精品精品国产自在97香蕉| 久久婷婷综合色丁香五月| 视频精品熟女一区二区三区| 久久精品国产亚洲av不卡国产| 国产av无码专区亚洲av中文| 欧美a视频在线观看| 亚洲国产av午夜福利精品一区| 公和我做好爽添厨房| 成人做爰视频www| 亚洲av福利天堂在线观看 | 国产熟女乱综合一区二区三区| 中文字幕亚洲精品久久| 亚洲产国偷v产偷v自拍色戒| 波多野结衣一区二区三区视频| 日本亚洲视频免费在线看| av狠狠色丁香婷婷综合久久| 中文字幕喷水一区二区| 用力草我小逼视频在线播放|