亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        溴氰蟲酰胺及其代謝物在辣椒和土壤中的殘留降解研究

        2014-09-02 21:19:11何紅梅等
        分析化學(xué) 2014年8期
        關(guān)鍵詞:半衰期酰胺乙腈

        何紅梅等

        摘要建立了超高效液相色譜串聯(lián)質(zhì)譜法(UPLCMS/MS)測(cè)定辣椒和土壤中溴氰蟲酰胺及其代謝物(J9Z38)殘留量的方法,研究了溴氰蟲酰胺和J9Z38在辣椒和土壤上的降解特性。樣品經(jīng)乙腈提取后用C18固相萃取柱凈化,采用梯度洗脫程序、BEH C18色譜分離柱、應(yīng)用UPLCMS/MS正離子掃描測(cè)定溴氰蟲酰胺和J9Z38。進(jìn)行了添加濃度為0.01、0.10 和1.00 mg/kg的回收實(shí)驗(yàn),溴氰蟲酰胺和J9Z38在辣椒和土壤中的日內(nèi)平均回收率為88.6%~105.7%,日內(nèi)相對(duì)標(biāo)準(zhǔn)偏差為3.8%~15.1%;日間平均回收率為91.4%~105.3%

        1引言

        溴氰蟲酰胺是杜邦公司繼氯蟲苯甲酰胺之后成功開發(fā)的第二代魚尼丁受體激活劑類高效、低毒的二酰胺類殺蟲劑,大鼠急性經(jīng)口LD50>5000 mg/kg\[1\],可有效防治鱗翅目、半翅目和鞘翅目等昆蟲\[2~5\],在田間使用時(shí)主要降解產(chǎn)物為J9Z38,結(jié)構(gòu)式見圖1\[6,7\]。溴氰蟲酰胺可分散油懸浮劑已在我國取得登記,主要用于防治小白菜、豇豆、大蔥、西瓜、黃瓜、番茄和棉花上的害蟲,但是,中國、歐盟、美國等都尚未制定溴氰蟲酰胺和J9Z38的最大殘留限量值(MRL)。

        目前,有關(guān)溴氰蟲酰胺及其代謝物的殘留降解的報(bào)道有: 溴氰蟲酰胺在黃瓜、西紅柿[6]、小白菜[8]、土壤和蔥[9]上的降解動(dòng)態(tài); Hu等\[10\]報(bào)道了溴氰蟲酰胺在西瓜和土壤上的殘留降解動(dòng)態(tài);Zhang等\[7\]報(bào)道了稻稈、稻田水中溴氰蟲酰胺降解動(dòng)態(tài);Sergio等\[11\]報(bào)道了質(zhì)譜法篩選檸檬、山核桃、大豆油和玉米粉中溴氰蟲酰胺;Schwarz等\[12\]報(bào)道了液相色譜質(zhì)譜法檢測(cè)生菜、柑桔、小麥和玉米中的溴氰蟲酰胺;其余是關(guān)于溴氰蟲酰胺的合成和應(yīng)用研究進(jìn)展的報(bào)道\[13~17\],未見關(guān)于溴氰蟲酰胺和J9Z38在辣椒上的殘留方法和降解報(bào)道。本研究建立了超高效液相色譜串聯(lián)質(zhì)譜法檢測(cè)辣椒和土壤中溴氰蟲酰胺和J9Z38殘留量的方法,首次進(jìn)行溴氰蟲酰胺及其代謝物在辣椒上的降解研究,揭示了藥物在辣椒上的降解特性,也為此藥物檢測(cè)提供了參考方法。

        2實(shí)驗(yàn)部分

        2.1儀器與試劑

        Waters ACQUITY UPLC 和 Xevo TQ MS(美國Waters公司)、固相萃取儀(美國Supelco公司)、YP402N電子天平(上海精密科學(xué)儀器有限公司)、R201旋轉(zhuǎn)蒸發(fā)器(上海申勝生物技術(shù)有限公司)、循環(huán)水式多用真空泵(杭州大衛(wèi)科教儀器有限公司)、HH4 恒溫水浴鍋和SHZ82型氣浴恒溫振蕩器(江蘇金壇億通電子有限公司)。

        乙腈和甲醇(色譜純,美國Fisher公司)、甲酸(色譜純,Roe Scientific INC.)、純凈水(娃哈哈公司)、酸性/中性/堿性氧化鋁(75~150 μm,層析用,上海五四化學(xué)試劑廠)、弗羅里硅土(165~245 μm,農(nóng)殘級(jí),振翔公司)、HLB固相萃取小柱(60 mg,美國Waters公司)、玻璃層析柱(0.1 cm × 25 cm)。溴氰蟲酰胺、J9Z38標(biāo)準(zhǔn)品由美國杜邦公司提供。其它試劑均為分析純。[TS(]圖1溴氰蟲酰胺及其代謝物J9Z38的結(jié)構(gòu)式3結(jié)果與討論

        3.1色譜與質(zhì)譜條件優(yōu)化

        為了獲得藥物較好的保留、分離和響應(yīng),本實(shí)驗(yàn)采用了梯度洗脫程序,比較了流動(dòng)相中水相為純水(A)、 0.1%甲酸(B)、 5 mmol/L醋酸銨(C)和0.1%甲酸5 mmol/L醋酸銨溶液(D)時(shí)藥物的響應(yīng),結(jié)果見圖2a,當(dāng)流動(dòng)相水相為B時(shí)J9Z38響應(yīng)最好,而流動(dòng)相水相為C時(shí)溴氰蟲酰胺響應(yīng)最好,在“犧牲”溴氰蟲酰胺部分響應(yīng)的基礎(chǔ)上選擇了水相為B的流動(dòng)相。

        參考報(bào)道文獻(xiàn),確定掃描方式、 母離子和子離子后,在0.5~3.5 kV之間優(yōu)化了毛細(xì)管電壓、 在0~70 V之間優(yōu)化了錐孔電壓、 在0~60 V之間優(yōu)化了碰撞能量。最終確定毛細(xì)管電壓為3.0 kV;溴氰蟲酰胺的錐孔電壓為20 V,J9Z38的的錐孔電壓為50 V;離子對(duì)的碰撞能量優(yōu)化見圖2b,溴氰蟲酰胺的定性離子對(duì)為m/z 475/444,定量離子對(duì)為m/z 475/286,碰撞能量分別為15和20 V;J9Z38的定性離子對(duì)為m/z 457/299,定量離子對(duì)為m/z 457/188,碰撞能量均為35 eV。

        3.2凈化方法的確定

        考察了藥物在氧化鋁和弗羅里硅土柱上的保留情況,用10%乙酸乙酯石油醚溶液15 mL 上樣,依次用20 mL不同比例的乙酸乙酯石油醚溶液、10 mL乙腈和10 mL甲醇淋洗,結(jié)果見表1。從表1可見,溴氰蟲酰胺和J9Z38在氧化鋁和弗羅里硅土柱上保留差異較大,故又考察了藥物在HLB固相萃取柱上的保留情況,用15%甲醇溶液10 mL上樣,依次用3 mL水、3 mL 40%甲醇、2 mL乙腈洗脫,結(jié)果表明,只有乙腈洗脫出藥物,回收率均為100%,故前處理中采用HLB小柱凈化。

        3.4準(zhǔn)確度和精確度

        在空白土壤和辣椒樣品中進(jìn)行了0.01, 0.1和1.0 mg/kg添加回收實(shí)驗(yàn),每個(gè)濃度重復(fù)6次,按前處理方法提取、凈化。土壤和辣椒中溴氰蟲酰胺和J9Z38的日內(nèi)平均回收率為88.6%~105.7%,日內(nèi)相對(duì)標(biāo)準(zhǔn)偏差為3.8%~15.1%(表2)。在辣椒和土壤中選取0.01, 0.1和1.0 mg/kg添加濃度,每天做6個(gè)平行, 連續(xù)做3d,計(jì)算得溴氰蟲酰胺和J9Z38的日間平均回收率為91.4%~105.3%,日間相對(duì)標(biāo)準(zhǔn)偏差為4.9%~12.3%,結(jié)果見表3??梢姡痉椒M足殘留分析要求,為該類藥物檢測(cè)提供了參考方法。3.5溴氰蟲酰胺和J9Z38在辣椒和土壤中的殘留降解研究

        溴氰蟲酰胺和J9Z38在辣椒和土壤中的殘留降解方程、相關(guān)系數(shù)、降解半衰期見表4,降解曲線圖見圖4。2011和2012年溴氰蟲酰胺在辣椒中降解半衰期分別為9.2和11.2 d,在土壤中降解半衰期分別為9.2和20.8 d;J9Z38在辣椒中殘留量低于定量限,2011年J9Z38在土壤中的殘留量為0.004~0.016 mg/kg,但無明顯降解規(guī)律,2012年J9Z38在土壤中的降解半衰期為9.4 d。表5列出了35 d實(shí)驗(yàn)期間內(nèi)的日均最低和最高溫度、日均降水量和日均日照時(shí)間。從表5可見,2011年的日均降水量遠(yuǎn)多于2012年,這可能是導(dǎo)致溴氰蟲酰胺在辣椒和土壤中降解2011年比2012年快的原因。溴氰蟲酰胺在辣椒中降解半衰期比Dong等\[6\]報(bào)道黃瓜(2.2 d)和西紅柿(2.8 d), Sun等\[8\]報(bào)道小白菜(2.9~6.4 d), 趙坤霞等\[9\]報(bào)道蔥(1.3~2.5 d)的降解半衰期長;溴氰蟲酰胺在土壤中降解半衰期與Dong等\[6\]報(bào)道土壤(9.5 d)和Sun等\[7\]報(bào)道土壤(8.7~18.2 d)相似,比趙等\[16\]報(bào)道在蔥中降解半衰期(2.6~4.3 d)長,這些可能與蔬菜的品種、試驗(yàn)地的土壤、氣候條件、施藥、采樣等因素有關(guān)。

        7Zhang P, Hu X, Zhao H, Wu M, He H, Zhang C, Tang T, Ping L, Li Z. Chemosphere, 2013, 93: 190-195

        8Sun J P, Feng N, Tang C F, Qin D M. Bull. Environ. Contam. Toxicol., 2012, 89(4): 845-852

        9ZHAO KunXia, SUN JianPeng, QIN DongMei, TANG CongFeng. Environ. Sci. Technol., 2014, 37(2): 89-95

        趙坤霞, 孫建鵬, 秦冬梅, 湯叢峰. 環(huán)境科學(xué)與技術(shù), 2014, 37(2): 89-95

        10Hu X Q, Zhang C P, Zhu Y H, Wu M, Cai X M, Ping L F, Li Z . J. AOAC. Int., 2013, 96(6): 1448-1452, 1455

        11Sergio C N, James J S, Anne M P, Joseph P M, John H M. J. Agric. Food Chem., 2011, 59(14): 7557-7568

        12Schwarz T, Snow T A, Santee C J, Mulligan C C, Class T, Wadsley M P, Nanita S C. J. Agric. Food Chem., 2011, 59: 814-821

        13ZHENG XueSong, LAI TianCai, SHI LiBo, LU WeiPing. Agrochem., 2012, 51(8): 554-557, 580

        鄭雪松, 賴添財(cái), 時(shí)立波, 盧偉平. 農(nóng)藥, 2012, 51(8): 554-557, 580

        14YANG GuiQiu, ZHANG Yu, YANG HuiBing, WU HongFei, YU HaiBo, LI Bin. Modern Agrochem., 2012, 11(1): 22-24, 29

        楊桂秋, 張 宇, 楊輝斌, 吳鴻飛, 于海波, 李 斌. 現(xiàn)代農(nóng)藥, 2012, 11(1): 22-24, 29

        15LIU Hao, OUYANG GuiPing, GE ChengLin, HAN XinZheng, ZHANG YongLu, ZHOU BingSen. Modern Agrochem., 2012, 11(2): 1-7

        劉 浩, 歐陽貴平, 葛成林, 韓新正, 張永露, 周炳森. 現(xiàn)代農(nóng)藥, 2012, 11(2): 1-7

        16HUANG YaoLiang, WANG XiangLin, XU Hong, CAO ShunGang. J. Zhejiang Agric. Sci., 2013, 5: 571-572

        黃耀亮, 王祥林, 許 洪, 曹舜剛. 浙江農(nóng)業(yè)科學(xué), 2013, 5: 571-572

        17CHAI BaoShan, HE XiaoMin, WANG JunFeng, LI ZhiNian, LIU ChangLing. Agrochem., 2010, 49: 167-169

        柴寶山, 何曉敏, 王軍鋒, 李志念, 劉長令. 農(nóng)藥, 2010, 49(3): 167-169

        AbstractAn analytical method based on ultra performance liquid chromatographytandem mass spectrometry was developed for the determination of cyantraniliprole and its main metabolite J9Z38 residues in pepper and soil. The fate of cyantraniliprole and J9Z38 in pepper and soil was also evaluated. The target compounds were extracted with acetonitrile, cleaned up by C18 cartridge, and further analyzed by gradient ultra performance liquid chromatographytandem mass spectrometry with electrospray ionization in positive mode (ESI+) using a UPLC BEH C18 Column. The method was validated using fortified pepper and soil. Intraday mean recoveries of cyantraniliprole and J9Z38 at three spiked levels (0.01, 0.10 and 1.00 mg/kg) ranged from 88.6% to 105.7% with relative standard deviations of 3.8%-15.1%. Interday mean recoveries of cyantraniliprole and J9Z38 were found between 91.4% and 105.3% with relative standard deviations of 4.9%-12.3% at three spiked levels. Limits of quantification (LOQs) of cyantraniliprole and J9Z38 were 0.1 and 0.2 μg/kg, respectively. Linear calibration functions with correlation coefficients of r>0.9992 were obtained in the concentration range of 2.0-128.0 μg/L. This method was applied to the analysis of cyantraniliprole and J9Z38 residues in real pepper and soil samples selected from field. The results of the residue dynamic experiment showed that the halflife of cyantraniliprole ranged from 9.2 to 11.2 days in pepper and from 9.2 to 20.8 days in soil. While, the residues of J9Z38 in pepper were below LOQ, and the halflife of J9Z38 in soil was 9.4 days. The degradation speed of cyantraniliprole increased with the increase of the precipitation.

        KeywordsCyantraniliprole; J9Z38; Pepper; Residue; Ultra performance liquid chromatographytandem mass spectrometry

        7Zhang P, Hu X, Zhao H, Wu M, He H, Zhang C, Tang T, Ping L, Li Z. Chemosphere, 2013, 93: 190-195

        8Sun J P, Feng N, Tang C F, Qin D M. Bull. Environ. Contam. Toxicol., 2012, 89(4): 845-852

        9ZHAO KunXia, SUN JianPeng, QIN DongMei, TANG CongFeng. Environ. Sci. Technol., 2014, 37(2): 89-95

        趙坤霞, 孫建鵬, 秦冬梅, 湯叢峰. 環(huán)境科學(xué)與技術(shù), 2014, 37(2): 89-95

        10Hu X Q, Zhang C P, Zhu Y H, Wu M, Cai X M, Ping L F, Li Z . J. AOAC. Int., 2013, 96(6): 1448-1452, 1455

        11Sergio C N, James J S, Anne M P, Joseph P M, John H M. J. Agric. Food Chem., 2011, 59(14): 7557-7568

        12Schwarz T, Snow T A, Santee C J, Mulligan C C, Class T, Wadsley M P, Nanita S C. J. Agric. Food Chem., 2011, 59: 814-821

        13ZHENG XueSong, LAI TianCai, SHI LiBo, LU WeiPing. Agrochem., 2012, 51(8): 554-557, 580

        鄭雪松, 賴添財(cái), 時(shí)立波, 盧偉平. 農(nóng)藥, 2012, 51(8): 554-557, 580

        14YANG GuiQiu, ZHANG Yu, YANG HuiBing, WU HongFei, YU HaiBo, LI Bin. Modern Agrochem., 2012, 11(1): 22-24, 29

        楊桂秋, 張 宇, 楊輝斌, 吳鴻飛, 于海波, 李 斌. 現(xiàn)代農(nóng)藥, 2012, 11(1): 22-24, 29

        15LIU Hao, OUYANG GuiPing, GE ChengLin, HAN XinZheng, ZHANG YongLu, ZHOU BingSen. Modern Agrochem., 2012, 11(2): 1-7

        劉 浩, 歐陽貴平, 葛成林, 韓新正, 張永露, 周炳森. 現(xiàn)代農(nóng)藥, 2012, 11(2): 1-7

        16HUANG YaoLiang, WANG XiangLin, XU Hong, CAO ShunGang. J. Zhejiang Agric. Sci., 2013, 5: 571-572

        黃耀亮, 王祥林, 許 洪, 曹舜剛. 浙江農(nóng)業(yè)科學(xué), 2013, 5: 571-572

        17CHAI BaoShan, HE XiaoMin, WANG JunFeng, LI ZhiNian, LIU ChangLing. Agrochem., 2010, 49: 167-169

        柴寶山, 何曉敏, 王軍鋒, 李志念, 劉長令. 農(nóng)藥, 2010, 49(3): 167-169

        AbstractAn analytical method based on ultra performance liquid chromatographytandem mass spectrometry was developed for the determination of cyantraniliprole and its main metabolite J9Z38 residues in pepper and soil. The fate of cyantraniliprole and J9Z38 in pepper and soil was also evaluated. The target compounds were extracted with acetonitrile, cleaned up by C18 cartridge, and further analyzed by gradient ultra performance liquid chromatographytandem mass spectrometry with electrospray ionization in positive mode (ESI+) using a UPLC BEH C18 Column. The method was validated using fortified pepper and soil. Intraday mean recoveries of cyantraniliprole and J9Z38 at three spiked levels (0.01, 0.10 and 1.00 mg/kg) ranged from 88.6% to 105.7% with relative standard deviations of 3.8%-15.1%. Interday mean recoveries of cyantraniliprole and J9Z38 were found between 91.4% and 105.3% with relative standard deviations of 4.9%-12.3% at three spiked levels. Limits of quantification (LOQs) of cyantraniliprole and J9Z38 were 0.1 and 0.2 μg/kg, respectively. Linear calibration functions with correlation coefficients of r>0.9992 were obtained in the concentration range of 2.0-128.0 μg/L. This method was applied to the analysis of cyantraniliprole and J9Z38 residues in real pepper and soil samples selected from field. The results of the residue dynamic experiment showed that the halflife of cyantraniliprole ranged from 9.2 to 11.2 days in pepper and from 9.2 to 20.8 days in soil. While, the residues of J9Z38 in pepper were below LOQ, and the halflife of J9Z38 in soil was 9.4 days. The degradation speed of cyantraniliprole increased with the increase of the precipitation.

        KeywordsCyantraniliprole; J9Z38; Pepper; Residue; Ultra performance liquid chromatographytandem mass spectrometry

        7Zhang P, Hu X, Zhao H, Wu M, He H, Zhang C, Tang T, Ping L, Li Z. Chemosphere, 2013, 93: 190-195

        8Sun J P, Feng N, Tang C F, Qin D M. Bull. Environ. Contam. Toxicol., 2012, 89(4): 845-852

        9ZHAO KunXia, SUN JianPeng, QIN DongMei, TANG CongFeng. Environ. Sci. Technol., 2014, 37(2): 89-95

        趙坤霞, 孫建鵬, 秦冬梅, 湯叢峰. 環(huán)境科學(xué)與技術(shù), 2014, 37(2): 89-95

        10Hu X Q, Zhang C P, Zhu Y H, Wu M, Cai X M, Ping L F, Li Z . J. AOAC. Int., 2013, 96(6): 1448-1452, 1455

        11Sergio C N, James J S, Anne M P, Joseph P M, John H M. J. Agric. Food Chem., 2011, 59(14): 7557-7568

        12Schwarz T, Snow T A, Santee C J, Mulligan C C, Class T, Wadsley M P, Nanita S C. J. Agric. Food Chem., 2011, 59: 814-821

        13ZHENG XueSong, LAI TianCai, SHI LiBo, LU WeiPing. Agrochem., 2012, 51(8): 554-557, 580

        鄭雪松, 賴添財(cái), 時(shí)立波, 盧偉平. 農(nóng)藥, 2012, 51(8): 554-557, 580

        14YANG GuiQiu, ZHANG Yu, YANG HuiBing, WU HongFei, YU HaiBo, LI Bin. Modern Agrochem., 2012, 11(1): 22-24, 29

        楊桂秋, 張 宇, 楊輝斌, 吳鴻飛, 于海波, 李 斌. 現(xiàn)代農(nóng)藥, 2012, 11(1): 22-24, 29

        15LIU Hao, OUYANG GuiPing, GE ChengLin, HAN XinZheng, ZHANG YongLu, ZHOU BingSen. Modern Agrochem., 2012, 11(2): 1-7

        劉 浩, 歐陽貴平, 葛成林, 韓新正, 張永露, 周炳森. 現(xiàn)代農(nóng)藥, 2012, 11(2): 1-7

        16HUANG YaoLiang, WANG XiangLin, XU Hong, CAO ShunGang. J. Zhejiang Agric. Sci., 2013, 5: 571-572

        黃耀亮, 王祥林, 許 洪, 曹舜剛. 浙江農(nóng)業(yè)科學(xué), 2013, 5: 571-572

        17CHAI BaoShan, HE XiaoMin, WANG JunFeng, LI ZhiNian, LIU ChangLing. Agrochem., 2010, 49: 167-169

        柴寶山, 何曉敏, 王軍鋒, 李志念, 劉長令. 農(nóng)藥, 2010, 49(3): 167-169

        AbstractAn analytical method based on ultra performance liquid chromatographytandem mass spectrometry was developed for the determination of cyantraniliprole and its main metabolite J9Z38 residues in pepper and soil. The fate of cyantraniliprole and J9Z38 in pepper and soil was also evaluated. The target compounds were extracted with acetonitrile, cleaned up by C18 cartridge, and further analyzed by gradient ultra performance liquid chromatographytandem mass spectrometry with electrospray ionization in positive mode (ESI+) using a UPLC BEH C18 Column. The method was validated using fortified pepper and soil. Intraday mean recoveries of cyantraniliprole and J9Z38 at three spiked levels (0.01, 0.10 and 1.00 mg/kg) ranged from 88.6% to 105.7% with relative standard deviations of 3.8%-15.1%. Interday mean recoveries of cyantraniliprole and J9Z38 were found between 91.4% and 105.3% with relative standard deviations of 4.9%-12.3% at three spiked levels. Limits of quantification (LOQs) of cyantraniliprole and J9Z38 were 0.1 and 0.2 μg/kg, respectively. Linear calibration functions with correlation coefficients of r>0.9992 were obtained in the concentration range of 2.0-128.0 μg/L. This method was applied to the analysis of cyantraniliprole and J9Z38 residues in real pepper and soil samples selected from field. The results of the residue dynamic experiment showed that the halflife of cyantraniliprole ranged from 9.2 to 11.2 days in pepper and from 9.2 to 20.8 days in soil. While, the residues of J9Z38 in pepper were below LOQ, and the halflife of J9Z38 in soil was 9.4 days. The degradation speed of cyantraniliprole increased with the increase of the precipitation.

        KeywordsCyantraniliprole; J9Z38; Pepper; Residue; Ultra performance liquid chromatographytandem mass spectrometry

        猜你喜歡
        半衰期酰胺乙腈
        高純乙腈提純精制工藝節(jié)能優(yōu)化方案
        煤化工(2022年3期)2022-07-08 07:24:42
        基于語言學(xué)中文學(xué)術(shù)圖書的半衰期分析研究*
        雙酰胺類殺蟲劑Broflanilide
        三氟咪啶酰胺的合成工藝研究
        基于引用半衰期的我國五官學(xué)期刊文獻(xiàn)老化研究
        長江叢刊(2016年33期)2016-12-12 05:31:06
        基于JCR?的國外臨床醫(yī)學(xué)學(xué)科半衰期
        丁二酮肟重量法測(cè)定雙乙腈二氯化中鈀的含量
        國外二硝酰胺銨的發(fā)展現(xiàn)狀
        脂肪酰胺型季銨鹽的合成研究
        乙腈回收新工藝
        天津化工(2010年5期)2010-09-18 02:55:58
        无码天堂亚洲国产av麻豆| 精品一二三四区中文字幕| 肉色丝袜足j视频国产| 亚洲裸男gv网站| 亚洲综合色成在线播放| 狠狠色丁香婷婷久久综合2021| 国产人在线成免费视频| 韩国一级成a人片在线观看| 成人黄网站免费永久在线观看| 亚洲成人精品在线一区二区 | 亚洲AⅤ乱码一区二区三区| 国产一区二区白浆在线观看| 亚洲高清在线天堂精品| 麻豆精品国产精华液好用吗| 久久亚洲中文字幕无码| 无码AV无码免费一区二区| 精品国产免费一区二区久久| 欧美又大粗又爽又黄大片视频 | 中文字幕久热精品视频免费| 亚洲嫩模高清在线视频| 人片在线观看无码| 美女福利视频在线观看网址| 国产精品主播在线一区二区| 少妇激情一区二区三区视频| 中文字幕无码不卡免费视频| 一本一本久久久久a久久综合激情| 日韩精品国产一区二区| 国产片在线一区二区三区| 国产激情艳情在线看视频| 欧美大黑帍在线播放| 成人无码无遮挡很H在线播放| 亚洲无av码一区二区三区| 亚洲国产精品亚洲一区二区三区| 亚洲av鲁丝一区二区三区黄| 日本55丰满熟妇厨房伦| 日韩少妇人妻一区二区| 免费观看人妻av网站| 色视频线观看在线网站| 鲁一鲁一鲁一鲁一澡| 国产精品亚洲一区二区三区正片| 亚洲国产一区二区三区精品|