劉 娜,王 柳,邱 華,Alberto Bento Charrua,王 航,王 銳
吉林大學(xué)環(huán)境與資源學(xué)院,長春 130021
生物炭催化過硫酸鹽脫色偶氮染料金橙Ⅱ
劉 娜,王 柳,邱 華,Alberto Bento Charrua,王 航,王 銳
吉林大學(xué)環(huán)境與資源學(xué)院,長春 130021
生物炭作為一種廉價易得的材料,在土壤修復(fù)等各方面的功能已引起廣泛關(guān)注,但其催化作用卻鮮有研究。首次對生物炭(biochar-BC)催化過硫酸鹽(Na2S2O8-PS)使偶氮染料金橙Ⅱ(AO7)脫色的可行性進行研究,對影響催化體系脫色效率的因素(包括pH、生物炭質(zhì)量濃度和PS/AO7摩爾比)進行探討,同時研究了生物炭的重復(fù)利用效果及前后性質(zhì)變化。結(jié)果表明:PS/BC體系明顯比單獨的PS體系脫色效果好;兩個反應(yīng)體系都遵循一級反應(yīng)動力學(xué);PS/BC體系反應(yīng)的最適pH接近中性;生物炭質(zhì)量濃度越大,脫色效果越好;PS/AO7摩爾比越大,脫色效果越好,但是催化效果卻沒有相應(yīng)的改善;生物炭重復(fù)利用后對AO7仍然有脫色效果;BC的孔大多位于層狀結(jié)構(gòu)表面,且為小孔,重復(fù)使用后,表面孔會堵塞;除了灰分和氧元素外,其他元素(C、N、H、S)含量都有一定程度的減??;BC表面官能團種類很多,主要有C=O、C=C、C-O、C-H,芳香族C=C和C-H以及-OH官能團;BC重復(fù)使用后-OH峰會消失。綜上述,生物炭可以催化過硫酸鹽對偶氮染料AO7進行脫色,原理是BC表面的-OH官能團與PS反應(yīng)生成硫酸根自由基去除AO7。
生物炭; 過硫酸鹽; 偶氮染料; 金橙Ⅱ
當今,染料被廣泛應(yīng)用于紡織、繪畫、印刷、塑料和化妝品等行業(yè),但在其生產(chǎn)和應(yīng)用過程中會排放大量印染廢水,其中的有機污染物含量高、水質(zhì)變化劇烈,嚴重危害環(huán)境[1]。在眾多商業(yè)染料中,偶氮染料數(shù)量最多且最重要,可占到50%[2-3]。大多數(shù)偶氮染料具有偶氮鍵,因此有難生物降解和潛在致癌的特點,排入水中會引起嚴重的生態(tài)環(huán)境問題。又因為偶氮染料污染的廢水不僅色度高、化學(xué)需氧量大、總固體含量高,而且水體呈明顯堿性,所以該種廢水的處理問題引起廣泛的關(guān)注[2-4]。
傳統(tǒng)處理印染廢水的方法有結(jié)合高氯酸氧化混凝/絮凝、膜過濾和生物氧化等,然而,這些方法的處理結(jié)果很難滿足排放標準,且具有污泥產(chǎn)量高、膜污染嚴重、生物不穩(wěn)定和效率低等諸多不利的因素[5-6]。因此,如何低能高效降解印染廢水成為現(xiàn)在研究的重點[2]。
高級氧化處理技術(shù)(advanced oxidation processes, AOPs)是一種通過生成高活性自由基,從而高效無選擇性地降解及礦化大部分有機或無機污染物的新技術(shù)[7-8]。污水處理常見的AOPs有光催化降解、芬頓氧化[9]、臭氧氧化、超臨界流體氧化和活化過硫酸鹽氧化?;罨^硫酸鹽氧化是一種新興的處理有機污染物的高級氧化方法,目前主要用于原位化學(xué)氧化將地下水或土壤中污染物轉(zhuǎn)化為少害或無害的化學(xué)物質(zhì)[10]。過硫酸鹽(persulfate, PS)激活后可以產(chǎn)生具有更高氧化電勢(E0=2.6 eV)的硫酸根自由基(SO4·-)[11],其激活方式通常有熱[12-15]、紫外線[16-17]、基質(zhì)、過渡金屬[18-22]、土壤礦物[23-24]和輻射[25-26]。許多研究[27-29]證實熱、金屬、光可以誘導(dǎo)過硫酸鹽產(chǎn)生自由基。有研究[30]提出陰離子、中性有機分子和親核基團也可以氧化產(chǎn)生硫酸根自由基。自由基一旦生成,可以與任何氧化劑包括有機污染物進行反應(yīng)。在酸性條件下,可通過以下反應(yīng)生成SO4·-:
任何pH條件下,通過下述反應(yīng),硫酸根自由基可以生成羥基自由(·OH),提高降解效果[27]。
特別是在pH為中性時,硫酸根自由基與羥基自由基相比有更高的標準還原電勢,所以此時它對有機化合物有更高的處理能力[31]。活性炭(AC)是一種良好的吸附劑、催化劑和催化劑載體。有學(xué)者[32-33]報道活性炭與過氧化氫聯(lián)合氧化可以去除多種有機污染物,甚至是一些無法生物降解的物質(zhì)。過硫酸鹽與過氧化氫有類似的結(jié)構(gòu),它同樣可以和活性炭結(jié)合氧化降解污染物。近年來,研究[34-35]認為活性炭有一種含氧官能團,因此可以作為催化劑催化過硫酸鹽。反應(yīng)機制[34-35]為
(4)
(5)
生物炭(biochar, BC)是一種富含碳的產(chǎn)品,制作過程是將生物質(zhì)如木材、肥料或樹葉在缺氧或者無氧的密閉容器中加熱裂解[36]。生物炭屬于黑炭,可分為木炭、竹炭、秸稈木炭、稻草桿炭、谷殼炭和動物廢物炭。目前仍沒有一個固定的標準來區(qū)分生物炭和其他類似的碳質(zhì)材料。近年來,生物炭在土壤改良中的作用已被證實。與此同時,它在減少溫室氣體和污染環(huán)境修復(fù)等其他方面的應(yīng)用也廣泛引起關(guān)注。研究人員發(fā)現(xiàn),生物炭對重金屬和有機物有較好的吸附作用[37-39]。但至今生物炭在作為催化劑方面的應(yīng)用研究較少。
筆者對生物炭催化過硫酸鹽脫色偶氮染料進行了研究,以金橙Ⅱ(AO7)作為目標污染物,研究了生物炭對AO7的吸附作用及pH對吸附過程的影響、生物炭催化過硫酸鹽使AO7脫色的可行性及影響因素等,以期發(fā)現(xiàn)一種新型的高級氧化活化方式,對偶氮染料廢水具有廉價高效的處理效果。
1.1 材料
過硫酸鈉、金橙Ⅱ購于國藥化學(xué)試劑有限公司。松木生物炭是將條狀松木在馬弗爐中采用厭氧熱解方式燒制而成,熱解條件為450 ℃灼燒2 h,然后研磨過篩得到0.40~0.45 mm的顆粒狀生物炭,記為BC0。
1.2 方法
1.2.1 吸附
吸附過程會對催化產(chǎn)生影響,所以為了研究生物炭的催化作用,需要對生物炭的吸附作用進行研究。首先在100 mL 0.057 mmol/L的金橙Ⅱ溶液中加入一定量的生物炭(質(zhì)量濃度分別為1.0,2.5,5.0,7.5,10.0 g/L);然后將錐形瓶置于恒溫振蕩器中在30 ℃下以150 r/min震蕩,定時取樣測定金橙Ⅱ的濃度及pH變化。
pH是吸附過程中一個至關(guān)重要的因素,因此對不同pH條件下生物炭的吸附情況也進行了研究。方法為控制金橙Ⅱ濃度為0.057 mmol/L,生物炭質(zhì)量濃度為5.0 g/L,初始pH分別為2.54、3.53、4.55、6.09、8.44和10.55。實驗條件及測樣指標同上述吸附條件。所有的實驗均進行3次,文中所用數(shù)據(jù)為3次平均值。
1.2.2 過硫酸鈉催化
在200 mL 0.057 mmol/L的金橙Ⅱ溶液中加入一定量的生物炭(質(zhì)量濃度為5.0 g/L)和過硫酸鈉(nPS/nAO7為100/1),同時加入僅有生物炭和僅有過硫酸鈉的溶液作為空白對比。反應(yīng)條件為:30℃,150 r/min,初始pH為6.15;分別在6、12、24、36、48 h取樣10 mL,用0.45 μm無機濾膜過濾后測定濾液AO7濃度。
研究BC催化PS脫色AO7的影響因素時,除影響因素外,其他反應(yīng)條件若未注明均與上相同。
1.2.3 重復(fù)利用情況
將1.2.2中BC0與PS反應(yīng)的溶液過濾,留下BC0在105 ℃烘干24 h,即得到BC1;同樣烘干BC1及BC2與PS反應(yīng)溶液過濾后留下的生物炭,即得到BC2和BC3。由此得到生物炭的重復(fù)利用結(jié)果。
1.2.4 分析方法
AO7測定方法為分光光度法,測定波長為 484 nm,使用儀器為紫外分光光度計(mini-1240,島津,日本)。pH值用pH計(UB-7,AA,中國)測定。生物炭的零電點pH值(pHpzc)測定方法為:先配制pH分別為2.5、3.5、4.5、5.5、6.5、7.5、8.5、9.5、10.5的水溶液,同時加入0.1 g生物炭,置于恒溫振蕩器中震蕩2 h后取出,過濾,測定濾液的pH值;然后以溶液初始pH為橫軸,初始pH和最終pH為縱軸繪圖,兩條直線的交點處值即為生物炭的pHpzc。生物炭的表面形態(tài)通過掃描電鏡(SEM,JSM-6700F,JEOL,日本)測試,C、H、N、S元素質(zhì)量分數(shù)用元素分析儀(Vario Micro V2.0.12,Elementar,德國)測定。灰分質(zhì)量分數(shù)測試方法為通過生物炭于馬弗爐中在750 ℃下灼燒4 h的質(zhì)量損失計算。O元素質(zhì)量分數(shù)通過質(zhì)量守恒定律計算得到。表面官能團通過傅里葉紅外光譜(FTIR,Thero 6700分光光度計,Nicolet,美國)測定。
2.1 生物炭吸附AO7溶液
不同質(zhì)量濃度生物炭對AO7的吸附結(jié)果如圖1所示。結(jié)果顯示:隨著生物炭質(zhì)量濃度的增大,吸附效果會相應(yīng)增強,吸附平衡時的pH也會相應(yīng)增大。因為AO7溶液是一種酸性染料,所以這表明BC表面有一些可以反應(yīng)使溶液pH增大的物質(zhì)。
初始pH為6.09;c0.AO7的初始濃度為0.057 mmol/L;c.定時取樣時AO7的濃度。圖1 不同質(zhì)量濃度BC對AO7的吸附效果及其吸附過程pH變化Fig.1 Influence of biochar concentration and pH on the adsorption effect of AO7
ρBC為5.0 g/L。圖2 不同初始pH條件下BC對AO7的吸附效果及其吸附后最終pHFig.2 Adsorption effect of AO7 by biochar and the final pH at different initial pHs
圖2為不同初始pH對BC吸附效果的影響:在酸性條件下,隨著pH值的增大,吸附效果會有一定的波動;在堿性條件下,隨著pH值的增大,吸附效果逐漸減弱。當溶液初始pH為10.55時,BC對AO7幾乎沒有吸附;而當pH為2.54時,BC對AO7 48 h的吸附去除效率為20%。出現(xiàn)這種情況的原因可能與pHpzc有關(guān)。因為當溶液pH (6) 或 BC-OH0+AO7-→BC- AO7+OH-。 (7) 結(jié)合圖1和上述吸附機制,推測溶液pH上升的原因是酸性條件可中和吸附過程中產(chǎn)生的OH-,所以吸附效果更好。 2.2 BC催化PS可行性研究 圖3顯示了不同體系(包括單獨PS、單獨BC、PS/BC體系)對AO7的脫色效果。結(jié)果很明顯,三個體系對AO7 48 h的脫色順序從大到小為PS/BC體系(99.5%)、單獨PS體系(65.5%)、單獨BC體系(9.8%)。單獨的BC和PS體系對AO7的脫色效果都不夠好,而PS/BC體系的脫色效率則非常可觀。結(jié)果表明BC可以催化PS使偶氮染料AO7脫色。 對單獨PS和PS/BC催化體系反應(yīng)數(shù)據(jù)進行反應(yīng)動力學(xué)模擬,二者都遵循一級反應(yīng)動力學(xué)。這表明兩個體系的反應(yīng)物濃度隨時間按指數(shù)規(guī)律下降,且反應(yīng)物消耗一半的時間與消耗剩余反應(yīng)物的時間相等。計算得知,單獨PS和PS/BC體系的一級動力學(xué)反應(yīng)常數(shù)k分別為0.022 1和0.105 6 h-1,R2分別為0.976 1和0.942 4(R為相關(guān)系數(shù))。這也和圖3中的結(jié)果一致。研究[2,32,42]也表明AC與H2O2或PS體系的反應(yīng)遵循一級動力學(xué)。 ρBC為5.0 g/L;nPS/nAO7為100/1。圖3 不同體系對AO7脫色效果及其反應(yīng)動力學(xué)Fig.3 Decoloration effect of AO7 by different systems and their reaction kinetics 在PS催化反應(yīng)中,pH是一個至關(guān)重要的因素,因此催化過程中溶液的pH變化也需要研究。如圖4所示,不同的反應(yīng)過程中pH值的變化有很大的區(qū)別:一方面,隨著吸附反應(yīng)的進行,溶液的pH值升高至接近中性,這個結(jié)果與上述吸附研究一致;另一方面,隨著催化反應(yīng)的進行,溶液的pH值會急劇地下降。單獨PS體系的溶液pH降至低于4.0,而PS/BC體系在后續(xù)的反應(yīng)中會有一定回升。Rachel[28]研究發(fā)現(xiàn),熱活化PS氧化脫氯過程中,當SO4·-與水發(fā)生反應(yīng)時,由于質(zhì)子的生成溶液的最終pH值會降低;同時,在BC吸附AO7的過程中,溶液的pH值會有一定程度的增大。因此吸附與催化的共同作用導(dǎo)致PS/BC體系的pH值有一定回升。然而也有研究(如Liang等[27])認為任何情況下SO4·-與水的反應(yīng)并不明顯。 ρBC為5.0 g/L;nPS/nAO7為100/1。圖4 不同體系反應(yīng)pH變化Fig.4 Change of pH in the reaction by different systems 2.3 PS/BC體系脫色AO7過程中的影響因素 筆者研究了pH、生物炭質(zhì)量濃度、PS/AO7摩爾比和BC的重復(fù)利用對PS/BC體系使偶氮染料廢水AO7脫色的影響。 2.3.1 pH的影響 a.單獨PS體系;b. PS/BC體系。ρBC為1.0 g/L;nPS/nAO7為100/1。圖5 不同初始pH條件對AO7的脫色效果Fig.5 Decoloration effect at different initial pHs Table 1 Eaction kinetics constants and correlation coefficient of both systems PS體系pHkR2PS/BC體系pHkR22.560.00720.99632.540.02330.98994.570.00880.99434.540.01160.99946.150.02210.97616.150.03110.94858.450.00610.9988.450.00760.999710.450.00430.994410.450.00400.9897 2.3.2 生物炭質(zhì)量濃度的影響 如圖6所示,隨著生物炭質(zhì)量濃度的增大,單獨BC的吸附作用和PS/BC體系的催化作用都能更好地去除AO7。對吸附過程來說,BC質(zhì)量濃度達到5.0 g/L時,吸附去除率僅為10.0%;對氧化過程來說,當BC質(zhì)量濃度為5.0 g/L時,PS/BC體系36 h對AO7的去除率已經(jīng)接近100.0%。通過對比BC質(zhì)量濃度為0.5 g/L時PS/BC體系和單獨PS體系對AO7的去除效率(分別為73.2%和65.4%),可以得出結(jié)論:BC可以催化過硫酸鹽發(fā)生氧化反應(yīng)。 nPS/nAO7為100/1。圖例中數(shù)值為ρBC。圖6 不同BC質(zhì)量濃度下兩個體系對AO7的去除效果Fig.6 Removal effect of AO7 by both systems at different BC dosages 2.3.3 PS/AO7摩爾比影響 ρBC為1.0 g/L。圖例中比值為nPS/nAO7。圖7 nPS/nAO7對反應(yīng)體系的影響Fig.7 Influence of nPS/nAO7 to the reaction system 2.4 BC重復(fù)利用 2.4.1 BC重復(fù)利用后對PS的催化效果 生物炭重復(fù)利用前后催化PS對AO7的脫色效果如圖8所示。對PS/BC體系來說,BC重復(fù)利用后對AO7的脫色效率明顯下降了:初次使用時脫色效率為79.1%;使用一次后為52.4%;使用兩次后為39.3%。當BC重復(fù)利用一次后催化PS對AO7的脫色效果已經(jīng)不如單獨PS體系。Yang等[2]研究用AC催化PS降解AO7,AC重復(fù)使用后對AO7仍然有很高的脫色效率。分析原因可能是AC經(jīng)過一系列的活化過程,孔及表面充分擴大,從而反應(yīng)更快,而本文中的BC只是簡單的灼燒。但是,這也可以為資源化利用生物質(zhì)廢棄物提供一定的依據(jù)。 ρBC0、ρBC1、ρBC2為1.0 g/L。nPS/nAO7為100/1。圖8 BC重復(fù)利用后PS/BC體系對AO7的去除Fig.8 AO7 removal by PS/BC after BC was reused 2.4.2 BC重復(fù)利用后性質(zhì) 圖9為BC重復(fù)利用前后的SEM圖。由圖9可知: BC的結(jié)構(gòu)為層狀,在很大程度上保留了原材料的形態(tài);在孔的數(shù)量和深度方面,BC的孔大都位于層狀結(jié)構(gòu)的表面,且多數(shù)是小孔;對比BC0--BC1--BC2--BC3可以發(fā)現(xiàn)BC重復(fù)利用一次(BC1)后孔的數(shù)量和大小基本上沒有什么變化,但是使用3次(BC3)后,層狀結(jié)構(gòu)上的孔明顯地都堵塞了,這可能是BC重復(fù)使用后催化效果劇減的主要原因。 圖9 BC重復(fù)使用前后的SEM圖Fig.9 SEM of BC before and after being reused 表2中,對比BC0和BC3的元素質(zhì)量分數(shù)可知,BC重復(fù)使用后除了灰分和氧元素外,其他元素(C、N、H、S)的質(zhì)量分數(shù)都有一定程度的減小。這個結(jié)果與研究[43]中木質(zhì)生物炭的元素質(zhì)量分數(shù)基本一致。H質(zhì)量分數(shù)主要與有機質(zhì)有關(guān),因此H/C摩爾比可以代表其炭化程度[44]。文中松木生物炭的H/C值與其他研究中AC的相比相對較高,這表明材料含有更多的原始有機質(zhì)。原因可能是松木生物炭的熱解溫度為450 ℃,相對較低,不足以炭化所有的有機質(zhì)。 表2 BC0和BC3的元素質(zhì)量分數(shù)對比 由圖10可以看出,BC的表面官能團種類很多。在800~2 000 cm-1范圍內(nèi)主要有C=O,C=C,C-O,C-H,芳香族C=C和C-H。這與文獻[43]中結(jié)果基本一致,且其在3 400 cm-1處有很寬的吸收峰,代表有大量的-OH官能團。對比其使用前后的紅外光譜圖,不同點是與BC0相比,BC1、BC2及BC3在3 400 cm-1處的吸收峰很小,幾乎沒有。 圖10 BC重復(fù)利用前后紅外譜圖變化Fig.10 Infrared spectrogram change of BC before and after being reused 1)生物炭不僅能夠吸附AO7,而且能夠催化PS去除AO7。但是生物炭的吸附能力很弱, pH降低有利于BC的吸附作用。而PS/BC體系間明顯存在著協(xié)同作用,可以有效地使偶氮染料AO7脫色。 2)PS/BC體系遵循一級反應(yīng)動力學(xué),反應(yīng)最佳pH為中性;BC質(zhì)量濃度越大、PS濃度越大,脫色效率越高; BC重復(fù)利用后脫色效率明顯降低,原因可能是BC層狀結(jié)構(gòu)上的孔發(fā)生明顯的堵塞和BC表面的-OH官能團的紅外吸收峰的消失。 3)由一種廉價易得的生物質(zhì)原材料----松木,制備得到的BC可以像活性炭一樣催化PS對AO7進行脫色,其原理推測為BC表面的-OH官能團與PS反應(yīng)生成的自由基去除AO7。 吉林大學(xué)(教育部)地下水資源與環(huán)境重點實驗室的老師和同學(xué)們在本研究的樣品收集和實驗過程中提供了必要的設(shè)備,給予了很大的支持,在此表示感謝。 [1] 譚明, 鄒東雷, 趙曉波. 鐵屑粉煤灰微電解法預(yù)處理印染廢水的研究[J]. 吉林大學(xué)學(xué)報:地球科學(xué)版, 2004, 34(增刊): 122-125. Tan Ming, Zou Donglei, Zhao Xiaobo. A Study of Ironscurf and Ash Micro-Electrolysis Used in Pretreating Dye-Stuff Waste Water[J]. Journal of Jilin University:Earth Science Edition, 2004, 34(Sup.): 122-125. [2] Yang S Y, Yang X, Shao X T, et al. Activated Carbon Catalyzed Persulfate Oxidation of Azo Dye Acid Orange 7 at Ambient Temperature[J]. Journal of Hazardous Materials, 2011, 186(1): 659-666. [3] Lu X J, Yang B, Chen J H, et al. Treatment of Wastewater Containing Azo Dye Reactive Brilliant Red X-3B Using Sequential Ozonation and Upflow Biological Aerated Filter Process[J]. Journal of Hazardous Materials, 2009, 161(1): 241-245. [4] Van der Zee F P, Villaverde S. Combined Anaerobic-Aerobic Treatment of Azo Dyes:A Short Review of Bioreactor Studies[J]. Water Research, 2005, 39(8): 1425-1440. [5] Keiichi T, Kanjana P, Teruaki H. Photocatalytic Degradation of Commercial Azo Dyes[J]. Water Research, 2000, 34(1): 327-333. [6] 周丹丹,趙文元,王君,等. 流化床混凝裝置中多級速度梯度的建立及其對混凝反應(yīng)的影響[J]. 吉林大學(xué)學(xué)報:地球科學(xué)版, 2012, 42(6): 1896-1902. Zhou Dandan, Zhao Wenyuan, Wang Jun, et al. Set-up Method of Multi-Velocity Gradient in a Fluidized Flocculation Bed and Characterization of Its Impact on Flocculation Reaction[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(6): 1896-1902. [7] Gimeno O, Carbajo M, Beltran F J, et al. Phenol and Substituted Phenols AOPs Remediation[J]. Journal of Hazardous Materials, 2005, 119(1/2/3): 99-108. [8] Yan J C, Lei M, Zhu L H, et al. Degradation of Sulfamonomethoxine with Fe3O4Magnetic Nanoparticles as Heterogeneous Activator of Persulfate[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1398-1404. [9] 鄒東雷,王紅艷,楊金玲,等.Fenton試劑氧化-微電解-接觸氧化法處理丙烯腈廢水實驗研究[J]. 吉林大學(xué)學(xué)報:地球科學(xué)版, 2007, 37(4): 793-797. Zou Donglei, Wang Hongyan, Yang Jinling, et al. Study on the Treatment of Acrylonitrile Wastewater by Fenton Reagent,Micro-Electrolysis and Biological Contact Oxidation Process[J]. Journal of Jilin University :Earth Science Edition, 2007, 37(4): 793-797. [10] Yang S Y, Wang P, Yang X, et al. A Novel Advanced Oxidation Process to Degrade Organic Pollutants in Wastewater: Microwave-Activated Persulfate Oxidation[J]. Journal of Environmental Sciences, 2009, 21(9): 1175-1180. [11] Liu C S, Shih K, Sun C X, et al. Oxidative Degradation of Propachlor by Ferrous and Copper Ion Activated Persulfate[J]. Science of Total Environment, 2012, 416: 507-512. [12] Oh S Y, Kim H W, Park J M, et al. Oxidation of Polyvinyl Alcohol by Persulfate Activated with Heat, Fe2+,and Zero-Valent Iron[J].Journal of Hazardous Materials, 2009, 168(1): 346-351. [13] Huang K C, Couttenye R A, Hoag G E. Kinetics of Heat-Assisted Persulfate Oxidation of Methyl Tert-Butyl Ether (MTBE)[J]. Chemosphere, 2002, 49: 413-420. [14] Xie X F, Zhang Y Q, Huang W L, et al. Degradation Kinetics and Mechanism of Aniline by Heat-Assisted Persulfate Oxidation[J]. Journal of Environmental Sciences, 2012, 24(5): 821-826. [15] Huang K C, Zhao Z Q, Hoag G E, et al. Degradation of Volatile Organic Compounds with Thermally Activated Persulfate Oxidation[J]. Chemosphere, 2005, 61(4): 551-560. [16] Lin Y T, Liang C J, Chen J H. Feasibility Study of Ultraviolet Activated Persulfate Oxidation of Phenol[J]. Chemosphere, 2011, 82(8): 1168-1172. [17] Li S X, Hu W. Decolourization of Acid Chrome Blue K by Persulfate[J]. Procedia Environmental Sciences, 2011, 10: 1078-1084. [18] Oh S Y, Kang S G, Chiu P C. Degradation of 2,4-Dinitrotoluene by Persulfate Activated with Zero-Valent Iron[J]. Science of Total Environment, 2010, 408(16): 3464-3468. [19] Oh S Y, Kang S G, Kim D W, et al. Degradation of 2,4-Dinitrotoluene by Persulfate Activated with Iron Sulfides[J]. Chemical Engineering Journal, 2011, 172(2/3): 641-646. [20] Do S H, Kwon Y J, Kong S H. Effect of Metal Oxides on the Reactivity of Persulfate/Fe(II) in the Remediation of Diesel-Contaminated Soil and Sand[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 933-936. [21] Xu X R, Li X Z. Degradation of Azo Dye Orange G in Aqueous Solutions by Persulfate with Ferrous Ion[J]. Separation and Purification Technology, 2010, 72(1): 105-111. [22] Li S X, Wei D, Mak N K, et al. Degradation of Diphenylamine by Persulfate: Performance Optimization,Kinetics and Mechanism[J]. Journal of Hazardous Materials, 2009, 164(1): 26-31. [23] Teel A L, Ahmad M, Watts R J. Persulfate Activation by Naturally Occurring Trace Minerals[J]. Journal of Hazardous Materials, 2011, 196: 153-159. [24] Ahmad M, Teel A L, Watts R J. Persulfate Activation by Subsurface Minerals[J]. Journal of Contaminant Hydrology, 2010, 115(1/2/3/4): 34-45. [25] Roshani B, Leitner N K. Effect of Persulfate on the Oxidation of Benzotriazole and Humic Acid by E-Beam Irradiation[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 403-408. [26] Lee Y C, Lo S L, Chiueh P T, et al. Efficient Decomposition of Perfluorocarboxylic Acids in Aqueous Solution Using Microwave-Induced Persulfate[J]. Water Research, 2009, 43(11): 2811-2816. [27] Liang C J, Wang Z S, Bruell C J. Influence of pH on Persulfate Oxidation of TCE at Ambient Temperatures[J]. Chemosphere, 2007, 66(1): 106-113. [28] Waldemer R H, Tratnyek P G, Johnson R L, et al. Oxidation of Chlorinated Ethenes by Heat-Activated Persulfate Kinetics and Products[J]. Environmental Science and Technology, 2007, 41(3): 1010-1015. [29] Hori H, Yamamoto A, Hayakawa E, et al. Efficent Decomposition of Environnentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant[J]. Environment Science Technology, 2005, 39(7): 2383-2388. [30] Minisci F, Citterio A. Electron-Transfer Processes:Peroxydisulfate, a Useful and Versatile Reagent in Organic Chemistry[J]. Accounts of Chemical Research, 1983, 16(1): 27-32. [31] Anipsitakis G P, Dionysiou D D. Radical Generation by the Interaction of Transition Metals with Common Oxidants[J]. Environmental Science and Technology, 2004, 38(13): 3705-3712. [32] Kurniawan T A, Lo W H. Removal of Refractory Compounds from Stabilized Landfill Leachate Using an Integrated H2O2Oxidation and Granular Activated Carbon (GAC) Adsorption Treatment[J]. Water Research, 2009, 43(16): 4079-4091. [33] Ince N H, Apikyan I G. Conbination of Activated Carbon Adsorption with Light-Enhanced Chemical Oxidation via Hydrogen Peroxide[J]. Water Research, 2000, 34(17): 4169-4176. [34] Liang C J, Lin Y T, Shih W H. Treatment of Trichloroethylene by Adsorption and Persulfate Oxidation in Batch Studies[J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8373-8380. [35] 楊鑫,楊世迎,王雷雷,等. 活性炭催化過二硫酸鹽降解水中AO7[J]. 環(huán)境科學(xué),2011,32(7):1960-1966. Yang Xin, Yang Shiying, Wang Leilei, et al. Activated Carbon Catalyzed Persulfate Oxidation of Azo Dye Acid Orange 7 in Aqueous Solution[J]. Environmental Science, 2011, 32(7): 1960-1966. [36] Lehmann J, Joseph S. Biochar for Environmental Management[M]. London: Earthscan,2009. [37] Chen B L, Zhou D D, Zhu L Z. Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures [J]. Environment Science Technology, 2008, 42(14): 5137-5143. [38] Cao X D, Ma L N, Gao B, et al. Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine[J]. Environment Science Technology, 2009, 43(9): 3285-3291. [39] Liu Z G, Zhang F S. Removal of Lead from Water Using Biochars Prepared from Hydrothermal Liquefaction of Biomass[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 933-939. [40] Reymond J P, Kolenda F. Estimation of the Point of Zero Charge of Simple and Mixed Oxides by Mass Titration[J]. Power Technology, 1999, 103(1): 30-36. [41] Weng C H, Lin Y T, Chen Y J, et al. Spent Green Tea Leaves for Decolourisation of Raw Textile Industry Wastewater[J]. Coloration Technology, 2013, 129(4): 298-304. [42] Georgi A, Kopinke F D. Interaction of Adsorption and Catalytic Reactions in Water Decontamination Processes[J]. Applied Catalysis B: Environmental, 2005, 58(1/2): 9-18. [43] Keiluweit M,Nico P S,Johnson M G,et al.Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar)[J]. Environment Science Technology, 2010, 44(4): 1247-1253. [44] Chun Y, Sheng G Y, Chiou C T, et al. Compositions and Sorptive Properties of Crop Residues-Derived Chars[J]. Environmental Science and Technology, 2004, 38(17): 4649-4655. Biochar Catalyzed Persulfate Decoloration of Azo Dye Acid Orange 7 Liu Na, Wang Liu, Qiu Hua, Alberto Bento Charrua, Wang Hang, Wang Rui College of Environment and Resources, Jilin University, Changchun 130021, China As a kind of inexpensive material-biochar, the function of soil restoration and other aspects has caused wide public concern, but its catalytic role has been studied rarely. The feasibility of persulfate (PS) catalyzed by biochar(BC) to decolor an azo dye (acid orange (AO7)) was studied. Some factors influencing the decolorizing efficiency of PS/BC system were evaluated, including pH, concentration of biochar and PS/AO7 mole ratio. What’s more, the recycle effect and characteristics of biochar were studied.Results showed that the decolorizing effect of the PS/BC system was obviously better than the only PS system. The decoloration of AO7 by both reaction systems followed first order reaction kinetics. The optimum pH of PS/BC system was near-neutral. The higher the biochar concentration, the better the decolorizing effect was. Similar trend was observed for the PS/AO7 mole ratio, whereas the catalytic effect did not increase accordingly. The reused biochar could still decolor AO7. The BC holes were mostly located on the surface of the layered structure, and most of them were blocked after repeated use. Excluding ash and oxygen, content of elements (C, N, H, S) reduced at a certain degree. Many different surface functional groups of BC were mainly C=O, C=C, C-O, C-H, aromatic C=C and C-H and -OH. The absorption peak of -OH disappeared after repeated use. All the above, pine biochar could catalize persulfate to decolorize azo dye -AO7, and the principle was that, the sulfate free radical which was produced by the reaction of -OH function group on the surface of biochar and persulfate could remove AO7. biochar; persulfate; azo dye; acid orange 7 10.13278/j.cnki.jjuese.201406209. 2014-04-25 國家自然科學(xué)基金項目(41072170);吉林省科技廳應(yīng)用基礎(chǔ)研究項目(20030550) 劉娜(1976--),女,教授,博士生導(dǎo)師,主要從事環(huán)境生物技術(shù)方面的研究,E-mail:liuna@jlu.edu.cn。 10.13278/j.cnki.jjuese.201406209 X506 A 劉娜,王柳,邱華,等.生物炭催化過硫酸鹽脫色偶氮染料金橙Ⅱ.吉林大學(xué)學(xué)報:地球科學(xué)版,2014,44(6):2000-2009. Liu Na , Wang Liu , Qiu Hua, et al.Biochar Catalyzed Persulfate Decoloration of Azo Dye Acid Orange 7.Journal of Jilin University:Earth Science Edition,2014,44(6):2000-2009.doi:10.13278/j.cnki.jjuese.201406209.3 結(jié)論