亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Uniqueness of the Best Approximation in a New Haar Type Space*1

        2014-09-06 03:08:50方東輝
        關(guān)鍵詞:吉首向陽廣義

        UniquenessoftheBestApproximationinaNewHaarTypeSpace*1

        The problem of the best approximation with generalized restrictions is considered in this paper.By introducing a new Haar type space,the uniqueness and strong uniqueness of the best approximation on this Haar type space are given.

        best approximation;Haar type space;uniqueness;strong uniqueness

        1 Introduction

        The uniqueness and strong uniqueness of the best approximation have received much attention (ref. [1-9]).In ref. [1],Chalmers and Taylor introduced a general method of investigating uniqueness of best approximations with constraints,which provided a unified approach to the problem.However,this approach essentially provided only sufficient conditions for uniqueness of best constrained approximation.In ref. [4],the authors introduced a new Haar space,namely,LHaar space,and established a Haar type theory for constrained approximation,and gave some necessary and sufficient conditions for uniqueness and strong uniqueness.Note thatIHaar is not Haar as shown in ref. [9].Thus,the authors in ref. [9] introduced another Haar type space and studied the characterization for this Haar type space.

        Inspired by those works mentioned above,we continue to study the problem of the best approximation with generalized restrictions.By introducing a new Haar type space defined in ref. [9],we establish the uniqueness and strong uniqueness of the best approximation.

        2 L* Haar Spaces

        (1)

        Definition2 It is said thatp∈Unvanishes onAorA*ifp(xi)=0(1≤i≤s) and (Lp)(yj)=0(1≤j≤r).

        Definition3UnisL(resp.L*) Haar if nop∈Un{0} vanishes on a nondegenerateL(resp.L*) extremal set forUn.

        Letf∈C[a,b] andp∈Un(l,u), we denote

        The following definition was introduced in ref. [1].

        Definition4 A functionf∈C[a,b]Un(l,u) is said to be admissible if inf{‖f-q‖:q∈Un(l,u)}>max{l(y)-f(x),f(x)-u(y)} holds for eachx∈[a,b] andy∈Kwithex=Ly.

        LetCa[a,b] denote the set of all admissible functions.In particular,ifl(y)≤f(x)≤u(y) for allx∈[a,b] andy∈K,thenf∈Ca[a,b].Letf∈C[a,b],p∈Un(l,u),denoteΓ(f,p)=(EX+ (p)∩LK- (p))∪ (EX-(p)∩LK+ (p)).Then we have the following proposition.

        Proposition1 The following statements are equivalent:

        (ⅰ)f∈Ca[a,b];

        (ⅱ) For everyp∈Un(l,u),ifx∈X(p) andy∈K(p) withex=Ly,thenσ1(f,p,x)=σ2(f,p,y);

        (ⅲ) For eachp∈Un(l,u),we haveΓ(f,p)=?;

        (ⅳ) There existsp0∈Un(l,u) such thatΓ(f,p0)=?;

        (ⅴ) There existsp0∈PUn(l,u)(f) such thatΓ(f,p0)=?.

        Proof(ⅰ)?(ⅱ).Suppose that (ⅰ) holds and that there existp∈Un(l,u),x∈X(p) andy∈K(p) withex=Ly,butσ1(f,p,x) ≠σ2(f,p,y).Without loss of generality,we assume thatσ1(f,p,x)=-1,σ2(f,p,y)=1,that is,f(x)-p(x)=-‖f-p‖ andLp(y)=l(y).Sincefis admissible,it follows that

        max{l(y)-f(x),f(x)-u(y)}<‖f-p‖=ex(p)-f(x)=Ly(p)-f(x)=l(y)-f(x),

        which is a contradiction.

        (ⅱ)?(ⅲ).Suppose that (ⅱ) holds and that there existsp∈Un(l,u) such thatΓ(f,p)≠ ?.Without loss of generality,we assume thatEX+(p)∩LK-(p)≠ ?,then there existx∈X+(p) andy∈K-(p) such thatex=Ly.But this implies thatσ1(f,p,x)=1 andσ2(f,p,y)=-1 ,which contradicts with (ⅱ).

        (ⅲ)?(ⅳ)?(ⅴ) are trivial.

        (ⅴ)?(ⅰ).Suppose that (ⅴ) holds and thatfis not admissible.Then for everyp∈PUn(l,u)(f),x∈[a,b] andy∈Kwithex=Ly,one has ‖f-p0‖≤max{l(y)-f(x),f(x)-u(y)}.Note that

        f(x)-u(y)≤f(x)-Lp0(y)=f(x)-p0(x)≤‖f-p0‖

        (2)

        and

        l(y)-f(x) ≤Lp0(y)-f(x)=p0(x)-f(x) ≤‖f-p0‖.

        Then

        ‖f-p0‖≤max{l(y)-f(x),f(x)-u(y)}≤‖f-p0‖.

        (3)

        Thus,the equalities in (3) must hold.

        (a) Iff(x)-u(y)=‖f-p0‖,then,by (2),we haveu(y)=Lp0(y) andf(x)-p0(x)=‖f-p0‖.This meansx∈X+(p0) andy∈K-(p0).Hence,EX+(p0)∩LK-(p0)≠ ?,contradicting with (ⅴ).

        (b) Similarly,ifl(y)-f(x)=‖f-p0‖,then we haveEX-(p0)∩LK+(p0)≠ ?,contradicting with (ⅴ).The proof is complete.

        Definition5 Letf∈C[a,b] andp∈Un,theL*extremal setA*is said to be anL*extremal set with respect to (f,p) (denote byA*(f,p)),ifxi,yj,ci,djin (1) satisfy the following conditions:

        (ⅰ)xi∈X(p),yj∈K(p);

        (ⅱ) sgnci=σ1(f,p,xi),i=1,2,...,s;

        (ⅲ) sgndj=σ2(f,p,yj),j=1,2,...,r.

        Proposition2 Letf∈Ca[a,b],p0∈PUn(l,u)(f).IfUnis anL*Haar space,then there exists a nondegenerateL*extremal setA*(f,p0) forUn.

        ProofLetf∈Ca[a,b],p0∈PUn(l,u)(f).Then,by ref. [9,theorem 3.1],there exist points {x1,...,xs}?X(p0),{y1,...,yr}?K(p0)(s+r≤n+1) andc1,...,cs,d1,...,dr≠ 0 such that

        (4)

        3 Uniqueness of the Best Approximation

        Theorem1 LetUnbe anL*Haar space,then for everyf∈Ca[a,b] andl,u∈C(K) withl(t)

        (5)

        Below we show that

        (6)

        (7)

        In order to establish some results on the strong uniqueness of the best approximation fromUn(l,u),we first introduce the concept of the strong uniqueness of orderγ>0;see,for example,ref. [4,8].

        Definition6 Suppose thatf∈C[a,b],p0∈PUn(l,u)(f).It is said thatp0is strongly unique of orderγ>0 if there exists a constantα=α(f) such that ‖f-p‖γ≥‖f-p0‖γ+α‖p-p0‖γ,p∈Un(l,u).In the case whenγ=1 we simply say thatp0is strongly unique.

        Theorem2 LetUnbe anL*Haar space.Then for everyf∈Ca[a,b] andl,u∈C(K) withl(t)

        Letp1∈Un(l,u) be such that ‖f-p1‖=‖f-p0‖+with 1>>0.Since (f-p0)(xi)= (sgnci)‖f-p0‖,i=1,...,s,it follows that

        sgnci(p0-p1)(xi)= sgnci(f-p1)(xi)-sgnci(f-p0)(xi)≤

        ‖f-p1‖-‖f-p0‖=.

        (8)

        Furthermore,y1,...,yl∈K-(p0),yl+1,...,yr∈K+(p0) yield

        L(p0-p1)(yj)≥0(j=1,...,l),L(p0-p1)(yj)≤0 (j=l+1,...,r).

        (9)

        Letp*=p0-p1∈Un,by (8)

        (10)

        Moreover,(9) yields thatdjLp*(yj)≤0 (j=1,...,r).Taking also into account (10) we have

        |Lp*(yj)|≤M1j=1,...,r,

        (11)

        This together with (8) implies

        |p*(xi)|≤M2i=1,...,s,

        (12)

        By the equivalence of norms in finite dimensional spaces,there exists constantM3>0 such that

        ‖p0-p1‖=‖p*‖≤M3N(p*)≤c=c(‖f-p1‖-‖f-p0‖),

        [1] CHALMERS B L,TAYLOR G D.A Unified Theory of Strong Uniqueness in Uniform Approximation with Constraints[J].J. Approx.Theory,1983(37):29-43.

        [2] CULBERTSON J.On Approximation by Monotone Polynomials in the Chebyshev Norm Characterization and Uniqueness[D].Master’s Thesis University of Maryland,1968.

        [3] FANG Donghui,LI Chong,YANG Wenshan.Strong CHIP and Characterization of the Best Approximation with Generalized Restrictions[J].Acta Mathematica Sinica,2004,47(6):1 115-1 123.(in Chinese)

        [5] SHI Yingguang.The Limits of a Chebyshev Type Theory of Restricted Range Approximation[J].J. Approx. Theory,1988,53:41-53.

        [6] SINGER I.Best Approximation by Elements of Linear Subspaces in Linear Spaces[M].New York:Spring Verleg,1974.

        [7] RICE J R.The Approximation Functions[M].London:Addison Wesley,1964.

        [8] XU Shiying,LI Chong,YANG Wenshan.The Theory of Nonlinear Approximation in Banach Spaces[M].Beijing:Science Press,1997.(in Chinese)

        [9] WANG Xianyun,FANG Donghui.Characterizations forLHaar Space[J].Journal of Jishou University:Natural Sciences Edition,2005(1):12-14.(in Chinese)

        (責(zé)任編輯 向陽潔)

        FANG Donghui

        (College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)

        一類新的Haar子空間中最佳逼近的唯一性

        方東輝

        (吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 吉首 416000)

        研究了廣義限制域最佳逼近問題.引入一個(gè)L*Haar子空間的概念,建立了該Haar子空間中最佳逼近的唯一性和強(qiáng)唯一性.

        最佳逼近;L*Haar子空間;唯一性;強(qiáng)唯一性

        O174.41

        A

        1007-2985(2014)04-0008-05

        date:2014-05-01

        Supported by National Natural Science Foundation of China (11101186);Scientific Research Fund of Hunan Provincial Education Department (13B095)

        Biography:FANG Donghui(1979-),male,was born in Dongkou County,Hunan Province,doctor,associate professor at Jishou University,research area are nonsmooth analysis and nonlinear optimization.

        O174.41DocumentcodeA

        10.3969/j.issn.1007-2985.2014.04.002

        猜你喜歡
        吉首向陽廣義
        吉首大學(xué)美術(shù)學(xué)院作品精選
        聲屏世界(2022年15期)2022-11-08 10:58:04
        Rn中的廣義逆Bonnesen型不等式
        閱讀(低年級)(2021年2期)2021-04-08 02:16:27
        湘粵專家學(xué)者相聚吉首研討聲樂套曲《四季如歌》
        字海拾“貝”
        吉首美術(shù)館
        從廣義心腎不交論治慢性心力衰竭
        Sunny Side Up 向陽而生
        紅向陽
        有限群的廣義交換度
        区久久aaa片69亚洲| 日本成人午夜一区二区三区| 久久久精品毛片免费观看| 欧美成人猛片aaaaaaa| 日本高清视频www| 男女一级毛片免费视频看| 国产一级做a爱视频在线| 国产一区二区视频在线看| 日本一区二区三区高清在线视频| 波多野42部无码喷潮在线| 人与嘼交av免费| 亚洲AV秘 无码一区二区三区 | 精品人妻一区二区三区在线观看| 久久亚洲av午夜福利精品一区| 中文字幕人妻熟女人妻洋洋| 在线亚洲+欧美+日本专区| 91亚洲国产成人久久精品网站| 国模91九色精品二三四| 亚洲精品无码av人在线观看| 中文字幕无码不卡一区二区三区| 亚洲欧美日韩精品久久亚洲区色播| 四虎在线中文字幕一区| 亚洲综合av一区二区三区蜜桃| 色婷婷综合久久久久中文字幕| 亚洲一区二区三区偷拍女厕| 日本变态网址中国字幕| 国产不卡在线观看视频| 疯狂做受xxxx高潮视频免费| 亚洲国产精品久久久久秋霞影院| 日本精品视频一视频高清| 亚洲免费精品一区二区| 老太婆性杂交视频| 精品国模一区二区三区| 白丝美女被狂躁免费视频网站| 国产美女一区三区在线观看| 日本伊人精品一区二区三区| 少妇性l交大片| 日本国产一区二区三区在线观看| 国产精品高清视亚洲一区二区| 无码喷潮a片无码高潮| 99久久er这里只有精品18 |