廖靜,梁峰,楊紹貴,何歡,孫成,*,高世祥,崔益斌
1. 南京大學(xué)環(huán)境學(xué)院,南京 210023 2. 河南城建學(xué)院,平頂山 467036
我國六價鉻淡水水生生物安全基準(zhǔn)推導(dǎo)研究
廖靜1,梁峰2,楊紹貴1,何歡1,孫成1,*,高世祥1,崔益斌1
1. 南京大學(xué)環(huán)境學(xué)院,南京 210023 2. 河南城建學(xué)院,平頂山 467036
參照美國國家環(huán)境保護(hù)局(USEPA)“推導(dǎo)保護(hù)水生生物及其用途的國家水質(zhì)基準(zhǔn)的技術(shù)指南”的程序和規(guī)范,篩選了我國廣泛存在的淡水水生生物物種,收集現(xiàn)有的急性和慢性毒性數(shù)據(jù),結(jié)合課題組實驗得到的部分本土生物毒性數(shù)據(jù),分別采用物種敏感度排序法(SSR)、物種敏感度分布法(SSD)以及澳大利亞的水質(zhì)基準(zhǔn)技術(shù)方法對我國六價鉻的淡水水生生物安全基準(zhǔn)進(jìn)行了推導(dǎo)。獲得了我國淡水水生生物的六價鉻的雙值基準(zhǔn),3種方法得到的基準(zhǔn)最大濃度(CMC)分別為23.97、22.84、29.06 μg·L-1,基準(zhǔn)連續(xù)濃度(CCC)分別為14.63、10.35、9.00 μg·L-1,在同一個數(shù)量級上,但與美國的基準(zhǔn)值有一些差異,建議使用SSD法推導(dǎo)CMC值和CCC值。研究結(jié)果可為我國水質(zhì)基準(zhǔn)的制定提供一些有用的基礎(chǔ)資料。
六價鉻;淡水水生生物;水質(zhì)基準(zhǔn);基準(zhǔn)最大濃度(CMC);基準(zhǔn)連續(xù)濃度(CCC)
水質(zhì)基準(zhǔn)是制定水質(zhì)標(biāo)準(zhǔn)的科學(xué)依據(jù),在水環(huán)境保護(hù)方面發(fā)揮著非常重要的作用。頒布水質(zhì)基準(zhǔn)的目的在于防止污染物對重要的商業(yè)和娛樂水生生物,以及其他重要物種如河流湖泊中的魚、底棲無脊椎動物和浮游生物造成不可接受的長期和短期的效應(yīng)[1]。水生生物安全基準(zhǔn)的制定需要根據(jù)各區(qū)域水環(huán)境生物區(qū)系特點,選擇適當(dāng)?shù)拇硇晕锓N用于水生生物安全基準(zhǔn)的推導(dǎo),以使得基于區(qū)域水環(huán)境代表性水生生物而得出的基準(zhǔn)推導(dǎo)值可以為大多數(shù)生物提供適當(dāng)保護(hù)。中國無論從水質(zhì)上還是從水生態(tài)系統(tǒng)的結(jié)構(gòu)特征上與國外都有著明顯的差異,僅依靠國外的基準(zhǔn)或是標(biāo)準(zhǔn)來制定我國的水質(zhì)標(biāo)準(zhǔn),很難為不同水域的生物提供全面的、有效的保護(hù)。因此從維護(hù)水生態(tài)系統(tǒng)的長遠(yuǎn)利益與保護(hù)水環(huán)境的可靠性來看,開展中國的水質(zhì)基準(zhǔn)研究,制定我們國家自己的國家水質(zhì)基準(zhǔn)勢在必行。正是基于上述因素,我國從“十一五”開始,逐步開展了基于我國的水生生物研究,金小偉等[2]探討了適用于我國的水質(zhì)基準(zhǔn)計算方法及推導(dǎo)流程,并討論了推導(dǎo)過程中可能存在的問題;雷炳莉等[3]運(yùn)用3種方法對太湖流域中五氯酚、2,4-二氯酚及2,4,6-三氯酚進(jìn)行水質(zhì)基準(zhǔn)推導(dǎo),并且比較3種方法推導(dǎo)值的差異,提出建立我國的水質(zhì)基準(zhǔn)不能僅依靠國外的水質(zhì)基準(zhǔn)或標(biāo)準(zhǔn);雷炳莉等[4]采用評估因子法和物種敏感度分布曲線法對3種不同的4-壬基酚進(jìn)行水質(zhì)基準(zhǔn)推導(dǎo)和比較,提出收集毒性數(shù)據(jù)應(yīng)有針對性,明確選擇毒性數(shù)據(jù)的測量終點;中國環(huán)境科學(xué)研究院的吳豐昌、閆振廣等[5-9]已經(jīng)開展了大量的水質(zhì)基準(zhǔn)研究,吳豐昌等[7]對鋅的毒性數(shù)據(jù)進(jìn)行分類來研究基準(zhǔn),發(fā)現(xiàn)不同類別的物種對鋅的敏感性存在顯著性差異,其中甲殼類動物最為敏感。目前,我國的水質(zhì)基準(zhǔn)研究已積累了一定的理論基礎(chǔ)與實踐經(jīng)驗。
鉻是14種最有害的重金屬之一。由于鉻的毒性較高,鉻及其化合物被列入中國水環(huán)境優(yōu)先污染物黑名單。鉻在環(huán)境中穩(wěn)定存在的2種價態(tài)Cr(Ⅲ)和Cr(Ⅵ)卻有著不同的性質(zhì),適量的Cr(Ⅲ)可以降低人體血漿中的血糖濃度,提高人體胰島素活性,促進(jìn)糖和脂肪代謝,提高人體的應(yīng)激反應(yīng)能力等。而Cr(Ⅵ)則是一種強(qiáng)氧化劑,具有強(qiáng)致癌變、致畸變、致突變作用,對生物體傷害較大[10]。通常認(rèn)為六價鉻的毒性比三價鉻的毒性高100倍。正是由于具有較大的生物毒性,因此,對于六價鉻毒性作用的研究一直得到人們的重視。基于此,本文運(yùn)用物種敏感度排序法(SSR)、以及荷蘭和澳大利亞的水質(zhì)基準(zhǔn)的技術(shù)方法對中國水生生物物種(包括中國本地種及引進(jìn)物種等)的六價鉻毒性數(shù)據(jù)進(jìn)行了研究,以期獲得更為適合我國的淡水水生生物六價鉻基準(zhǔn),并為中國六價鉻水質(zhì)標(biāo)準(zhǔn)的制定提供參考。
1.1 物種與數(shù)據(jù)的篩選
本文基本采用美國國家環(huán)境保護(hù)局(USEPA)規(guī)定的物種選擇原則,同時考慮到中國的魚類以鯉科為主,特別注意收集了鯉科魚類的六價鉻毒性數(shù)據(jù),同時收集在我國已廣泛繁殖和存在的引進(jìn)物種的六價鉻毒性數(shù)據(jù)。六價鉻的毒性數(shù)據(jù)主要來源于美國鉻的水質(zhì)基準(zhǔn)技術(shù)文件[11]、USEPA的ECOTOX毒性數(shù)據(jù)庫(http://cfpub.epa.gov/ecotox/)和中國知網(wǎng)(http://www.cnki.net)以及維普數(shù)據(jù)庫數(shù)據(jù)(http://www.cqvip.com/),數(shù)據(jù)收集截止到2013年11月。
對于部分難于獲得數(shù)據(jù)的本土生物,本課題組開展相應(yīng)急慢性毒性試驗,實驗室試驗物種主要有鰱魚、鯽魚、黃顙魚、林蛙蝌蚪、中華園田螺、青蝦等本土生物。
數(shù)據(jù)收集后,根據(jù)USEPA基準(zhǔn)技術(shù)指南和相關(guān)準(zhǔn)則[1,11],將不符合水質(zhì)基準(zhǔn)計算要求的試驗數(shù)據(jù)剔除,其中包括非中國物種的試驗數(shù)據(jù),用去離子水作為試驗用水的試驗數(shù)據(jù)和實驗設(shè)計不科學(xué)或者不符合要求的試驗數(shù)據(jù)。
1.2 水生生物試驗方法
鰱魚、鯽魚、黃顙魚、林蛙蝌蚪、中華園田螺、青蝦的急性毒性測試試驗主要參照了“GB/T 13267-1991 水質(zhì)物質(zhì)對淡水魚(斑馬魚)急性毒性測試方法”[12]以及“OECD化學(xué)品毒性測試技術(shù)指南”[13],受試化合物選擇重鉻酸鉀,化學(xué)性質(zhì)穩(wěn)定,采用靜態(tài)試驗,得出急性毒性的LC50值。
1.3 水質(zhì)基準(zhǔn)推導(dǎo)方法
1.3.1 物種敏感度排序法
USEPA的物種敏感度分布法(species sensitivity distribution, SSD)即雙值基準(zhǔn)法,是1978年USEPA的研究人員認(rèn)識到物種對污染物的敏感度是連續(xù)分布的,而且遵循類似于正態(tài)分布的概率模型[14],因而提出用基于物種敏感度分布的方法代替專家判斷法來制定基準(zhǔn),并且設(shè)定了95%的生物保護(hù)水平,后經(jīng)多次修訂,方法定形于1985年頒布的水生生物基準(zhǔn)技術(shù)指南中。該方法來源雖然是SSD曲線法,但在實際操作中,將復(fù)雜的SSD作圖的過程簡化為公式計算,該法在有的文獻(xiàn)中也被稱為物種敏感度排序法(species sensitivity rank, SSR)[15]。
1.3.2 物種敏感度分布法
歐洲的SSD理論起源于Kooijman[16]對急性毒性值外推中安全因子的研究,提出了基于物種敏感度分布的基準(zhǔn)推算方法,但因理論不完善,得出的基準(zhǔn)值太低而無法在管理中使用。1989年,Van Straalen和Denneman[17]對其進(jìn)行了修正,通過設(shè)定HCp(hazardous concentration for p of the species),即用(1-p)%物種的保護(hù)水平,去掉了函數(shù)曲線的“尾巴”,避免了基準(zhǔn)值過低的問題,歐美各國一般都默認(rèn)p值為5,那么HC5是指影響不超過5%的物種,即可以保護(hù)95%以上種群時對應(yīng)的濃度。至此,SSD理論基本成熟,之后Wagner和Lokke[18]以及Aldenberg和Slob[19]對該方法又作了進(jìn)一步修正,目前歐洲SSD技術(shù)的數(shù)學(xué)模型基礎(chǔ)為對數(shù)-正態(tài)分布或?qū)?shù)-邏輯斯蒂函數(shù)分布,澳大利亞/新西蘭也對SSD法進(jìn)行了修正,其運(yùn)用的主要數(shù)學(xué)模型基礎(chǔ)是Burr Type Ⅲ分布[20]。
2.1 毒性數(shù)據(jù)
毒性數(shù)據(jù)篩選后共得到36個屬46個物種的急性毒性數(shù)據(jù)(表1)、13個屬16個物種的慢性毒性數(shù)據(jù)(表2)、4個物種的淡水藻類和植物的毒性值(表3)以及生物體的生物富集因子(bio-concentration factor, BCF)(表4),毒性數(shù)據(jù)符合建立基準(zhǔn)要求,選擇的水生生物測試種涵蓋3個營養(yǎng)級:綠藻/初級生產(chǎn)者,小型甲殼類/初級消費者,以及魚類/次級消費者。選擇的水生生物測試種涵蓋至少3門8科的生物分類單元。
表1 六價鉻對淡水動物的急性毒性Table 1 Acute toxicity of hexavalent chromium to aquatic organisms
注:SMAV即種急性毒性平均值;GMAV即屬急性毒性平均值。
Note: SMAV is species mean acute value; GMAV is genus mean acute value.
表2 六價鉻對淡水動物的慢性毒性Table 2 Chronic toxicity of hexavalent chromium to aquatic organisms
注:SMCV即種慢性毒性平均值;GMCV即屬慢性毒性平均值。
Note: SMCV is species mean chronic value; GMCV is genus mean chronic value.
表3 六價鉻對淡水藻類和植物的毒性Table 3 Toxicity of hexavalent chromium to freshwater algae and plants
注:六價鉻的受試化合物選用重鉻酸鉀。
Note: the tested hexavalent chromium is potassium dichromate
表4 六價鉻在淡水生物體內(nèi)的富集系數(shù)(BCF)Table 4 Bioconcentration factors (BCF) of hexavalent chromium for aquatic organisms
2.2 水質(zhì)基準(zhǔn)推導(dǎo)
2.2.1 SSR法
SSR法是由USEPA推薦的制定水質(zhì)基準(zhǔn)的標(biāo)準(zhǔn)方法[1],該法是把所獲得屬的毒性數(shù)據(jù)按從小到大的順序進(jìn)行排列,序列的百分?jǐn)?shù)P按公式P=R/(N+1)進(jìn)行計算,其中R是毒性數(shù)據(jù)在序列中的位置,N是所獲得的毒性數(shù)據(jù)量。選擇靠近排序百分?jǐn)?shù)為5%處的4個屬就是4個最敏感屬,然后根據(jù)公式(1)~(4)可得出排序百分?jǐn)?shù)為5%處所對應(yīng)的濃度,該濃度即為最終急性值(final acute value, FAV),基準(zhǔn)最大濃度(criteria maximum concentration, CMC)=FAV/2。由于慢性數(shù)據(jù)量充足,最終慢性值(final chronic value, FCV)使用FAV相同的方法計算,基準(zhǔn)連續(xù)濃度(criteria continuous concentration, CCC)=min(FCV, FPV, FRV),F(xiàn)PV (final plant value)即最終植物值,F(xiàn)RV (final residue value)即最終殘留值。
(1)
(2)
(3)
FAV=eA
(4)
式中GMAV為屬急性毒性平均值;P為選擇4個屬毒性數(shù)據(jù)的排序百分?jǐn)?shù);S、L、A為計算中的符號,沒有特殊的含義。
根據(jù)表1的GMAV值,得出六價鉻的FAV是47.94 μg·L-1,即CMC的值為23.97 μg·L-1。根據(jù)表2的GMCV值,得出六價鉻的FCV是14.63 μg·L-1。從表3中可以看出,六價鉻對水生植物毒性范圍在84.3~13 000 μg·L-1之間,最敏感的毒性效應(yīng)值為84.3 μg·L-1,由此確定FPV為84.3 μg·L-1。從表4獲得的BCF值看,六價鉻在虹鱒魚肌肉和魚體內(nèi)的富集系數(shù)分別為小于1和1,表明鉻在魚體內(nèi)的富集作用不明顯,因此此處不再計算最終殘留值FRV。所以CCC的值是14.63 μg·L-1。
2.2.2 SSD法
用SSD法推導(dǎo)CMC和CCC時,首先對滿足條件的種平均急性值(表1)和種平均慢性值(表2)取對數(shù)后分別進(jìn)行正態(tài)分布檢驗,運(yùn)用SPSS 19.0進(jìn)行正態(tài)分布檢驗,結(jié)果表明,種平均急性值的對數(shù)值及種平均慢性值的對數(shù)值均符合正態(tài)分布。然后,用SSD法推導(dǎo)CMC時,對種平均急性值由小到大進(jìn)行排序并編號,以種平均急性值的對數(shù)值為橫坐標(biāo),以每個數(shù)據(jù)的編號除以數(shù)據(jù)總數(shù)加1(即累積概率,cumulative probability)為縱坐標(biāo)作圖,用Origin 8.5擬合六價鉻的急性物種敏感度分布曲線(圖1),擬合較好的是BiDoseResp函數(shù),結(jié)果見表5,擬合公式為:
(5)
式中,y為累積概率,x為六價鉻濃度(μg·L-1)的對數(shù)值,A1、A2、p、LOGx1、LOGx2、h1及h2均為曲線特征參數(shù)。HC5=45.69 μg·L-1, CMC= HC5/ 2=22.84 μg·L-1。
用SSD法推導(dǎo)CCC時,采用同樣的方法擬合六價鉻的慢性物種敏感度分布曲線(圖2),擬合較好的是Polynomial函數(shù),結(jié)果見表5,擬合公式為:
y=A0+A1x+A2x2+A3x3+A4x5+A5x5
(6)
式中,y為累積概率,x為六價鉻濃度(μg·L-1)的對數(shù)值,A0、A1、A2、A3、A4、A5均為曲線特征參數(shù)。CCC=HC5=10.35 μg·L-1。
2.2.3 澳大利亞/新西蘭SSD法
采用Burr Ⅲ型分布作為SSD的擬合曲線,Burr Ⅲ型分布是一種靈活的分布函數(shù),對物種敏感性數(shù)據(jù)擬合特性較好,在澳大利亞和新西蘭的環(huán)境風(fēng)險評價和環(huán)境質(zhì)量標(biāo)準(zhǔn)制定中被推薦使用[20],澳大利亞聯(lián)邦科學(xué)與工業(yè)研究組織(CSIRO)提供了該方法的說明和相關(guān)支持軟件BurrlizO(版本1.0.14)[92]。Burr Ⅲ型函數(shù)的參數(shù)方程:
(7)
圖1 六價鉻急性毒性數(shù)據(jù)擬合出的急性物種敏感度分布曲線注:SMAV為種急性毒性平均值,單位是μg·L-1。Fig. 1 The species sensitivity distribution curve based on acute toxicity data of hexavalent chromiumNote: SMAV is species mean acute value. Unit is μg·L-1.
圖2 六價鉻慢性毒性數(shù)據(jù)擬合出的慢性物種敏感度分布曲線注:SMCV為種慢性毒性平均值,單位是μg·L-1。Fig. 2 The species sensitivity distribution curve based on chronic toxicity data of hexavalent chromiumNote: SMCV is species mean chronic value. Unit is μg·L-1.
表5 物種敏感度分布(SSD)法對六價鉻急慢性毒性數(shù)據(jù)擬合結(jié)果Table 5 Fitted values of acute and chronic toxicity of hexavalent chromium by species sensitivity distribution method
注:CMC為基準(zhǔn)最大濃度;CCC為基準(zhǔn)連續(xù)濃度,HC5。
Note: CMC is criteria maximum concentration; CCC is criteria continuous concentration; HC5.
式中b、c、k為函數(shù)的3個參數(shù)。當(dāng)k趨于無窮大時,Burr Ⅲ型分布可變化為ReWeibull分布:
(8)
式中a、b為函數(shù)的2個參數(shù)。
當(dāng)c趨于無窮大時,可變化為RePareto分布:
(9)
式中x0、θ為函數(shù)的2個參數(shù)。
實際應(yīng)用中,如果k值大于100,就可以重新應(yīng)用ReWeibull分布函數(shù)擬合;當(dāng)c值大于80,就可以用RePareto分布函數(shù)擬合。對表1數(shù)據(jù)的對數(shù)值進(jìn)行擬合,符合RePareto分布,x0=5.3218,θ=2.7135,HC5=58.13 μg·L-1,CMC=HC5/2=29.06 μg·L-1;對表2數(shù)據(jù)的對數(shù)值進(jìn)行擬合,符合Burr Ⅲ分布,b=4.2864,c=16.9631,k=0.1176,CCC=HC5=9.00 μg·L-1。
由于一個毒性數(shù)據(jù)集的分布不能完全吻合某種數(shù)理統(tǒng)計分布,所以選用的擬合函數(shù)不同,得出的水質(zhì)基準(zhǔn)值也不盡相同。利用3種方法對六價鉻水質(zhì)基準(zhǔn)推導(dǎo)值和已有研究的基準(zhǔn)值及美國的基準(zhǔn)值進(jìn)行比較(表6)。本研究3種方法推導(dǎo)出來的基準(zhǔn)值在一個數(shù)量級上,使用SSR法推導(dǎo)的中國的Cr(Ⅵ)基準(zhǔn)CMC值與CCC值均大于美國的基準(zhǔn)值,這可能是生物區(qū)系差異造成的。在本研究中,剔除了一些非中國物種的數(shù)據(jù),如美國旗魚黑頭軟口鰷、斑馬魚、白鮭和美白鯉等,主要采用中國本土水生生物,另外還包含了一些中國引進(jìn)的物種,如虹鱒魚、尼羅羅非魚和太陽魚等。
表6 六價鉻基準(zhǔn)值與水質(zhì)標(biāo)準(zhǔn)的比較Table 6 Comparison among criteria and standard values of hexavalent chromium
吳豐昌等[9]對運(yùn)用SSD法對多種重金屬進(jìn)行了基準(zhǔn)值推導(dǎo),包括Cr(VI),比較發(fā)現(xiàn),其CMC值是本研究推導(dǎo)的CMC值的2倍,CCC值差異不大。其原因可能是本研究側(cè)重于收集自然水體中存在的生物,使2種研究的急慢性數(shù)據(jù)數(shù)不同;另外2種研究所用的SSD法擬合函數(shù)不一樣,擬合出來的結(jié)果也不同,進(jìn)而導(dǎo)致了基準(zhǔn)值的差異性。而本研究所用的SSR法主要考慮累積概率接近0.05的4個屬的毒性數(shù)據(jù),區(qū)別于SSD法推導(dǎo)的基準(zhǔn)值。
運(yùn)用3種方法對六價鉻基準(zhǔn)進(jìn)行CMC值推導(dǎo),SSR法主要考慮最敏感的4個屬,SSD法更具代表性,用BiDoseResp函數(shù)擬合得到的CMC值最小,相對比較嚴(yán)謹(jǐn),BiDoseResp函數(shù)擬合優(yōu)度高達(dá)0.995,建議選擇該函數(shù)推導(dǎo)的CMC值;利用3種方法對六價鉻基準(zhǔn)進(jìn)行CCC值推導(dǎo)時,澳大利亞/新西蘭SSD法推導(dǎo)的CCC值最小,而SSD法運(yùn)用的Polynomial函數(shù)擬合優(yōu)度達(dá)到0.952,雖然SSD法沒有考慮污染物在生物體內(nèi)的富集效應(yīng),但是相對SSR法推導(dǎo)的值,SSD法推導(dǎo)的CCC值相對比較保守,這樣的CCC值對水生物保護(hù)有利。因此,建議選擇SSD法推導(dǎo)六價鉻的急慢性基準(zhǔn)值。
3種方法得到的六價鉻水生生物基準(zhǔn)值與我國地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)I級標(biāo)準(zhǔn)值相比較,在同一數(shù)量級上,CMC值均高于標(biāo)準(zhǔn)值,澳大利亞/新西蘭SSD法推導(dǎo)的CCC稍低于標(biāo)準(zhǔn)值,SSD法和SSR法推導(dǎo)的CCC值稍高于標(biāo)準(zhǔn)值。因目前我國的I級標(biāo)準(zhǔn)值為單值標(biāo)準(zhǔn),其介于CMC與CCC之間,還是基本上能滿足對環(huán)境水體中短期應(yīng)急和長期生物效應(yīng)的保護(hù)需求。不過考慮到水質(zhì)標(biāo)準(zhǔn)是在水質(zhì)基準(zhǔn)基礎(chǔ)上建立的,因此建議相關(guān)部門制定標(biāo)準(zhǔn)時可以考慮分別制定短期標(biāo)準(zhǔn)和長期標(biāo)準(zhǔn)[5,93]。
我國幅員遼闊,不同流域或區(qū)域水生生物的種群和數(shù)量是不同的,水環(huán)境生態(tài)特征、水環(huán)境承載力等也都有很大的差異。針對我國這種不同區(qū)域的生物差異性明顯的特點,僅僅制定國家尺度的水質(zhì)基準(zhǔn),對特定水體區(qū)域的生物,尤其是一些敏感水生生物提供的保護(hù)可能會不足,這就要求我們在構(gòu)建水質(zhì)基準(zhǔn)體系時,考慮到不同地域的物種差異性,也就是生態(tài)分區(qū)差異性,加強(qiáng)區(qū)域性敏感物種的水生生物毒性研究,豐富我國水生生物毒性數(shù)據(jù)庫,在制定國家基準(zhǔn)的同時還可制定流域尺度的水質(zhì)基準(zhǔn)。
綜上所述,本文的主要結(jié)論包括:
本研究采用已有水生生物毒性數(shù)據(jù),結(jié)合本課題組實驗數(shù)據(jù),運(yùn)用SSR法、SSD法和澳大利亞SSD法推導(dǎo)出來的CMC值分別為23.97、22.84、29.06 μg·L-1,CCC值分別為14.63、10.35、9.00 μg·L-1。
比較這3種方法,建議使用SSD法推導(dǎo)六價鉻的CMC值和CCC值。
3種方法推導(dǎo)的六價鉻水生生物基準(zhǔn)值與我國地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)I級標(biāo)準(zhǔn)值在同一個數(shù)量級上,我國的I級標(biāo)準(zhǔn)值為單值標(biāo)準(zhǔn),其介于CMC與CCC之間,目前還是基本上能滿足對環(huán)境水體中短期應(yīng)急和長期生物效應(yīng)保護(hù)的需求,但長遠(yuǎn)來看,還是建立雙值標(biāo)準(zhǔn)為宜。
[1] Stephen C E, Mount D I, Hansen D J, et al. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses [M]. Washington DC: United States Environmental Protection Agency, Office of Research and Development, 1985: 1-57
[2] 金小偉, 雷炳莉, 許宜平, 等. 水生態(tài)基準(zhǔn)方法學(xué)概述及建立我國水生態(tài)基準(zhǔn)的探討[J]. 生態(tài)毒理學(xué)報, 2009, 4(5): 609-616
Jin X W, Lei B L, Xu Y P, et al. Methodologies for deriving water quality criteria to protect aquatic life (ALC) and proposal for development of ALC in China: A review [J]. Asian Journal of Ecotoxicology, 2009, 4(5): 609-616 (in Chinese)
[3] 雷炳莉, 金小偉, 黃圣彪, 等. 太湖流域 3種氯酚類化合物水質(zhì)基準(zhǔn)的探討[J]. 生態(tài)毒理學(xué)報, 2009, 4(1): 40-49
Lei B L, Jin X W, Huang S B, et al. Discussion of quality criteria for three chlorophenols in Taihu Lake [J]. Asian Journal of Ecotoxicology, 2009, 4(1): 40-49 (in Chinese)
[4] 雷炳莉, 劉倩, 孫延楓, 等. 內(nèi)分泌干擾物 4-壬基酚的水質(zhì)基準(zhǔn)探討[J]. 中國科學(xué): 地球科學(xué), 2012, 42(5): 657-664
Lei B L, Liu Q, Sun Y F, et al. Water quality criteria for 4-Nonylphenol in protection of aquatic life [J]. Science China: Earth Sciences, 2012, 42(5): 657-664 (in Chinese)
[5] 吳豐昌, 馮承蓮, 曹宇靜, 等. 我國銅的淡水生物水質(zhì)基準(zhǔn)研究[J]. 生態(tài)毒理學(xué)報, 2011, 6(6): 617-628
Wu F C, Feng C L, Cao Y J, et al. Aquatic life ambient freshwater quality criteria for copper in China [J]. Asian Journal of Ecotoxicology, 2011, 6(6): 617-628) (in Chinese)
[6] 閆振廣, 孟偉, 劉征濤, 等. 遼河流域氨氮水質(zhì)基準(zhǔn)與應(yīng)急標(biāo)準(zhǔn)探討[J]. 中國環(huán)境科學(xué), 2011, 31(11): 1829-1835
Yan Z G, Meng W, Liu Z T, et al. Development of aquatic life criteria and lash-up standard for ammonia in Liao River Basin [J]. China Environmental Science, 2011, 31(11): 1829-1835 (in Chinese)
[7] 吳豐昌, 馮承蓮, 曹宇靜, 等. 鋅對淡水生物的毒性特征與水質(zhì)基準(zhǔn)的研究[J]. 生態(tài)毒理學(xué)報, 2011, 6(4): 367-382
Wu F C, Feng C L, Cao Y J, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria [J]. Asian Journal of Ecotoxicology, 2011, 6(4): 367-382 (in Chinese)
[8] 張瑞卿, 吳豐昌, 李會仙, 等. 應(yīng)用物種敏感度分布法研究中國無機(jī)汞的水生生物水質(zhì)基準(zhǔn)[J]. 環(huán)境科學(xué)學(xué)報, 2012, 32(2): 440-449
Zhang R Q, Wu F C, Li H X, et al. Deriving aquatic water quality criteria for inorganic mercury in China by species sensitivity distributions [J]. Acta Scientiae Circumtantiae, 2012, 32(2): 440-449 (in Chinese)
[9] 吳豐昌, 馮承蓮, 張瑞卿, 等. 我國典型污染物水質(zhì)基準(zhǔn)研究[J]. 中國科學(xué): 地球科學(xué), 2012, 42(5): 665-672
Wu F C, Feng C L, Zhang R Q, et al. Derivation of water quality criteria for representative water-body pollutants in China [J]. Science China: Earth Sciences, 2012, 42(5): 665-672 (in Chinese)
[10] 王振來, 鐘艷玲. 微量元素鉻的研究進(jìn)展[J]. 中國飼料, 2001, (4): 16-17
Wang Z L, Zhong Y L. Investigation progress about microelement chromium [J]. China Feed, 2001, 4: 16-17 (in Chinese)
[11] USEPA. Ambient Water Quality Criteria for Chromium [M]. Washington DC: Office of Water, USEPA, 1980: 1-44
[12] 謝鳳君, 陳惠志, 趙幼一. GB/T 13267-1991 水質(zhì)/物質(zhì)對淡水魚(斑馬魚)急性毒性測定方法[S]. 北京: 國家環(huán)境保護(hù)局, 1992
Xie F J, Chen H Z, Zhao Y Y. GB/T 13267-1991 Water quality-Determination of the acute toxicity of substance to a freshwater fish(Brachydanio rerio Hamilton-Buchanan) [S]. Ministry of Environmental Protection of the People's Republic of China, 1992 (in Chinese)
[13] OECD. TG 203 OECD Guideline for Testing of Chemical. Fish, Acute Toxicity Test [S]. OECD, 1992(不能找到具體城市名,OECD是一個組織)
[14] Mount D. Aquatic Surrogates [C]. Washington DC: US Environmental Protection Agency, Surrogate Species Workshop, 1982
[15] 閆振廣, 孟偉, 劉征濤, 等. 我國淡水生物氨氮基準(zhǔn)研究[J]. 環(huán)境科學(xué), 2011, 32(6): 1564-1570
Yan Z G, Meng W, Liu Z T, et al. Development of freshwater aquatic life criteria for ammonia in China [J]. Environmental Science, 2011, 32(6): 1564-1570 (in Chinese)
[16] Kooijman S. A safety factor for LC50values allowing for differences in sensitivity among species [J]. Water Research, 1987, 21(3): 269-276
[17] Van Straalen N M, Denneman C A. Ecotoxicological evaluation of soil quality criteria [J]. Ecotoxicology and Environmental Safety, 1989, 18(3): 241-251
[18] Wagner C, Lokke H. Estimation of ecotoxicological protection levels from NOEC toxicity data [J]. Water Research, 1991, 25(10): 1237-1242
[19] Aldenberg T, Slob W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data [J]. Ecotoxicology and Environmental Safety, 1993, 25(1): 48-63
[20] Hose G C, Van Den Brink P J. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data [J]. Archives of Environmental Contamination and Toxicology, 2004, 47(4): 511-520
[21] 高曉莉, 齊鳳生, 羅胡英. 銅, 汞, 鉻對泥鰍的急性毒性和聯(lián)合毒性實驗[J]. 水利漁業(yè), 2003, 23(2): 63-64
[22] 張海艷, 李霞, 駱美蓉. 苯酚和鉻對麥穗魚的急性毒性及苯酚麥穗魚的遺傳毒性研究[J]. 安徽農(nóng)業(yè)科學(xué), 2013, 41(12): 5389-5391
Zhang H Y, Li X, Luo M R. Study on the acute toxicity of phenol and chromium to Pseudorasbora parva and genetic toxicitiesof phenol [J]. Journal of Anhui Agricultural Sciences, 2013, 41(12): 5389-5391 (in Chinese)
[23] Mishra R. Effect of dichromate on lipid and amino acid contents of liver and muscle of Clarias batrachus (L.) [J]. Environment and Ecology, 1997, 15(1): 41-45
[24] 楊麗華, 方展強(qiáng), 鄭文彪. 重金屬對鯽魚的急性毒性及安全濃度評價[J]. 華南師范大學(xué)學(xué)報: 自然科學(xué)版, 2003, (2): 101-106
Yang L H, Fang Z Q, Zheng W B. Safety assessment and acute toxicity of heavy metals to crucian Carassius auratus [J]. Journal of South China Normal University: Natural Science Edition, 2003, (2): 101-106 (in Chinese)
[25] Adelman I R, Smith Jr L L, Siesennop G D. Acute toxicity of sodium chloride, pentachlorophenol, guthion, and hexavalent chromium to fathead minnows (Pimephales promelas) and goldfish (Carassius auratus) [J]. Journal of the Fisheries Board of Canada, 1976, 33(2): 203-208
[26] Riva M C, Flos R, Crespi M, et al. Lethal potassium dichromate and whitening (blankophor) exposure of goldfish (Carassius auratus): Chromium levels in gills [J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1981, 68(2): 161-165
[27] 雷忻, 杜團(tuán), 廉振民, 等. 重金屬鉻對金魚的毒性效應(yīng)及鰓的組織學(xué)影響[J]. 水生態(tài)學(xué)雜志, 2009, 2(5): 71-74
[28] Kazlauskiene N, Burba A, Svecevicius G. Acute toxicity of five galvanic heavy metals to hydrobionts [J]. Ecology, 1994, 1: 33-36
[29] Waheda M F. Effect of size of fathead minnows (Pimephales promelas) and green sunfish (Lepomis cyanellus) on hexavalent chromium toxicity [D]. Washington DC: WSU Printing Service, 1977:1-70
[30] Dorn P B, Raia J C, Rodgers J H, et al. Hexavalent chromium as a reference toxicant in effluent toxicity tests [J]. Environmental Toxicology and Chemistry, 1987, 6(6): 435-444
[31] Jop K M, Parkerton T F, Rodgers J H, et al. Comparative toxicity and speciation of two hexavalent chromium salts in acute toxicity tests [J]. Environmental Toxicology and Chemistry, 1987, 6(9): 697-703
[32] Academy of Natural Sciences. The Sensitivity of Aquatic Life to Certain Chemicals Commonly Found in Industrial Wastes [R]. Washington DC: U.S. Public Health Service Grant, 1960
[33] 米靜潔, 袁慧, 王蘭. 銅, 鎘, 鉻, 鉛對河南華溪蟹的急性毒性作用 [J]. 安徽農(nóng)業(yè)科學(xué), 2008, 36(17): 7273-7274
Mi J J, Yuan H, Wang L. Study on the acute toxic effects of Cu, Cd, Cr and Pb on Sinopotamon henanense [J].Journal of Anhui Agricultural Sciences, 2008, 36(17): 7273-7274 (in Chinese)
[34] 陳萬光, 周芬娜, 鄧平平, 等. 3種常用藥物對高體鳑鲏幼魚的急性毒性研究[J]. 水產(chǎn)科學(xué), 2010, 29(9): 543-545
[35] 譚樹華, 鄧先余, 蔣文明, 等. Cr6+和Hg2+對克氏原螯蝦的急性毒性試驗[J]. 水利漁業(yè), 2007, 27(5): 39-41
Tan S H, Deng X Y, Jiang W M, et al. Study on the acute toxicity of Cr6+ and Hg2+ on the Cambarus clarkii [J]. Reservoir Fisheries, 2007, 27(5): 39-41 (in Chinese)
[36] 姜福全. 稀有鮈鯽急性, 亞慢性毒性試驗方法及其在東湖底泥毒性研究中的應(yīng)用[D]. 北京: 中國科學(xué)院研究生院, 2006: 29-35
Jiang F Q. Methods of acute and subchronic toxicity test using Gobiocypris rarus and their application in toxicity study of sediment in Donghu Lake [D]. Graduate University of Chinese Academy of Sciences, 2006: 29-35 (in Chinese)
[37] 王少博, 王維民, 郭亞楠, 等. 重金屬鎘和鉻對草魚苗的急性和慢性毒性效應(yīng)[J]. 蘭州大學(xué)學(xué)報: 自然科學(xué)版, 2007, 43(4): 60-64
Wang S B, Wang W M, Guo Y N. Acute and chronic toxicity of chromium and cadmium on grass carp fries (Ctenopharyngodon idellus) [J]. Journal of Lanzhou University: Natural Sciences, 2007, 43(4): 60-64 (in Chinese)
[38] 陳細(xì)香, 謝嘉華, 盧昌義, 等. 汞和鉻對黃鱔的急性毒性研究[J]. 水利漁業(yè), 2008, 28(2): 103-104
[39] Benoit D A. Toxic effects of hexavalent chromium on brook trout (Salvelinus fontinalis) and rainbow trout (Salmo gairdneri) [J]. Water Research, 1976, 10(6): 497-500
[40] Larrain A, Riveros A, Bay-Schmith E, et al. Evaluation of three larval instars of the midge Chironomus petiolatus as bioassay tools using a computationally intensive statistical algorithm [J]. Archives of Environmental Contamination and Toxicology, 1997, 33(4): 407-414
[41] Khangarot B S, Ray P K. Acute toxicity and toxic interaction of chromium and nickel to common guppy Poecilia reticulata (Peters) [J]. Bulletin of Environmental Contamination and Toxicology, 1990, 44(6): 832-839
[42] Oliveira-Filho E C, Paumgartten F. Comparative study on the acute toxicities of α, β, γ, and δ isomers of hexachlorocyclohexane to freshwater fishes [J]. Bulletin of Environmental Contamination and Toxicology, 1997, 59(6): 984-988
[43] 劉大勝, 孔強(qiáng), 王大榜, 等. 金屬離子魚類急性毒性研究及對環(huán)境標(biāo)準(zhǔn)修訂的啟示意義[J]. 環(huán)境科學(xué)與管理, 2010, 35(4): 38-42
Liu D S, Kong Q, Wang D B, et al. Fish acute toxicity of metal ions and its inspiration for environmental standards revision [J]. Environmental Science and Management, 2010, 35(4): 38-42 (in Chinese)
[44] Svecevicius G. Acute toxicity of hexavalent chromium to European freshwater fish [J]. Bulletin of Environmental Contamination and Toxicology, 2006, 77(5): 741-747
[45] Van Den Dikkenberg R P, Canton H H, Mathijssen-Spiekman L A, et al. Usefulness of Gasterosteus aculeatus-- the Three-Spined Stickleback-- As a Test Organism in Routine Toxicity Tests [R]. Amsterdam: National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sport, 1989
[46] Van Der Putte I, Brinkhorst M A, Koeman J H. Effect of pH on the acute toxicity of hexavalent chromium to rainbow trout (Salmo gairdneri) [J]. Aquatic Toxicology, 1981, 1(2): 129-142
[47] Buhl K J, Hamilton S J. Relative sensitivity of early life stages of arctic grayling, coho salmon, and rainbow trout to nine inorganics [J]. Ecotoxicology and Environmental Safety, 1991, 22(2): 184-197
[48] White A M. The toxicity of hexavalent chromium (Cr6+) to twenty-one species aquatic animals native to Ohio [D]. Waukesha: John Carroll University, University Heights, 1983:13
[49] Gendusa T C, Beitinger T L, Rodgers J H. Toxicity of hexavalent chromium from aqueous and sediment sources to Pimephales promelas and Ictalurus punctatus [J]. Bulletin of Environmental Contamination and Toxicology, 1993, 50(1): 144-151
[50] Bailey H C, Liu D. Lumbriculus variegatus, a benthic oligochaete, as a bioassay organism [C]. Philadelphia : Aquatic Toxicology and Hazard Assessment, 3rd Symposium, ASTM STP 707, 1980, PA: 205-215
[51] Ewell W S, Gorsuch J W, Kringle R O, et al. Simultaneous evaluation of the acute effects of chemicals on seven aquatic species [J]. Environmental Toxicology and Chemistry, 1986, 5(9): 831-840
[52] 石戈, 王健鑫, 武佳, 等. Cu2+和 Cr6+對中國林蛙蝌蚪的急性毒性[J]. 東北師大學(xué)報: 自然科學(xué)版, 2007, 39(2): 116-121
Shi G, Wang J X, Wu J, et al. Acute toxicity of Cu2+and Cr6+to Rana chensinensis tadpoles [J]. Journal of Northeast Normal University: Natural Science Edition, 2007, 39(2): 116-121 (in Chinese)
[53] 王維君. 鉻對中國林蛙(Rana chensiensis)幼體的毒性效應(yīng)[D]. 西安: 陜西師范大學(xué), 2006: 18-23
Wang W J. Toxic effect of chromium on Rana chensiensis tadpole [D]. Xian: Shanxi Normal University, 2006:18-23(in Chinese)
[54] Chin H C, Chou F F. Acute chromium toxicity of the freshwater mussel, Hyriopsis cumingii Lea [J]. Nan-Ching Ta Hsueh Hsueh PaoTsu Jan K'o Hsueh Pan, 1978, 4: 96-101
[55] Khangarot B S, Ray P K. Sensitivity of freshwater pulmonate snails, Lymnaea luteola L. to heavy metals [J]. Bulletin of Environmental Contamination and Toxicology, 1988, 41(2): 208-213
[56] Rathore R S, Khangarot B S. Effects of temperature on the sensitivity of sludge worm Tubifex tubifex Muller to selected heavy metals [J]. Ecotoxicology and Environmental Safety, 2002, 53(1): 27-36
[57] Khangarot B S. Toxicity of metals to a freshwater tubificid worm, Tubifex tubifex (Muller) [J]. Bulletin of Environmental Contamination and Toxicology, 1991, 46(6): 906-912
[58] Reynoldson T B, Rodriguez P, Madrid M M. A comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Muller, 1774) from the North American Great Lakes and Northern Spain [J]. Hydrobiologia, 1996, 334(1-3): 199-206
[59] Wong C K, Pak A P. Acute and subchronic toxicity of the heavy metals copper, chromium, nickel, and zinc, individually and in mixture, to the freshwater copepod Mesocyclops pehpeiensis [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 73(1): 190-196
[60] Wong C K. Effects of chromium, copper, nickel, and zinc on survival and feeding of the cladoceran Moina macrocopa [J]. Bulletin of Environmental Contamination and Toxicology, 1992, 49(4): 593-599
[61] Elnabarawy M T, Welter A N, Robideau R R. Relative sensitivity of three daphnid species to selected organic and inorganic chemicals [J]. Environmental Toxicology and Chemistry, 1986, 5(4): 393-398
[62] Spehar R L, Fiandt J T. Acute and chronic effects of water quality criteria-based metal mixtures on three aquatic species [J]. Environmental Toxicology and Chemistry, 1986, 5(10): 917-931
[63] Cowgill U M, Milazzo D P. The response of the three brood Ceriodaphnia test to fifteen formulations and pure compounds in common use [J]. Archives of Environmental Contamination and Toxicology, 1991, 21(1): 35-40
[64] 莊德輝. 重鉻酸鉀對方形網(wǎng)紋溞的毒性研究[J]. 環(huán)境科學(xué)學(xué)報, 1994, 14(3): 335-340
Zhuang D H. Toxicity of K2Cr2O7to Ceriodaphnia quadrangula (O. F. Muller) [J]. Acta Scientiae Circumtantiae, 1994, 14(3): 335-340 (in Chinese)
[65] 呂耀平, 李小玲, 賈秀英. Cr6+, Mn7+和 Hg2+對青蝦的毒性和聯(lián)合毒性研究[J]. 上海水產(chǎn)大學(xué)學(xué)報, 2007, 16(6): 549-554
Lv Y P, Li X L, Jia X Y. Study on the acute toxicity and joint toxicity of Cr6+, Mn7+and Hg2+on the Macrobrachium nipponense [J]. Journal of Shanghai Fisheries University, 2007, 16(6): 549-554 (in Chinese)
[66] 江敏, 臧維玲, 姚慶禎, 等. 四種重金屬對羅氏沼蝦仔蝦的毒性作用[J]. 上海水產(chǎn)大學(xué)學(xué)報, 2002, 11(3): 203-207
Jiang M, Zang W L, Yao Q Z, et al. The toxicity of four heavy metals on Macrobrachium rosenbergii post larva [J]. Journal of Shanghai Fisheries University, 2002, 11(3): 203-207 (in Chinese)
[67] Baudouin M F, Scoppa P. Acute toxicity of various metals to freshwater zooplankton [J]. Bulletin of Environmental Contamination and Toxicology, 1974, 12(6): 745-751
[68] Jop K M, Rodgers J H, Price E E, et al. Renewal device for test solutions in Daphnia toxicity tests [J]. Bulletin of Environmental Contamination and Toxicology, 1986, 36(1): 95-100
[69] Call D J, Brooke L T, Ahmad N, et al. Aquatic Pollutant Hazard Assessments and Development of a Hazard Prediction Technology by Quantitative Structure-Activity Relationships; Second Quaterly Report, US EPA Cooperative Agreement No.CR 809234-01-0 [R]. Superior: Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, 1981
[70] Guilhermino L, Diamantino T C, Ribeiro R, et al. Suitability of test media containing EDTA for the evaluation of acute metal toxicity to Daphnia magna Straus [J]. Ecotoxicology and Environmental Safety, 1997, 38(3): 292-295
[71] 吳永貴, 袁玲, 黃建國. Cr6+的隆線溞趨光指數(shù)與LC50急性毒性的比較[J]. 環(huán)境科學(xué)學(xué)報, 2004, 24(5):905-909
Wu Y G, Yuan L, Huang J G. Comparison of phototaxis index with acute toxicity test (LC50) using Daphnia carinata [J]. Acta Scientiae Circumtantiae, 2004, 24(5): 905-909 (in Chinese)
[72] Arkhipchuk V V, Blaise C, Malinovskaya M V. Use of hydra for chronic toxicity assessment of waters intended for human consumption [J]. Environmental Pollution, 2006, 142(2): 200-211
[73] Khangarot B S, Ray P K. Sensitivity of toad tadpoles, Bufo melanostictus (Schneider), to heavy metals [J]. Bulletin of Environmental Contamination and Toxicology, 1987, 38(3): 523-527
[74] Holland G. Toxic effects of organic and inorganic pollutants on young salmon and trout [R]. State of Washington Department of Fisheries, Research Bulletin, 1960, wa: 263
[75] Cavas T, Garanko N N, Arkhipchuk V V. Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate [J]. Food and Chemical Toxicology, 2005, 43(4): 569-574
[76] Cearley J E. Toxicity and bioconcentration of cadmium, chromium, and silver in Micropterus salmonides and Lepomis macrochirus [D]. Oklahoma City: University of Oklahoma, 1971: 76
[77] Drummond R A, Olson G F. Response of Brook Trout (Salvelinus fontinalis) Exposed to Four Metals and Four Pesticides [R]. Duluth: USEPA, 1987
[78] 張云美, 潘永全, 徐惠, 等. 在亞慢性毒性試驗中應(yīng)用紅劍魚, 孔雀魚和食蚊魚的效果觀察[J]. 醫(yī)學(xué)動物防制, 2007, 23(5): 333-335,383
Zhang Y M, Pan Y Q, Xu H, et al. Application of Xiphophorus helleri, Poecilia and Gambusia affinis in subchronic toxicity test [J]. Journal of Medical Pest Control, 2007, 23(5): 333-335, 383 (in Chinese)
[79] Abbasi S A, Baji V, Madhavan K, et al. Impact of chromium (VI) on catfish Wallago attu [J]. Indian Journal of Environmental Health, 1991, 33(3): 336-340
[80] Hickey C W. Sensitivity of four New Zealand cladoceran species and Daphnia magna to aquatic toxicants [J]. New Zealand Journal of Marine and Freshwater Research, 1989, 23(1): 131-137
[81] Diamantino T C, Guilhermino L, Almeida E, et al. Toxicity of sodium molybdate and sodium dichromate to Daphnia magna Straus evaluated in acute, chronic, and acetylcholinesterase inhibition tests [J]. Ecotoxicology and Environmental Safety, 2000, 45(3): 253-259
[82] Enserink L, De La Haye M, Maas H. Reproductive strategy of Daphnia magna: Implications for chronic toxicity tests [J]. Aquatic Toxicology, 1993, 25(1): 111-123
[83] Oner M, Atli G, Canli M. Effects of metal (Ag, Cd, Cr, Cu, Zn) exposures on some enzymatic and non-enzymatic indicators in the liver of Oreochromis niloticus [J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(3): 317-321
[84] St Laurent D, Blaise C, Macquarrie P, et al. Comparative assessment of herbicide phytotoxicity to Selenastrum capricornutum using microplate and flask bioassay procedures [J]. Environmental Toxicology and Water Quality, 1992, 7(1): 35-48
[85] Hickey C W, Blaise C, Costan G. Microtesting appraisal of ATP and cell recovery toxicity end points after acute exposure of Selenastrum capricornutum to selected chemicals [J]. Environmental Toxicology and Water Quality, 1991, 6(4): 383-403
[86] Mayer P, Frickmann J, Christensen E R, et al. Influence of growth conditions on the results obtained in algal toxicity tests [J]. Environmental Toxicology and Chemistry, 1998, 17(6): 1091-1098
[87] Rojickova R, Marsalek B. Selection and sensitivity comparisons of algal species for toxicity testing [J]. Chemosphere, 1999, 38(14): 3329-3338
[88] Beuffe H. Experimental Design Based on the Variations of DCMU Enhanced Fluorescence for Short-Term Acute Toxicity Screening [R]. [S.l.]: OECD-IRCHA, 1987
[89] Kuhn R, Pattard M. Results of the harmful effects of water pollutants to green algae (Scenedesmus subspicatus) in the cell multiplication inhibition test [J]. Water Research, 1990, 24(1): 31-38
[90] Buhler D R, Stokes R M, Caldwell R S. Tissue accumulation and enzymatic effects of hexavalent chromium in rainbow trout (Salmo gairdneri) [J]. Journal of the Fisheries Board of Canada, 1977, 34(1): 9-18
[91] Fromm P O, Stokes R M. Assimilation and metabolism of chromium by trout [J]. Journal (Water Pollution Control Federation), 1962, 34(11): 1151-1155
[92] CSIRO (Australia's Commonwealth Scientific and Industrial Research Organisation). A Flexible Approach to Species Protection [R/OL]. (2002-10-07) [2013-07-29]. http://www.cmis.csiro.au/envir/burrlioz
[93] 馮承蓮, 吳豐昌, 趙曉麗, 等. 水質(zhì)基準(zhǔn)研究與進(jìn)展[J]. 中國科學(xué): 地球科學(xué), 2012, 42(5): 646-656
Feng C L, Wu F C, Zhao X L, et al. Water quality criteria research and progress [J]. Science China: Earth Sciences, 2012, 42(5): 646-656 (in Chinese)
◆
DerivationofFreshwaterQualityCriteriaforHexavalentChromiumforProtectionofAquaticOrganismsinChina
Liao Jing1, Liang Feng2, Yang Shaogui1, He Huan1, Sun Cheng1,*, Gao Shixiang1, Cui Yibin1
1. School of the Environment, Nanjing University, Nanjing 210023, China 2. Henan University of Urban Construction, Pingdingshan 467036, China
18 October 2013accepted19 December 2013
According to the methods and procedures of surface water qua1ity criteria established by United States Environmental Protection Agency (USEPA) (Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses, 1985), the aquatic species existing widely in China were selected, and their toxicity data were collected from database and acquired from our research on some native species. The aquatic quality criteria of hexavalent chromium in China were derived using three methods: species sensitivity rank (SSR), species sensitivity distribution (SSD) and the method of criteria development recommended by Australia. Results showed that the criteria maximum concentration (CMC) value of hexavalent chromium were 23.97, 22.84, 29.06 μg·L-1and the criteria continuous concentration (CCC) value were 14.63, 10.35, 9.00 μg·L-1, respectively. The criteria values were of the same order of magnitude. The criteria proposed in this study had a little difference from the criteria launched by USEPA. We suggest using SSD method to derive CMC value and CCC value. The results of this study might provide some useful clues and data for the development of China’s water quality criteria.
hexavalent chromium; freshwater aquatic organisms; water quality criteria; criteria maximum concentration (CMC); criteria continuous concentration (CCC)
國家水體污染控制與治理科技重大專項(2012ZX07501-003-002);河南城建學(xué)院博士科研啟動基金項目(2013JBS003)
廖靜(1989-),女,碩士,研究方向為重金屬水質(zhì)基準(zhǔn),E-mail: june.0000@163.com;
*通訊作者(Corresponding author),E-mail: envidean@nju.edu.cn
10.7524/AJE.1673-5897.20131018001
廖靜,梁峰,楊紹貴, 等. 我國六價鉻淡水水生生物安全基準(zhǔn)推導(dǎo)研究[J]. 生態(tài)毒理學(xué)報, 2014, 9(2): 306-318
Liao J, Liang F, Yang S G, et al. Derivation of freshwater quality criteria for hexavalent chromium for protection of aquatic organisms in China [J]. Asian Journal of Ecotoxicology, 2014, 9(2): 306-318 (in Chinese)
2013-10-18錄用日期2013-12-19
1673-5897(2014)2-306-13
X171.5
A
孫成(1955—),男,教授,博士生導(dǎo)師,主要從事微量與痕量有機(jī)污染物的分析、污染物的環(huán)境行為以及水體中有毒有機(jī)物去除技術(shù)與機(jī)理研究,發(fā)表科學(xué)論文140多篇。