亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Uniqueness of the Best Approximation in a New Haar Type Space*1

        2014-09-06 03:08:50方東輝
        關(guān)鍵詞:吉首向陽廣義

        UniquenessoftheBestApproximationinaNewHaarTypeSpace*1

        The problem of the best approximation with generalized restrictions is considered in this paper.By introducing a new Haar type space,the uniqueness and strong uniqueness of the best approximation on this Haar type space are given.

        best approximation;Haar type space;uniqueness;strong uniqueness

        1 Introduction

        The uniqueness and strong uniqueness of the best approximation have received much attention (ref. [1-9]).In ref. [1],Chalmers and Taylor introduced a general method of investigating uniqueness of best approximations with constraints,which provided a unified approach to the problem.However,this approach essentially provided only sufficient conditions for uniqueness of best constrained approximation.In ref. [4],the authors introduced a new Haar space,namely,LHaar space,and established a Haar type theory for constrained approximation,and gave some necessary and sufficient conditions for uniqueness and strong uniqueness.Note thatIHaar is not Haar as shown in ref. [9].Thus,the authors in ref. [9] introduced another Haar type space and studied the characterization for this Haar type space.

        Inspired by those works mentioned above,we continue to study the problem of the best approximation with generalized restrictions.By introducing a new Haar type space defined in ref. [9],we establish the uniqueness and strong uniqueness of the best approximation.

        2 L* Haar Spaces

        (1)

        Definition2 It is said thatp∈Unvanishes onAorA*ifp(xi)=0(1≤i≤s) and (Lp)(yj)=0(1≤j≤r).

        Definition3UnisL(resp.L*) Haar if nop∈Un{0} vanishes on a nondegenerateL(resp.L*) extremal set forUn.

        Letf∈C[a,b] andp∈Un(l,u), we denote

        The following definition was introduced in ref. [1].

        Definition4 A functionf∈C[a,b]Un(l,u) is said to be admissible if inf{‖f-q‖:q∈Un(l,u)}>max{l(y)-f(x),f(x)-u(y)} holds for eachx∈[a,b] andy∈Kwithex=Ly.

        LetCa[a,b] denote the set of all admissible functions.In particular,ifl(y)≤f(x)≤u(y) for allx∈[a,b] andy∈K,thenf∈Ca[a,b].Letf∈C[a,b],p∈Un(l,u),denoteΓ(f,p)=(EX+ (p)∩LK- (p))∪ (EX-(p)∩LK+ (p)).Then we have the following proposition.

        Proposition1 The following statements are equivalent:

        (ⅰ)f∈Ca[a,b];

        (ⅱ) For everyp∈Un(l,u),ifx∈X(p) andy∈K(p) withex=Ly,thenσ1(f,p,x)=σ2(f,p,y);

        (ⅲ) For eachp∈Un(l,u),we haveΓ(f,p)=?;

        (ⅳ) There existsp0∈Un(l,u) such thatΓ(f,p0)=?;

        (ⅴ) There existsp0∈PUn(l,u)(f) such thatΓ(f,p0)=?.

        Proof(ⅰ)?(ⅱ).Suppose that (ⅰ) holds and that there existp∈Un(l,u),x∈X(p) andy∈K(p) withex=Ly,butσ1(f,p,x) ≠σ2(f,p,y).Without loss of generality,we assume thatσ1(f,p,x)=-1,σ2(f,p,y)=1,that is,f(x)-p(x)=-‖f-p‖ andLp(y)=l(y).Sincefis admissible,it follows that

        max{l(y)-f(x),f(x)-u(y)}<‖f-p‖=ex(p)-f(x)=Ly(p)-f(x)=l(y)-f(x),

        which is a contradiction.

        (ⅱ)?(ⅲ).Suppose that (ⅱ) holds and that there existsp∈Un(l,u) such thatΓ(f,p)≠ ?.Without loss of generality,we assume thatEX+(p)∩LK-(p)≠ ?,then there existx∈X+(p) andy∈K-(p) such thatex=Ly.But this implies thatσ1(f,p,x)=1 andσ2(f,p,y)=-1 ,which contradicts with (ⅱ).

        (ⅲ)?(ⅳ)?(ⅴ) are trivial.

        (ⅴ)?(ⅰ).Suppose that (ⅴ) holds and thatfis not admissible.Then for everyp∈PUn(l,u)(f),x∈[a,b] andy∈Kwithex=Ly,one has ‖f-p0‖≤max{l(y)-f(x),f(x)-u(y)}.Note that

        f(x)-u(y)≤f(x)-Lp0(y)=f(x)-p0(x)≤‖f-p0‖

        (2)

        and

        l(y)-f(x) ≤Lp0(y)-f(x)=p0(x)-f(x) ≤‖f-p0‖.

        Then

        ‖f-p0‖≤max{l(y)-f(x),f(x)-u(y)}≤‖f-p0‖.

        (3)

        Thus,the equalities in (3) must hold.

        (a) Iff(x)-u(y)=‖f-p0‖,then,by (2),we haveu(y)=Lp0(y) andf(x)-p0(x)=‖f-p0‖.This meansx∈X+(p0) andy∈K-(p0).Hence,EX+(p0)∩LK-(p0)≠ ?,contradicting with (ⅴ).

        (b) Similarly,ifl(y)-f(x)=‖f-p0‖,then we haveEX-(p0)∩LK+(p0)≠ ?,contradicting with (ⅴ).The proof is complete.

        Definition5 Letf∈C[a,b] andp∈Un,theL*extremal setA*is said to be anL*extremal set with respect to (f,p) (denote byA*(f,p)),ifxi,yj,ci,djin (1) satisfy the following conditions:

        (ⅰ)xi∈X(p),yj∈K(p);

        (ⅱ) sgnci=σ1(f,p,xi),i=1,2,...,s;

        (ⅲ) sgndj=σ2(f,p,yj),j=1,2,...,r.

        Proposition2 Letf∈Ca[a,b],p0∈PUn(l,u)(f).IfUnis anL*Haar space,then there exists a nondegenerateL*extremal setA*(f,p0) forUn.

        ProofLetf∈Ca[a,b],p0∈PUn(l,u)(f).Then,by ref. [9,theorem 3.1],there exist points {x1,...,xs}?X(p0),{y1,...,yr}?K(p0)(s+r≤n+1) andc1,...,cs,d1,...,dr≠ 0 such that

        (4)

        3 Uniqueness of the Best Approximation

        Theorem1 LetUnbe anL*Haar space,then for everyf∈Ca[a,b] andl,u∈C(K) withl(t)

        (5)

        Below we show that

        (6)

        (7)

        In order to establish some results on the strong uniqueness of the best approximation fromUn(l,u),we first introduce the concept of the strong uniqueness of orderγ>0;see,for example,ref. [4,8].

        Definition6 Suppose thatf∈C[a,b],p0∈PUn(l,u)(f).It is said thatp0is strongly unique of orderγ>0 if there exists a constantα=α(f) such that ‖f-p‖γ≥‖f-p0‖γ+α‖p-p0‖γ,p∈Un(l,u).In the case whenγ=1 we simply say thatp0is strongly unique.

        Theorem2 LetUnbe anL*Haar space.Then for everyf∈Ca[a,b] andl,u∈C(K) withl(t)

        Letp1∈Un(l,u) be such that ‖f-p1‖=‖f-p0‖+with 1>>0.Since (f-p0)(xi)= (sgnci)‖f-p0‖,i=1,...,s,it follows that

        sgnci(p0-p1)(xi)= sgnci(f-p1)(xi)-sgnci(f-p0)(xi)≤

        ‖f-p1‖-‖f-p0‖=.

        (8)

        Furthermore,y1,...,yl∈K-(p0),yl+1,...,yr∈K+(p0) yield

        L(p0-p1)(yj)≥0(j=1,...,l),L(p0-p1)(yj)≤0 (j=l+1,...,r).

        (9)

        Letp*=p0-p1∈Un,by (8)

        (10)

        Moreover,(9) yields thatdjLp*(yj)≤0 (j=1,...,r).Taking also into account (10) we have

        |Lp*(yj)|≤M1j=1,...,r,

        (11)

        This together with (8) implies

        |p*(xi)|≤M2i=1,...,s,

        (12)

        By the equivalence of norms in finite dimensional spaces,there exists constantM3>0 such that

        ‖p0-p1‖=‖p*‖≤M3N(p*)≤c=c(‖f-p1‖-‖f-p0‖),

        [1] CHALMERS B L,TAYLOR G D.A Unified Theory of Strong Uniqueness in Uniform Approximation with Constraints[J].J. Approx.Theory,1983(37):29-43.

        [2] CULBERTSON J.On Approximation by Monotone Polynomials in the Chebyshev Norm Characterization and Uniqueness[D].Master’s Thesis University of Maryland,1968.

        [3] FANG Donghui,LI Chong,YANG Wenshan.Strong CHIP and Characterization of the Best Approximation with Generalized Restrictions[J].Acta Mathematica Sinica,2004,47(6):1 115-1 123.(in Chinese)

        [5] SHI Yingguang.The Limits of a Chebyshev Type Theory of Restricted Range Approximation[J].J. Approx. Theory,1988,53:41-53.

        [6] SINGER I.Best Approximation by Elements of Linear Subspaces in Linear Spaces[M].New York:Spring Verleg,1974.

        [7] RICE J R.The Approximation Functions[M].London:Addison Wesley,1964.

        [8] XU Shiying,LI Chong,YANG Wenshan.The Theory of Nonlinear Approximation in Banach Spaces[M].Beijing:Science Press,1997.(in Chinese)

        [9] WANG Xianyun,FANG Donghui.Characterizations forLHaar Space[J].Journal of Jishou University:Natural Sciences Edition,2005(1):12-14.(in Chinese)

        (責(zé)任編輯 向陽潔)

        FANG Donghui

        (College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)

        一類新的Haar子空間中最佳逼近的唯一性

        方東輝

        (吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 吉首 416000)

        研究了廣義限制域最佳逼近問題.引入一個(gè)L*Haar子空間的概念,建立了該Haar子空間中最佳逼近的唯一性和強(qiáng)唯一性.

        最佳逼近;L*Haar子空間;唯一性;強(qiáng)唯一性

        O174.41

        A

        1007-2985(2014)04-0008-05

        date:2014-05-01

        Supported by National Natural Science Foundation of China (11101186);Scientific Research Fund of Hunan Provincial Education Department (13B095)

        Biography:FANG Donghui(1979-),male,was born in Dongkou County,Hunan Province,doctor,associate professor at Jishou University,research area are nonsmooth analysis and nonlinear optimization.

        O174.41DocumentcodeA

        10.3969/j.issn.1007-2985.2014.04.002

        猜你喜歡
        吉首向陽廣義
        吉首大學(xué)美術(shù)學(xué)院作品精選
        聲屏世界(2022年15期)2022-11-08 10:58:04
        Rn中的廣義逆Bonnesen型不等式
        閱讀(低年級)(2021年2期)2021-04-08 02:16:27
        湘粵專家學(xué)者相聚吉首研討聲樂套曲《四季如歌》
        字海拾“貝”
        吉首美術(shù)館
        從廣義心腎不交論治慢性心力衰竭
        Sunny Side Up 向陽而生
        紅向陽
        有限群的廣義交換度
        伊人色综合九久久天天蜜桃| 人妻中文字幕在线中文字幕| 99无码精品二区在线视频| 亚洲处破女av日韩精品| 无码人妻系列不卡免费视频| 中文字幕乱码琪琪一区| 久草视频在线手机免费看| 97人妻精品一区二区三区| 欧美成人三级一区二区在线观看 | 久久婷婷五月国产色综合| 久久人妻少妇嫩草av蜜桃| 国产精品一卡二卡三卡| 国产一区二区三区18p| 野花香社区在线视频观看播放| 无码精品人妻一区二区三区影院| 亚洲tv精品一区二区三区| 日韩精品视频中文字幕播放| 亚洲熟妇av一区二区三区| aaa级久久久精品无码片| 日本少妇被爽到高潮的免费 | 青青草骚视频在线观看| 天码人妻一区二区三区| 国产高清吃奶成免费视频网站 | 少妇又色又爽又高潮在线看| 亚洲精品久久一区二区三区777 | 亚洲欧美另类日本久久影院| 久久久亚洲成年中文字幕| 中国美女a级毛片| 欧美亚洲国产精品久久高清| 久草视频华人在线观看| 午夜福利影院成人影院| 国产免费av片在线播放| 女女同性黄网在线观看 | 日韩无码尤物视频| 按摩师玩弄少妇到高潮av| 欧美性色黄大片手机版| 国产999视频| 三个黑人插一个女的视频| 亚洲精品第一国产综合精品| 精品乱码一区二区三区四区| 中文字幕国内一区二区|