魏學鋒,孫治榮(1.北京工業(yè)大學環(huán)境與能源工程學院,北京 100124;2.河南科技大學,河南 洛陽 471023)
Pd/Ti電極上2,4,6-三氯酚還原脫氯:條件優(yōu)化及降解途徑
魏學鋒1,2,孫治榮1*(1.北京工業(yè)大學環(huán)境與能源工程學院,北京 100124;2.河南科技大學,河南 洛陽 471023)
利用電沉積法制備了 Pd/Ti電極,用于 2,4,6-三氯酚(2,4,6-TCP)的電還原脫氯.采用單因素實驗和響應面分析法, 探討了 2,4,6-TCP脫氯試驗條件; 根據(jù)實驗結(jié)果, 擬合出了脫氯中各步驟的反應速率常數(shù). 結(jié)果表明,2,4,6-TCP初始濃度為80mg/L時,優(yōu)化的脫氯參數(shù)為電流為5mA,支持電解質(zhì)Na2SO4濃度為0.05mol/L,陰極電解液初始pH值為2.40.在優(yōu)化條件下, 2,4,6-TCP在80min內(nèi)完全脫氯; 2,4,6-TCP的還原脫氯符合準一級反應動力學,主要脫氯途徑為2,4,6-TCP→2,6-DCP→2-CP→苯酚.
Pd/Ti電極;2,4,6-三氯酚;電催化;還原脫氯;動力學
氯酚類化合物(CPs)作為殺蟲劑、造紙、醫(yī)藥、化工、防腐劑等行業(yè)的中間體,在工業(yè)中廣泛應用.由于毒性大、難降解、化學穩(wěn)定性和熱穩(wěn)定性高,給自然環(huán)境造成一定危害,中國環(huán)境監(jiān)測總站和美國國家環(huán)保署都將 CPs列為優(yōu)先控制污染物[1-2].隨著氯原子數(shù)增大,CPs親脂性越大,被生物體攝取的可能性增大,毒性越大.2,4,6-三氯酚(2,4,6-TCP)由于其難降解特性,一旦進入水體會對水生生物產(chǎn)生持久性毒性效應,是6種三氯酚異構體中需優(yōu)先控制的污染物[3].
CPs中氯原子強烈吸引電子云使苯環(huán)上電子云密度降低,難以從苯環(huán)上獲取電子而發(fā)生氧化反應,相反電子云密度較低的苯環(huán)易受到還原劑的攻擊,發(fā)生親核取代,比較適合于還原脫氯.化學還原法用于氯代有機物的脫氯,已經(jīng)備受關注.研究較多的有零價金屬體系(如零價鐵)[4-7]和二元金屬催化體系(如Pd-Fe和Pd-Mg等)[8-11].但化學還原脫氯法存在反應速率低、金屬溶解等缺點.
電催化加氫脫氯法(ECH)以電子為強還原劑,電解水或者質(zhì)子產(chǎn)生活性氫,通過加氫脫氯能將氯代有機物轉(zhuǎn)化為無毒或低毒產(chǎn)物,具有應用條件溫和、設計簡易方便、經(jīng)濟高效等優(yōu)點[12-15],是最有前景的CPs脫氯途徑之一.鈀(Pd)與氫(H)的結(jié)合能相對較低,具有優(yōu)異的吸附和儲存H的能力[16-18],已成為ECH過程優(yōu)選的電極材料.
本研究以化學性質(zhì)穩(wěn)定的鈦(Ti)網(wǎng)為基質(zhì),采用電沉積法制備出 Ti網(wǎng)負載 Pd(Pd/Ti)陰極,用于2,4,6-TCP的ECH脫氯.并進一步探討TCP在脫氯轉(zhuǎn)化過程中,可能生成的二氯酚(DCP)和一氯酚(CP)等中間產(chǎn)物的脫氯反應途徑及其動力學,初步研究2,4,6-TCP的脫氯規(guī)律,為電催化還原脫氯法處理CPs提供參考.
1.1 試劑與儀器
PdCl2粉(分析純),購自西北有色金屬研究總院; Ti網(wǎng)購自河北安平縣線材篩網(wǎng)廠,使用前先放在熱碳酸鈉溶液中去除油脂,在煮沸的草酸溶液中去除氧化物,用去離子水洗至中性,貯存在乙醇中備用;2,4,6-TCP(分析純)購自美國 Sigma Aldrich公司;所用其他試劑均為分析純,購自北京化工廠;所有溶液均用Millipore-Q水配制.
電化學工作站(上海辰華,CHI660C);掃描電子顯微鏡(SEM,日立 SU8020);X射線衍射儀器(XRD,島津 XRD-7000);高效液相色譜儀(HPLC, Waters 2489);電感耦合等離子體原子發(fā)射光譜儀(ICP-AES,美國熱電公司IRIS Advantage型);精密恒流恒壓源(BJ1790B,北京無儀美達科技有限公司);WTW3420型pH計(德國).
1.2 實驗步驟
采用電沉積法制備 Pd/Ti催化陰極.以預處理過的Ti網(wǎng)(有效尺寸2cm×2cm)為基質(zhì),沉積液為50mL濃度為7mmol/L的PdCl2溶液,用濃鹽酸調(diào)節(jié)初始pH值為0.2,加入0.09mmol/L十六烷基三甲基溴化銨(CTAB)為穩(wěn)定劑;用恒定電流50mA沉積70min.新制備的電極在 60℃下干燥過夜.分別用SEM和XRD表征表面形貌和晶體結(jié)構;用循環(huán)伏安法(CV)測試電極的電催化還原脫氯潛能,CV實驗在三電極體系中進行,采用 Pt片為對電極, Hg/Hg2SO4為參比電極.
脫氯反應在自制的雙室電解池中進行,陰陽兩室底部連通,用陽離子交換膜(Nafion-324,杜邦公司)隔開,陰極液為 2,4,6-TCP的水溶液,Na2SO4溶液為支持電解質(zhì),通過加入 H2SO4調(diào)節(jié)初始pH值;陽極液為濃度相同的Na2SO4溶液,以制備的Pd/Ti電極為工作電極,Pt片為對電極,采用恒電流法還原脫氯,用 HPLC檢測2,4,6-TCP及其脫氯產(chǎn)物的濃度.
2.1 電極表征結(jié)果
用CV測試電極的ECH潛能.一般地,CV曲線上,氫吸收峰電流值越大,表明電極的加氫脫氯潛能越強[19].由圖 1可見, Pd/Ti電極在-650mV時的氫吸附峰電流大小為-140.5mA,說明電極具有強的氫吸附性能,在脫氯過程中具有較好的催化能力.
圖1 Pd/Ti電極在0.5mol/LH2SO4中的CV曲線(掃描速率為50mV/s)Fig.1 CV curve of Pd /Ti electrode in 0.5mol/L H2SO4solution with scan rate of 50mV/s
如圖2所示,從5000倍SEM照片可以看出, Pd晶粒呈樹枝狀生長;從 100000倍放大照片看出Pd的片狀晶體.此結(jié)構具有較大的有效活性面積,暴露較多的催化活性位點,為高效脫氯提供了物質(zhì)基礎.
圖3為電極的XRD測試結(jié)果,圖中40.116, 46.611,68.251,82.174,86.739位置的衍射峰,分別屬于Pd的(111), (200), (220), (311)和(222)晶面,表明Pd顆粒的晶格屬于面心立方(FCC)型.根據(jù)謝樂公式,計算得Pd晶粒的平均尺寸為15.5nm.
ICP-AES檢測電極上 Pd的負載量,得到電極上Pd的負載量為2.78mg/cm2.
圖2 不同放大倍數(shù)的電極表面SEM照片F(xiàn)ig.2 SEM images of electrode under different zoom scales
圖3 Pd /Ti電極的XRD圖譜Fig.3 XRD pattern for Pd/Ti electrode
2.2 Pd/Ti電極上ECH機理
Pd/Ti電極上氯代有機物(R-Cl)的ECH的反應機制可以用式(1a)~式(1d)表示[20-22].水或質(zhì)子在陰極的 Pd催化劑表面還原生成活性氫([H]),如式(1a); [H]進攻吸附到電極表面的 R-Cl(1b),發(fā)生加氫脫氯反應(1c),脫氯產(chǎn)物從電極表面脫附(1d).本研究中,R-Cl為 2,4,6-TCP,其分子結(jié)構中含有 3個氯原子(-Cl),脫去 1個-Cl生成DCP;DCP可以繼續(xù)發(fā)生脫氯反應(1c)生成CP,同樣地,CP進一步脫氯生成苯酚(Ph),徹底脫氯.
當脫氯反應(1c)進行較慢時,作為ECH反應的副反應,H2析出反應(2a和 2b)可能變成主要反應.
2.3 脫氯條件的優(yōu)化
2.3.1 脫氯電流對脫氯的影響 固定 2,4,6-TCP的初始濃度為80mg/L,支持電解質(zhì)Na2SO4濃度為0.05mol/L,初始 pH值為 2.40,不同電流(2,5,8和11mA)條件下, 2,4,6-TCP脫氯效果如圖4所示.
圖4 不同電流下2,4,6-TCP的還原脫氯結(jié)果Fig.4 Dechlorination results of 2,4,6-TCP under different currents
從圖 4可以看出,脫氯電流為 2mA時, 2,4,6-TCP轉(zhuǎn)化率較低.隨著電流的增大,相同時刻轉(zhuǎn)化率也隨之增大,5mA和 8mA的條件下, 80min時的轉(zhuǎn)化率均接近100%;電流增至11mA時,反應在初期進行得較快,60min后 2,4,6-TCP轉(zhuǎn)化率不再增加.根據(jù)ECH機制,在反應起始階段, pH值較低有利于[H]產(chǎn)生,而且氯酚的濃度也較大,脫氯反應(3a)進行較快.隨著反應進行,氯酚濃度下降,[H]不能被有效利用.析氫副反應(2)進行的程度逐漸加大,另外,電極表面的產(chǎn)生的 H2層會影響氯酚的傳質(zhì),從而阻礙脫氯反應(3a)的發(fā)生,導致氯酚轉(zhuǎn)化率下降.大電流時,反應起始較快,但消耗H+也快,在反應后期,副反應程度也大.
2.3.2 支持電解質(zhì)濃度對脫氯的影響 在初始pH值為2.40,脫氯電流為5mA的條件下,80mg/L的2,4,6-TCP脫氯效果隨Na2SO4濃度(0.02,0.05, 0.08mol/L)的變化,如圖5所示.
圖5 不同Na2SO4濃度下2,4,6-TCP的還原脫氯結(jié)果Fig.5 Dechlorination results of 2,4,6-TCP under different concentrations of Na2SO4in catholyte
由圖5可見,隨著Na2SO4濃度的增加, 2,4,6-TCP的轉(zhuǎn)化速率有所加快. 反應 80min,轉(zhuǎn)化率都接近 100%.考慮到鹽濃度過高對后續(xù)處理不利,選擇Na2SO4濃度為0.05mol/L.
2.3.3 pH值對脫氯的影響 圖6為2,4,6-TCP初始濃度為 80mg/L,支持電解質(zhì) Na2SO4濃度為0.05mol/L,脫氯電流為5mA時,不同初始pH值(2.15, 2.40和3.00)條件下的2,4,6-TCP脫氯實驗結(jié)果.
圖6 不同初始pH值下2,4,6-TCP的還原脫氯效果Fig.6 Dechlorination results of 2,4,6-TCP under different initial pH value of catholyte
從圖6可看出,當pH值為3.00時,反應40min, 2,4,6-TCP轉(zhuǎn)化率超過 95%,繼續(xù)反應,轉(zhuǎn)化率沒有明顯增加;當 pH值為 2.40,脫氯 80min時, 2,4,6-TCP轉(zhuǎn)化率達到100%,溶液pH值為6.98.
根據(jù)反應ECH機制,酸性條件下,H+充足,容易產(chǎn)生[H],有利于脫氯反應的進行;初始酸度不足可能導致反應后期溶液 pH值落在堿性,堿性條件下,[H]產(chǎn)生較困難,脫氯反應難以進行.但過低的pH值會造成酸剩余,不利于后續(xù)處理.因此,試驗條件下選擇初始pH值為2.40.
2.3.4 響應面優(yōu)化 為考慮因素的交互影響,進一步利用響應面分析法,對 2,4,6-TCP電催化脫氯條件進行優(yōu)化.選用試驗次數(shù) N=17,應用Design Expert軟件,根據(jù)Box-Benhnken的中心組合試驗設計原理,采用三因素三水平的響應面分析方法設計試驗,2,4,6-TCP降解過程的主要因素為電流密度、Na2SO4濃度和初始pH值,每個變量分別確定-1、0、1三個水平,響應面的分析因素與設計如表1所示.
表1 中心組合設計各因素水平Table 1 Range of different factors investigated with central composite design
根據(jù)表1的試驗方案,以2,4,6-TCP的轉(zhuǎn)化率為響應值.將反應60min時的轉(zhuǎn)化率數(shù)據(jù)輸入至Design Expert中進行分析,得到相應的等高線圖,如圖7所示.
由 7(a)為可見,電流為 6mA時,pH值與Na2SO4濃度交互作用顯著.2,4,6-TCP的轉(zhuǎn)化率隨著初始pH值減小而升高,當Na2SO4濃度由下水平至中心點,2,4,6-TCP的轉(zhuǎn)化率隨之升高.當Na2SO4濃度繼續(xù)增大至上水平時,2,4,6-TCP的轉(zhuǎn)化率反而有所下降.在初始 pH值與電解質(zhì)濃度都在中心點時,2,4,6-TCP轉(zhuǎn)化率接近100%.
圖7(b)顯示了初始pH值為中心點(pH=2.40)時,Na2SO4濃度與電流的變化對2,4,6-TCP轉(zhuǎn)化率的影響.電流值在下水平至中心值范圍內(nèi),2,4,6-TCP的轉(zhuǎn)化率Na2SO4濃度逐漸升高,中心值時最高,繼續(xù)增大 Na2SO4濃度時,轉(zhuǎn)化率下降.電流值在中心點至上水平范圍,2,4,6-TCP的轉(zhuǎn)化率會隨Na2SO4濃度的增加而降低.
圖7 交互作用下脫氯效果等高線Fig.7 Contour maps of dechlorination results under interaction effect
圖 7(c)顯示了 Na2SO4濃度值為中心點(0.05mol/L)時,pH值與電流的變化對 2,4,6-TCP轉(zhuǎn)化率的影響.可以看出,上水平即低 pH值有利于脫氯;在pH值下水平區(qū)即高的初始pH值,電流值升高, 2,4,6-TCP轉(zhuǎn)化率下降.
通過響應面分析可以得出, 試驗條件下2,4,6-TCP電催化還原脫氯的優(yōu)化條件為:電流6mA, Na2SO4濃度0.05mol/L,初始pH值2.40. 2.4 脫氯動力學
文獻[13]表明,氯代有機物的電催化還原脫氯反應,符合準一級反應動力學.在優(yōu)化脫氯條件下,2,4,6-TCP濃度隨時間的變化進行擬合,如圖8所示.濃度的對數(shù)值(lnC)與時間(t)呈線性相關,表明 2,4,6-TCP的脫氯符合準一級反應動力學.因此,采用一級反應動力學模型探討 2,4,6-TCP的電還原脫氯過程.
圖8 反應中2,4,6-TCP濃度對數(shù)值與時間的線性擬合Fig.8 Fitting curve for lnC and time in the dechlorination of 2,4,6-TCP
2,4 ,6-TCP還原脫氯可能的途徑如圖9所示.
圖9 2,4,6-TCP可能的還原脫氯途徑Fig.9 The possible reaction pathways of 2,4,6-TCP dechlorination
對應的一級動力學方程如式(3a)~式(3f)所示.
式中:kn表示圖9中以2,4,6-TCP為初始反應物的各步驟的反應速率常數(shù);C表示其對應下標的組
解式(3a) ~式(3f),得到式(4a) ~式(4f):分的濃度.
式中:α表示物質(zhì)的量比; α2,4-DCP表示 C2,4-DCP,t/ C2,4,6-TCP,0; kn表示2,4,6-TCP脫氯過程中各步驟的反應速率常數(shù),意義同式(3a) ~式(3f).
在優(yōu)化的脫氯條件下,2,4,6-TCP及其脫氯產(chǎn)物濃度隨電催化時間的變化見圖 10(a).用MatlabR2013b軟件對實驗數(shù)據(jù)按照式(4a)~式(4f)進行非線性擬合,得到各速率常數(shù)值k1=0.0065min-1, k2=0.0419min-1, k3=0.0087min-1, k4=1.273min-1, k5=0.0494min-1, k6=0.0591min-1, k7=1.882min-1.將它們代入式(4a)~式(4f)并作圖,得到各組分濃度隨時間變化的擬合曲線,如圖 10(b)所示.擬合曲線和實驗結(jié)果較吻合,說明對2,4,6-TCP脫氯途徑和反應速率常數(shù)的估算合理.
圖10 優(yōu)化條件下2,4,6-TCP的脫氯實驗結(jié)果以及根據(jù)反應速率方程的擬合曲線Fig.10 Experimental results of 2,4,6-TCP dechlorination under the optimum condition and fitted results based on the reaction rate formulas?
根據(jù)一級反應半衰期t1/2=0.693/k, k值越大,則該半衰期越短.對照圖9, k1< k2,說明2,4,6-TCP脫去一個氯原子的主要脫氯產(chǎn)物是2,6-DCP; k4和k7數(shù)值較大,說明2,4,6-TCP的主要降解途徑是2,4,6-TCP→2,6-DCP→2-CP→苯酚.
速率常數(shù)可以用單位質(zhì)量的Pd來表示.試驗條件下,2,4,6-TCP在Pd/Ti 電極上的當量轉(zhuǎn)化速率常數(shù)KPd=(k1+ k2)/CPd=0.0065L/(gPd·min).
3.1 以Ti網(wǎng)為基質(zhì),電沉積制備出的Pd/Ti電極,具有較高的電催化還原脫氯活性.
3.2 Pd/Ti電極上80mg/L的2,4,6-TCP還原脫氯的優(yōu)化條件:脫氯電流為 6mA,支持電解質(zhì)Na2SO4的濃度為 0.05mol/L,氯酚電解液的初始pH為2.40.優(yōu)化條件下2,4,6-TCP在80min能夠完全脫氯.
3.3 2,4,6-TCP電還原脫氯符合一級反應動力學,主要脫氯途徑為 2,4,6-TCP→2,6-DCP→2-CP→苯酚.
[1]錢 易,湯鴻霄,文湘華.水體顆粒物和難降解有機物的特性與控制技術原理(F卷) [M]. 北京:中國環(huán)境科學出版社, 2000: 56-59.
[2]王建龍.生物固定化技術與水污染控制 [M]. 北京:科學出版社, 2006:261-267.
[3]Huff J. Long-term toxicology and carcinogenicity of 2,4,6-trichlorophenol [J]. Chemosphere, 2012,89(5):521-525.
[4]金盛楊,王玉軍,李連禎,等.納米與微米級零價鐵降解 2,4,6-三氯酚動力學比較 [J]. 中國環(huán)境科學, 2010,30(1):82-87.
[5]Kim Y H, Carraway E R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons [J]. Environ. Sci. Technol., 2000,34(10):2014-2017.
[6]Wan J, Wan J, Ma Y, et al. Reactivity characteristics of SiO2-coated zero-valent iron nanoparticles for 2,4-dichlorophenol degradation [J]. Chem. Eng. J., 2013,221:300-307.
[7]Xu L J, Wang J L. Degradation of chlorophenols using a novel Fe0/CeO2composite [J]. Appl. Catal. B: Environ., 2013,142-143: 396-405.
[8]Zhang Z, Shen Q H, Cissoko N, et al. Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid [J]. J. Hazard. Mater., 2010,182(1-3): 252-258.
[9]Zhou Y, Kuang Y, Li W, et al. A combination of bentonitesupported bimetallic Fe/Pd nanoparticles and biodegradation for the remediation of p-chlorophenol in wastewater [J]. Chem. Eng. J., 2013,223:68-75.
[10]Zhou T, Li Y, Lim T. Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: Comparisons with other bimetallic systems, kinetics and mechanism [J]. Sep. Purif. Technol., 2010,76(2):206-214.
[11]Gautam S K, Suresh S. Dechlorination of DDT, DDD and DDE in soil (slurry) phase using magnesium/palladium system [J]. J. Colloid Interf. Sci., 2006,304(1):144-151.
[12]王 姝,楊 波,張婷婷,等.鈀/泡沫鎳對水體中4-氯酚的氫解脫氯研究 [J]. 中國環(huán)境科學, 2009,29(10):1065-1069.
[13]Cheng I F, Fernando Q, Korte N. Electrochemical dechlorination of 4-Chlorophenol to Phenol [J]. Environ. Sci. Technol., 1997, (31):1074-1078.
[14]Connors T F, Rusling J F. Removal of chloride from 4-chlorobiphenyl and 4,4’-dichlorobiphenyl by electrocatalytic reduction [J]. J. Electrochem. Soc., 1983,130(5):1120-1121.
[15]Dabo P, Cyr A, Laplante F, et al. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol [J]. Environ. Sci. Technol., 2000,34(7):1265-1268.
[16]Bechthold P, Jasen P, Gonzalez E, et al. Hydrogen adsorption on PdGa(110): a DFT study [J]. J. Phy. Chem. C, 2012,116(33): 17518-17524.
[17]Chaplin B P, Roundy E, Guy K A, et al. Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported PdCu catalyst [J]. Environ. Sci.Technol., 2006,40(9):3075-3081.
[18]Shao M H. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions [J]. J. Power Sources, 2011,196(5):2433-2444.
[19]Zhang J T, Huang M H, Ma H Y. High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol [J]. Electrochem. Commun., 2007,9(6):1298-1304.
[20]Knitt L E, Shapley J R, Strathmann T J. Rapid metal-catalyzed hydrodehalogenation of iodinated X-ray contrast media [J]. Environ. Sci. Technol., 2008,42(2):577-583.
[21]Cui C, Quan X, Yu H, et al. Electrocatalytic hydrodehalogenation of pentachlorophenol at palladized multiwalled carbon nanotubes electrode [J]. Appl. Catal.B: Environ., 2008,80(1/2):122-128.
[22]Cheng H, Scott K, Christensen P A. Electrochemical hydrodehalogenation of chlorinated phenols in aqueous solutions II. Effect of operating parameters [J]. J. Electrochem. Soc., 2003, 150(2):D25-D29.
Reductive dechlorination of 2,4,6-TCP on Pd/Ti electrode: parameters optimization and degradation pathway
WEI Xue-feng1,2, SUN Zhi-rong1*(1.College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China;2.College of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China). China Environmental Science, 2014,34(9):2285~2291
Pd loaded Ti electrode (Pd/Ti electrode) was prepared by electrodeposition method and was applied to 2,4,6-TCP dechlorination. The dechlorination parameters were investigated by means of single factor experiment and response surface analysis methods. Reaction rate constants of the possible steps in 2,4,6-TCP dechlorination were fitted out by using the experimental data. The optimized dechlorination condition of 2,4,6-TCP was obtained. i.e., current was 5mA, supporting electrolyte Na2SO4concentration was 0.05mol/L and initial pH of catholyte was 2.40. Under the above conditions, 2,4,6-TCP with a concentration of 80mg/L could be completely dechlorinated in 80min. Dechlorination of 2,4,6-TCP followed pseudo first order kinetics. The main pathway of 2,4,6-TCP dechlorination was 2,4,6-TCP→2,6-DCP→2-CP→phenol.
Pd/Ti electrode;2,4,6-TCP;electrocatalysis;reductive dechlorination;kinetics
X131.2
A
1000-6923(2014)09-2285-07
魏學鋒(1979-),男,河南洛陽人,講師,北京工業(yè)大學博士研究生,主要從事污染控制化學與技術研究.發(fā)表論文20篇.
2014-02-28
國家自然科學基金資助項目(51278006);高等學校博士學科點專項科研基金(20111103110007);北京市屬高等學校長城學者培養(yǎng)計劃(CIT&TCD20130311);北京工業(yè)大學博士生創(chuàng)新基金項目(YB201308)
* 責任作者, 教授, zrsun@bjut.edu.cn