鐘鋼
開放型習(xí)題是指具有明確條件和明確結(jié)論的封閉式習(xí)題而言的,是指題目的條件不完備或結(jié)論不確定的習(xí)題,在初中數(shù)學(xué)教學(xué)與學(xué)生思維培養(yǎng)方面,開放題型具有一定的個(gè)性和特性。筆者根據(jù)多年從事數(shù)學(xué)教學(xué)經(jīng)驗(yàn),站在培養(yǎng)學(xué)生思維的角度淺談如何在初中數(shù)學(xué)教學(xué)的問題上,設(shè)計(jì)開放題型,達(dá)到培養(yǎng)學(xué)生思維能力的目的。
一、運(yùn)用多向型開放題,培養(yǎng)學(xué)生思維的廣闊性
多向型開放題,對(duì)同一個(gè)問題可以有多種思考方向,使學(xué)生產(chǎn)生縱橫聯(lián)想,啟發(fā)學(xué)生一題多解、一題多變、一題多思,訓(xùn)練學(xué)生的發(fā)散思維,培養(yǎng)學(xué)生思維的廣闊性和靈活性。如:甲乙兩隊(duì)合修一條長1500米的公路,20天完成,完工時(shí)甲隊(duì)比乙隊(duì)多修100米,乙隊(duì)每天修35米,甲隊(duì)每天修多少米?這道題從不同的角度思考,得出了不同的解法:一是先求出乙隊(duì)20天修的,根據(jù)全長和乙隊(duì)20天修的可以求出甲隊(duì)20天修的,然后求甲隊(duì)每天修的,算式是(1500-35×20)÷20。二是先求出乙隊(duì)20天修的,根據(jù)乙隊(duì)20天修的和甲隊(duì)比乙隊(duì)多修100米可以求出甲隊(duì)20天修的,然后求甲隊(duì)每天修的,算式是:(35×20+100)÷20。三是可以先求出兩隊(duì)平均每天共修多少米,再求甲隊(duì)每天修多少米,算式是:1500÷20-35。四是可以先求出甲隊(duì)每天比乙隊(duì)多修多少米,再求甲隊(duì)每天修多少米,算式是:100÷20+35。
這類題,可以給學(xué)生最大的思維空間,使學(xué)生從不同的角度分析問題,探究數(shù)量間的相互關(guān)系,并能從不同的解法中找出最簡捷的方法,提高學(xué)生初步的邏輯思維能力,從而培養(yǎng)學(xué)生思維的廣闊性和靈活性。
二、運(yùn)用隱藏型開放題,培養(yǎng)學(xué)生思維的縝密性
隱藏型開放題,是解題所需的某些條件隱藏在題目的背后,如不注意容易遺漏。在解題時(shí)既要考慮問題及明確的條件,又要考慮與問題有關(guān)的隱藏著的條件。這樣有利于培養(yǎng)學(xué)生認(rèn)真細(xì)致的審題習(xí)慣和思維的縝密性。
如:做一個(gè)長8分米、寬5分米的面袋,至少需要白布多少平方米?解答此題時(shí),學(xué)生往往忽視了面袋有“兩層”這個(gè)隱藏的條件,錯(cuò)誤地列式為:8×5,正確列式應(yīng)為:8×5×2。解此類題時(shí)要引導(dǎo)學(xué)生認(rèn)真分析題意,找出題中的隱藏條件,使學(xué)生養(yǎng)成認(rèn)真審題的良好習(xí)慣,培養(yǎng)學(xué)生思維的縝密性。
三、運(yùn)用缺少型開放題,培養(yǎng)學(xué)生思維的靈活性
缺少型開放題,按常規(guī)解法所給條件似乎不足,但如果換個(gè)角度去思考,便可得到解決。
如:在一個(gè)面積為12平方厘米的正方形內(nèi)剪一個(gè)最大的圓,所剪圓的面積是多少平方厘米?按常規(guī)的思考方法:要求圓的面積,需先求出圓的半徑,根據(jù)題意,圓的半徑就是正方形邊長的一半,但根據(jù)題中所給條件,用小學(xué)的數(shù)學(xué)知識(shí)無法求出。換個(gè)角度來考慮:可以設(shè)所剪圓的半徑為r,那么正方形的邊長為2r,正方形的面積為(2r)2=4r2=12,r2=3,所以圓的面積是3.14×3=9.42(平方厘米)。還可以這樣想:把原正方形平均分成4個(gè)小正方形,每個(gè)小正方形的邊長就是所剪圓的半徑,設(shè)圓的半徑為r,那么每個(gè)小正方形的面積為r2,原正方形的面積為4r2,r2=12÷4,所剪圓的面積是3.14×(12÷4)=9.42(平方厘米)。
四、運(yùn)用不定型開放題,培養(yǎng)學(xué)生思維的深刻性
不定型開放題,所給條件包含著答案不唯一的因素,在解題的過程中,必須利用已有的知識(shí),結(jié)合有關(guān)條件,從不同的角度對(duì)問題作全面分析,正確判斷,得出結(jié)論,從而培養(yǎng)學(xué)生思維的深刻性。
如,學(xué)習(xí)分?jǐn)?shù)時(shí),學(xué)生對(duì)“分率”和“用分?jǐn)?shù)表示的具體數(shù)量”往往混淆不清,以致解題時(shí)在該知識(shí)點(diǎn)上出現(xiàn)錯(cuò)誤,教師雖反復(fù)指出它們的區(qū)別,卻難以收到理想的效果。在學(xué)習(xí)分?jǐn)?shù)應(yīng)用題后,讓學(xué)生做這樣一道習(xí)題:“有兩根同樣長的繩子,第一根截去9/10,第二根截去9/10米,哪一根繩子剩下的部分長?”此題出示后,有的學(xué)生說:“一樣長?!庇械膶W(xué)生說:“不一定?!蔽易寣W(xué)生討論哪種說法對(duì),為什么?學(xué)生紛紛發(fā)表意見,經(jīng)過討論,統(tǒng)一認(rèn)識(shí):“因?yàn)閮筛K子的長度沒有確定,第一根截去的長度就無法確定,所以哪一根繩子剩下的部分長也就無法確定,必須知道繩子原來的長度,才能確定哪根繩子剩下的部分長?!边@時(shí)再讓學(xué)生討論:兩根繩子剩下部分的長度有幾種情況?經(jīng)過充分的討論,最后得出如下結(jié)論:①當(dāng)繩子的長度是1米時(shí),第一根的9/10等于9/10米,所以兩根繩子剩下的部分一樣長;②當(dāng)繩子的長度大于1米時(shí),第一根繩子的9/10大于9/10米,所以第二根繩子剩下的長;③當(dāng)繩子的長度小于1米時(shí),第一根繩子的9/10小于9/10米,由于繩子的長度小于9/10米時(shí),就無法從第二根繩子上截去9/10米,所以當(dāng)繩子的長度小于1米而大于9/10米時(shí),第一根繩子剩下的部分長。
這樣的練習(xí),加深了學(xué)生對(duì)“分率”和“用分?jǐn)?shù)表示的具體數(shù)量”的區(qū)別的認(rèn)識(shí),鞏固了分?jǐn)?shù)應(yīng)用題的解題方法,培養(yǎng)了學(xué)生思維的深刻性,提高了全面分析、解決問題的能力。
五、運(yùn)用多余型開放題,培養(yǎng)學(xué)生思維品質(zhì)的批判性
多余型開放題,將題目中的有用條件和無用條件混在一起,產(chǎn)生干擾因素,這就需要在解題時(shí),認(rèn)真分析條件與問題的關(guān)系,充分利用有用條件,舍棄無用條件,學(xué)會(huì)排除干擾因素,提高學(xué)生的鑒別能力,從而培養(yǎng)學(xué)生思維的批判性。
如:一根繩子長25米,第一次用去8米,第二次用去12米,這根繩子比原來短了多少米?由于受封閉式解題習(xí)慣的影響,學(xué)生往往會(huì)產(chǎn)生一種凡是題中出現(xiàn)的條件都要用上的思維定勢,不對(duì)題目進(jìn)行認(rèn)真分析,錯(cuò)誤地列式為:25-8-12或25-(8+12)。
做題時(shí)引導(dǎo)學(xué)生畫圖分析,使學(xué)生明白:要求這根繩子比原來短了多少米,實(shí)際上就是求兩次一共用去多少米,這里25米是與解決問題無關(guān)的條件,正確的列式是:8+12。
通過引導(dǎo)分析這類題,可以防止學(xué)生濫用題中的條件,有利于培養(yǎng)學(xué)生思維的批判性,提高學(xué)生明辨是非、去偽存真的鑒別能力。
總之,解答開放型習(xí)題,由于沒有現(xiàn)成的解題模式,解題時(shí)往往需要從多個(gè)不同角度進(jìn)行思考和探索,且有些問題的答案是不確定的,因而能激發(fā)學(xué)生豐富的想象力和強(qiáng)烈的好奇心,提高學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生主動(dòng)參與的積極性。
(作者單位:江西省贛州市第七中學(xué))