周樹清
(湖南師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,中國(guó) 長(zhǎng)沙 410081;高性能計(jì)算與隨機(jī)信息處理省部共建教育部重點(diǎn)實(shí)驗(yàn)室,中國(guó) 長(zhǎng)沙 410081)
一類雙障礙問題的很弱解的全局正則性
周樹清*
(湖南師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,中國(guó) 長(zhǎng)沙 410081;高性能計(jì)算與隨機(jī)信息處理省部共建教育部重點(diǎn)實(shí)驗(yàn)室,中國(guó) 長(zhǎng)沙 410081)
應(yīng)用Hodge分解定理,得到了非齊次A-調(diào)和方程-divA(x,Du(x))=f(x,u(x))對(duì)應(yīng)控制的雙障礙問題的很弱解W1,q(Ω)-正則性,其中,A(x,Du(x)),f(x,u(x))滿足文中所給的條件,從而推廣了相關(guān)文獻(xiàn)中的有關(guān)結(jié)果.該結(jié)果在優(yōu)化控制問題中有著廣泛的應(yīng)用.
非齊次A-調(diào)和方程;雙障礙問題;優(yōu)化控制;Hodge分解;W1,q(Ω)-正則性
設(shè)1
-divA(x,Du(x))=f(x,u(x))
(1)
對(duì)應(yīng)的雙障礙問題,其中,A(x,h)和f(x,u)為Caratheodory函數(shù),滿足:存在正常數(shù)γ,α,β,a,使得對(duì)a.e.x∈Ω和所有的h∈Rn,有
(i)橢圓性條件 〈A(x,h),h〉≥α|h|p,h∈Rn{0};
(2)
(ii)控制增長(zhǎng)條件 |A(x,h)|≤β|h|p-1+ξ(x),|f(x,u)|≤a|u|(p-1)γ+m(x),
(3)
這里,ξ(x),m(x)為Ω上給定的函數(shù).
稱區(qū)域Ω是正則的,是指使Hodge分解定理[1]都成立的區(qū)域.如Lipschitz區(qū)域是正則的.
|D(v-u)|r-pD(v-u)=Dφu,v+H.
(4)
受文獻(xiàn)[2]的啟發(fā),引入如下的定義.
(5)
注1“很弱”的意思是指解空間的Sobolev指數(shù)r比算子的橢圓指數(shù)p小.由Hodge分解的唯一性知,當(dāng)r=p時(shí),此定義與通常的雙障礙問題的弱解的定義相同[3].
對(duì)方程(1)的雙障礙問題,有如下的正則性結(jié)果:
為了討論雙障礙問題的很弱解的全局正則性,需要對(duì)區(qū)域的邊界?Ω做一些正則性假設(shè).
(6)
在上述定義中把方體改為球體,則稱邊界?Ω是pB-Poincaré厚的.
注2易證上述兩種邊界正則性條件是等價(jià)的.
稱區(qū)域Ω是A-型區(qū)域是指:對(duì)?x0∈Ω,0<ρ 注3由文獻(xiàn)[5]知,Lipschitz型區(qū)域是A型區(qū)域. 先給出一些記號(hào)和引理.設(shè)0 這里,uR其中C只依賴于p,q和n. 下面的引理是Sobleve-Poincaré不等式、H?lder不等式及引理1的簡(jiǎn)單推論. 引理3[1](Hodge分解定理) 設(shè)Ω是正則的,N為正整數(shù),0< |Du|Du=Dφ+H, (7) 并且 (8) 其中C是一個(gè)只依賴于N,n與Ω的常數(shù). 注4由(7)及(8)易知,Dφ也有類似于(11)的估計(jì)式. 引理4[16]假定X和Y是內(nèi)積空間中的向量,0≤<1,則有 ||X|X-|Y|Y|≤|X-Y|. 引理5[1,5](逆H?lder不等式) 假設(shè)f(x)和g(x)為Q?Rn上非負(fù)可測(cè)函數(shù),并且滿足: 其中Md(x)(g)(x)是g(x)的局部極大函數(shù),b>1且0≤θ<1,而Q是Rn中的一個(gè)緊的方形,則存在一個(gè)常數(shù)0=0(b,n,p,θ),使得?q∈[p,p+0),有(Q). 約定僅依賴于n,p,α,β,γ,s,a,A及R0的常數(shù)都將用同一個(gè)字母C表示. Dφu,v+H=|D(v-u)|D(v-u)=-|D{ηp[w-(u-u2R)]}|D{ηp[w-(u-u2R)]}, (9) 并且 (10) 其中C是一個(gè)只依賴于n與Ω的常數(shù).由w的定義易得 (11) 由Minkowski不等式、引理1、式(11)及不等式(a+b)p≤ap+bp(a≥0,b≥0,0≤p≤1) (12) 于是由(10)、(12)得到 (13) (14) 把φu,v代入(5)中,并利用條件(2),(3)、引理4、Hodge分解(9)、(11)~(14)、H?lder不等式、Young不等式、Sobolev-Poincaré不等式以及Minkowski不等式,對(duì)任意V>0,有 |D{ηp[w-(u-u2R)]}D{ηp[w-(u-u2R)]}〉dx (15) (16) (17) 由(13)~(17)得 (18) |Dψ|r]dx+(C+υ+φ(R))—(|Du|t+|udx. (19) 取υ,R1,1>0足夠小,即存在r1=p-1 (20) |D(v-u)|D(v-u)=Dφu,v+H=-|D[ηp(u-θ)]||D[ηp(u-θ)]|. (21) (22) 其中C是一個(gè)只依賴于n與Ω的常數(shù). 連續(xù)零延拓函數(shù)u-θ到RnΩ,并考慮到區(qū)域是A型的,從而由引理2以及的選擇可得,?Ω是pB-Poincaré厚的.由Minkowski不等式、η的選取以及?Ω是pB-Poincaré厚的,可得 于是 (23) (24) 把φu,v代入(5)中,并利用條件(2)、(3)、引理4、Hodge分解(22)得 (25) 由(23)、(24)、(16)、H?lder不等式及Minkowski不等式得, (26) (27) 由(25)~(27)以及(16)得 (28) 這里,τ=C(+τ1+Rφ(R)),max{1,}≤t (29) 取τ1,R0,0>0足夠小,即存在r1=p-0 (30) 這里t [1] SERRIN J. Pathological solutions of elliptic differential equations[J]. Ann Sc Norm Sup Pisa, 1964,18(3):385-387. [2] LI J, Gao H. Local regularity results for very weak solutions of obstacle problems[J]. Radovi Matematiki, 2003,12:19-26. [3] LI G, MARTIO O. Stability and higher integrability of derivatives of solutions in double obstacle problems[J]. J Math Anal Appl, 2002,272(1):19-29. [4] LI G, MARTIO O. Local and global integrability of gradients in obstacle problems[J]. Ann Acad Sci Fenn Ser A I Math, 1994,19:25-34. [5] GIAQUINTQ M. Multiple integrals in the calculus of variations and nonlinear elliptic systems[M]. New Jersey: Princeton University Press, 1983. [6] CAFFARELLIL L A. The obstacle problem revisited[J]. J Fourier Ana and Appl, 1998,5(4):383-402. [7] CAFFARELLIL L A, SALSA S, SILVESTRE L. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian[J]. Invent Math, 2008,171(2):425-461. [8] IWANIEC T, SBORDONE C. Weak minima of variational integrals[J]. J Reine Angew Math, 1994,1994(454):143-161. [9] LEWIS L. On very weak solutions of certain elliptic systems[J]. Comm Part Di Equ, 1993,18(9&10):1515-1537. [10] 高紅亞,何 茜,牛紅玲,等.A-調(diào)和方程障礙問題很弱解的局部正則性[J].數(shù)學(xué)物理學(xué)報(bào),2009,29A(5):1291-1297. [11] HU H, ZHOU S, OUYANG W. Local regularity in obstacle problem[J]. J Xiangnan Univ, 2007,28(5):13-17. [12] 鄭神州.擬正則映照的一些問題[D].上海:復(fù)旦大學(xué)博士論文, 1997. [13] ZHOU S, GAO H, ZHU H. Uniqueness of very weak solutions to a class of nonlinear elliptic equations[J]. Chinese J Contem Math, 2007,28(1):99-108. [14] 周樹清.一類非齊次A-調(diào)和方程組很弱解的正則性[J].數(shù)學(xué)年刊, 2002,23A(3):283-288. [15] 周樹清,文海英,方華強(qiáng).一類非齊次A-調(diào)和方程組很弱解的性質(zhì)[J].數(shù)學(xué)物理學(xué)報(bào), 2003,23A(2):135-144. [16] IWANIEC T, MILGLIACCIO L, SBORDONE C. Integrability and removability results for quasi-regular mappings in high dimension[J]. Math Scand, 1994,75:263-279. (編輯 沈小玲) Global Regularity for very Weak Solutions to a Class of Double Obstacle Problems ZHOUShu-qing* (School of Mathematics and Computer, Hunan Normal University, Changsha 410081, China;Key Laboratory of High Performance Computing and Stochastic Information Processing, Changsha 410081, China) Using Hodge decomposition theorem,W1,q(Ω) -regularity for very weak solutions to double obstacle problems associated with non-homogeneousA-harmonic equations div(A(x,Du(x)))=f(x,u(x)) is obtained under certain conditions onA(x,Du(x)),f(x,u(x)) listed in the context, and therefore the corresponding results in related literatures are generalized. The results could be widely used in optimal control problems. non-homogeneousA-harmonic equation; double obstacle problems; optimal control; Hodge decomposition;W1,q-regularity 2013-04-27 國(guó)家自然科學(xué)基金資助項(xiàng)目(10971061、11271120);湖南省自然科學(xué)基金資助項(xiàng)目(11JJ6005);湖南省重點(diǎn)學(xué)科建設(shè)資助項(xiàng)目 * ,E-mail:zhoushuqing@163.com O175.25 A 1000-2537(2014)04-0072-052 定理1及定理2的證明