胡有婧,紀永強
(1.寧夏大學 數(shù)學計算機學院,銀川 750021; 2.湖州師范學院 理學院,浙江 湖州 313000)
deSitter空間中的緊致極大類時子流形
胡有婧1,紀永強2
(1.寧夏大學 數(shù)學計算機學院,銀川 750021; 2.湖州師范學院 理學院,浙江 湖州 313000)
采用活動標架法,得到de Sitter空間中類時子流形的Ricci恒等式和第二基本形式長度平方的Laplacian,并得到de Sitter空間中緊致極大類時子流形成為全測地子流形的一些充分條件.
de Sitter空間; Ricci恒等式; 類時; 全測地
對于de Sitter空間中的緊致類空子流形,目前已有許多研究結果[1-4].文獻[5-6]將de Sitter空間中的子流形分類為類空、 類光和類時子流形.本文參考文獻[7-12],通過計算de Sitter空間中類時子流形的Ricci恒等式和第二基本形式長度平方的Laplacian,獲得了如下de Sitter空間中的緊致極大類時子流形成為全測地子流形的充分條件.
約定各類指標范圍如下:
1≤i,j,k,…≤n;n+1≤α,β,γ,…≤n+p; 1≤A,B,C,…≤n+p.
將ω1,…,ωn+p限制到Mn上,由于ωα(e1)=…=ωα(en)=0,于是有
對式(6)外微分并利用Cartan引理[8]得
又由式(2),(3),(4),(6),(7),經(jīng)過計算可得[8]
在偽Riemann標準正交標架下,有[5-8]
從而可得de Sitter空間中類時子流形的Ricci恒等式[9]:
設曲率張量場Kαijk的一階共變導數(shù)為Kαijk;l,類似式(8),則有
由式(5),(9),(11),得
經(jīng)過計算有
仿文獻[10-11]的技巧,對一切實數(shù)A,有
3.1定理1的證明
將式(13)代入式(12)得
將式(15)兩邊關于α求和,再由式(13)得
經(jīng)過計算易得
將式(17)兩邊關于α,β求和,有
此外,有如下Lincoln不等式[8]成立:
在式(14)中,令A≥1>0,又由式(16),(18),(19),得
從而
3.2定理2的證明
由文獻[7],有
在式(14)中,令A≥1>0,由式(16),(18)和(21),得
從而
當σ=n(c-2Rmax)時,不等式(16),(18),(21)均為等式,從而有:
Rijij=Rmax,
[1] 許志才.de Sitter空間中具有常均曲率的類空超曲面(Ⅱ) [J].數(shù)學雜志,1998,18(4): 466-468.(XU Zhicai.Spacelike Hypersurfaces with Constant Mean Curvature in de Sitter Space(Ⅱ) [J].Journal of Mathematics,1998,18(4): 466-468.)
[2]舒世昌,劉三陽.de Sitter空間中具平行平均曲率向量的完備類空子流形(Ⅱ) [J].應用數(shù)學,2002,15(3): 76-80.(SHU Shichang,LIU Sanyang.Complete Spacelike Submanifolds in a de Sitter Space with Parallel Mean Curvature Vector(Ⅱ) [J].Mathematica Applicata,2002,15(3): 76-80.)
[3]劉建成,方慧穎.de Sitter空間中具有平行平均曲率向量的完備類空子流形 [J].西北師范大學學報: 自然科學版,2009,45(4): 23-26.(LIU Jiancheng,FANG Huiying.Complete Space-Like Submanifolds with Parallel Mean Curvature Vector in de Sitter Spaces [J].Journal of Northwest Normal University: Natural Science,2009,45(4): 23-26.)
[4]WEN Bo,WANG Qiang,PENG Cuiying.A Totally Umbilical Condition of Compact Space-Like Hypersurfaces in the de Sitter Space [J].Journal of Mathmatical Research & Exposition,2003,23(3): 467-472.
[5]劉海明,苗佳晶,許宏文,等.廣義de Sitter空間中的類時超曲面 [J].數(shù)學的實踐與認識,2011,41(16): 193-200.(LIU Haiming,MIAO Jiajing,XU Hongwen,et al.Timelike Hypersurfaces in General de Sitter Space [J].Mathematics in Practice and Theory,2011,41(16): 193-200.)
[6]孔令令,裴東河.四維Mincowski空間中類時超曲面的de Sitter Gauss映射的奇點分類 [J].中國科學A輯: 數(shù)學,2007,37(6): 751-758.(KONG Lingling,PEI Donghe.Singularities of de Sitter Gauss Map of Timelike Hypersurface in Minkowski 4-Space [J].Science in China Series A: Mathematics,2007,37(6): 751-758.)
[7]胡有婧,紀永強,汪文帥.局部對稱空間中的緊致子流形 [J].數(shù)學雜志,2013,33(6): 1133-1144.(HU Youjing,JI Yongqiang,WANG Wenshuai.The Compact Submanifold in a Locally-Symmetric Space [J].Journal of Mathematics,2013,33(6): 1133-1144.)
[8]紀永強.子流形幾何 [M].北京: 科學出版社,2004.(JI Yongqiang.Geometry of Submanifolds [M].Beijing: Science Press,2004.)
[9]白正國,沈一兵,水乃翔,等.黎曼幾何初步 [M].北京: 高等教育出版社,2004.(BAI Zhengguo,SHEN Yibing,SHUI Naixiang,et al.An Introduction to Riemann Geometry [M].Beijing: Higher Education Press,2004.)
[10]YAU Shingtung.Submanifolds with Constant Mean Curvature Ⅰ [J].American Journal of Mathmatics,1974,96(2): 346-366.
[11]YAU Shingtung.Submanifolds with Constant Mean Curvature Ⅱ [J].American Journal of Mathmatics,1975,97(1): 76-100.
[12]Erbacher J.Reduction of the Codimension of an Isometric Immersion [J].Journal of Differential Geometry,1971,5(3/4): 333-340.
(責任編輯: 趙立芹)
TheCompactTimelikeSubmanifoldsinthedeSitterSpace
HU Youjing1,JI Yongqiang2
(1.CollegeofMathematicsandComputerScience,NingxiaUniversity,Yinchuan750021,China;
2.CollegeofScience,HuzhouTeachersCollege,Huzhou313000,ZhejiangProvince,China)
Based on the moving frams,the Ricci identity and the Laplacian about the squared norm of the second fundamental form for the timelike submanifolds in de Sitter space were calculated,and some necessary conditions for the compact maximal timelike submanifold in de Sitter space were given.
de Sitter space; Ricci identity; timelike; totally geodesic
2013-12-05.
胡有婧(1978—),女,漢族,碩士,講師,從事子流形幾何的研究,E-mail: hyq@nxu.edu.cn.
國家自然科學基金青年基金(批準號: 11201253)和國家自然科學基金地區(qū)基金(批準號: 11261042).
O186.12
A
1671-5489(2014)05-0895-06