孫才志 董璐
摘要在對水貧困相關(guān)理論理解的基礎(chǔ)上,以災害風險管理作為研究切入點,構(gòu)建中國農(nóng)村水貧困風險評價指標體系,指標體系由經(jīng)濟、社會、生態(tài)和資源4個子系統(tǒng)共44個指標組成。對2000-2011年我國31個省(市)地區(qū)農(nóng)村水貧困風險進行測算的情況下,將各省份4個子系統(tǒng)風險得分與農(nóng)村水貧困風險得分進行比較分析,得到不同地區(qū)子系統(tǒng)發(fā)展狀況,為降低水貧困風險狀況,實現(xiàn)子系統(tǒng)的適應(yīng)性發(fā)展尋找方向。進一步了解我國農(nóng)村水貧困風險的空間分布狀況,利用有序聚類,對31個地區(qū)進行分類,將農(nóng)村水貧困狀況分為3類:高度風險水貧困、中度風險水貧困、低度風險水貧困,分析結(jié)果表明:我國農(nóng)村水貧困狀況呈現(xiàn)出從東南向西北地區(qū)不斷加劇的發(fā)展趨勢,大部分?。ㄊ校┺r(nóng)村地區(qū)屬于中高度風險水貧困狀況,低度風險水貧困多為東部沿海省份,農(nóng)村經(jīng)濟發(fā)展水平較高,農(nóng)村地區(qū)社會配套設(shè)施完善,水貧困風險壓力較小,但應(yīng)積極協(xié)調(diào)各系統(tǒng)綜合發(fā)展,降低子系統(tǒng)災害風險,實現(xiàn)農(nóng)村水資源的可持續(xù)利用。
關(guān)鍵詞農(nóng)村水貧困;災害風險指數(shù);主客觀賦權(quán)法
中圖分類號F062文獻標識碼A文章編號1002-2104(2014)03-0083-10doi:10.3969/j.issn.1002-2104.2014.03.013
水資源短缺已成為制約我國經(jīng)濟發(fā)展、社會穩(wěn)定和生態(tài)安全的瓶頸問題。隨著我國人口的膨脹和城鎮(zhèn)化腳步的不斷推進,人們對于水資源的需求不斷增加,水資源供需矛盾日益尖銳,受全球氣候變化的影響,我國水資源時空分布不均愈演愈烈,干旱等災害頻發(fā),水資源短缺問題引起了國家和社會各界的廣泛關(guān)注。水貧困基于一般的貧困理論,綜合了水資源的開發(fā)、利用和管理以及人們利用水資源的能力和生計影響等多維度考慮,形成了關(guān)于水資源短缺相對獨特的研究視角,為水資源短缺問題的研究開辟了新的研究領(lǐng)域。
1文獻綜述
國外關(guān)于水貧困的研究較早,但起始階段的研究多為思辨性成果,并沒有形成分析框架,直到1989年瑞典水文學家 Falkenmark,提出以人均水資源量作為衡量一個國家或地區(qū)水資源供需關(guān)系是否緊張的指數(shù)(Hydrological Water Stress Index,HWSI)[1],才真正開啟了對水貧困測度的研究,但HWSI沒有考慮到經(jīng)濟發(fā)展、水質(zhì)以及社會供水能力等問題,其指標構(gòu)建方法也對水資源短缺評價有較大的主觀性影響。為了消除HWSI的缺陷,德國學者Leif Ohlsson在HWSI的基礎(chǔ)上,建立了社會水缺乏指數(shù)該指數(shù)融合了人文發(fā)展指數(shù)(HDI),建立起了水資源缺乏與經(jīng)濟社會發(fā)展之間的聯(lián)系,闡述了水貧困對社會系統(tǒng)產(chǎn)生的影響作用,但由于HDI指數(shù)涵蓋的有限性,與水資源開發(fā)、利用等相關(guān)的人類活動無法在指數(shù)中有所體現(xiàn),利用SWSI反映水資源短缺也存在著局限性。英國牛津大學研究員Caroline Sullivan 綜合水資源狀況、普水設(shè)施、供水能力、用水效率和水環(huán)境5個方面內(nèi)容,建立了水貧困指數(shù)4]和氣候脆弱性指數(shù)(并對流域尺度上的水貧困狀況進行了評價。
國內(nèi)學者關(guān)于水貧困理論的探索性研究較少,大多是對WPI指數(shù)就不同研究尺度進行測度。曹建廷[9]、何棟材[10]等將水貧困的概念引入國內(nèi),并詳細介紹了水貧困歷史演變過程以及不同尺度上水貧困評價方法;邵薇薇、楊大文[11]利用WPI指標體系,對我國主要流域狀況進行實證研究;孫才志[12]將WPI與ESDA模型相結(jié)合,對省際水平上我國水貧困狀況進行空間關(guān)聯(lián)格局分析;曹茜,劉銳[13]在WPI指標框架下,選擇適應(yīng)性指標,對我國贛江流域水貧困情況進行綜合評價。
我國是一個農(nóng)業(yè)大國,農(nóng)村總?cè)丝谡既珖側(cè)丝诘?0%以上,鮮有文獻對農(nóng)村水貧困進行系統(tǒng)研究。與城鎮(zhèn)相比,我國農(nóng)村地區(qū)水資源短缺狀況更為嚴峻,2011年我國農(nóng)村人均生活用水量為82 L/人,不足城鎮(zhèn)人均生活用水的一半,農(nóng)村居民用水被城鎮(zhèn)用水無償壓縮,用水權(quán)力遭到抑制;農(nóng)田水利設(shè)施老化,節(jié)水灌溉力度不足,水資源浪費嚴重;農(nóng)藥和化肥高施用量更造成了土壤的深度污染,農(nóng)村水資源短缺的局面迫切得到改善。針對農(nóng)村水貧困問題,孫才志、湯瑋佳[14]利用WPI指數(shù),構(gòu)建了農(nóng)村水貧困評價指標體系,呈現(xiàn)了我國農(nóng)村地區(qū)的水貧困狀況。以WPI為中心的水貧困測度,綜合多方面因素影響,對水資源短缺狀態(tài)進行描述,但水貧困狀況的發(fā)生根本上取決于供水和需水兩方面,受降水、徑流以及人為等因子的影響,供需水過程中存在著不同程度的不確定因素,因此,水貧困具有一定隨機性,即存在一定災害風險,如何緩解和避免由于水貧困風險所造成的國民經(jīng)濟損失應(yīng)是當下關(guān)注的問題。本文從災害風險管理的角度出發(fā),在對水貧困災害性進行透視分析的基礎(chǔ)上,建立適用于省際間可比較的水貧困災害風險指標體系,對我國31個省市(自治區(qū))農(nóng)村水貧困的災害風險進行分析,以期為不同地區(qū)農(nóng)村水資源管理政策的制定提供理論借鑒依據(jù)。
孫才志等:基于災害學視角的中國農(nóng)村水貧困測度中國人口·資源與環(huán)境2014年第3期2水貧困的災害性透視
Cullis & ORegan[15]將水貧困定義為獲得水能力的缺乏或者利用水的權(quán)力的缺乏,水貧困內(nèi)涵主要包括三個方面:自然屬性,水貧困的發(fā)生最直接的因素來源于生態(tài)環(huán)境的自然異變和人類活動誘發(fā)的異變,不僅表現(xiàn)在水資源短缺客觀存在方面,更表現(xiàn)在其對自然界產(chǎn)生的影響;社會屬性,水貧困的發(fā)生影響著人類的生存和社會發(fā)展的方方面面,人類及其活動在內(nèi)的社會及各種資源正是水貧困發(fā)生過程中的承災體;經(jīng)濟屬性,水貧困發(fā)生必定會損失已形成的資產(chǎn)和資源,給社會經(jīng)濟造成破壞,帶給社會負經(jīng)濟效益。由于水貧困的自然屬性、社會屬性和經(jīng)濟屬性決定了水貧困是一種災害,災害的自然、社會和經(jīng)濟屬性特征始終貫穿于水貧困的內(nèi)涵中,水貧困不僅影響生態(tài)環(huán)境的變化,還會對人類生存和發(fā)展產(chǎn)生威脅,增加人類脫貧的成本。因此,基于災害學的視角對水貧困進行研究,可以綜合考慮水貧困發(fā)生過程中各種災害風險和系統(tǒng)內(nèi)部的性質(zhì)特點,建立具有代表性和可行性的水貧困災害風險管理框架,針對性提出水貧困風險管理建議,對水貧困動態(tài)變化的觀測和災害風險預警體制的形成起積極推動作用。
3研究方法及數(shù)據(jù)說明
3.1研究方法
3.1.1災害風險指數(shù)
災害風險是指災害活動所達到的損害程度及其發(fā)生的可能性。國內(nèi)外學者普遍認為災害風險一般是致災因子危險性、承災體的暴露性和脆弱性綜合作用的結(jié)果,所以災害風險函數(shù)可以表示為:
災害風險=f(危險性,暴露性,脆弱性)
3.1.2主客觀賦權(quán)法
水貧困研究中涉及的影響因素眾多,單純利用專家主觀賦權(quán)法,主觀性較強,結(jié)果依賴于分析者的經(jīng)驗判斷,往往會因為分析者不同,差異性較大,影響評價結(jié)果的客觀性。熵值代表一個事件的隨機性和無序性程度,也可用來表示指標的分散程度,數(shù)據(jù)越分散,其對結(jié)果的影響就越大。水貧困災害的發(fā)生與指標的分散化發(fā)展趨勢有關(guān),因此,采用熵值法確定的客觀權(quán)重能夠比較好的反映指標對水貧困災害風險的影響程度。在實際應(yīng)用中,為了實現(xiàn)定性分析與定量研究相結(jié)合,主客觀相統(tǒng)一,本文綜合層次分析法(AHP)和熵值法(EVM)的優(yōu)缺點,保證指標權(quán)重的合理性,選擇兩種方法共同確定滿足主客觀條件的指標權(quán)重。災害學視角下農(nóng)村水貧困風險測評值從2000年的0.889下降到2011年的0.480,充分說明了我國農(nóng)村水貧困狀況呈現(xiàn)出良好的發(fā)展狀態(tài),在2000-2011年的發(fā)展過程中,雖然出現(xiàn)波動,但整體下降趨勢明顯,可具體分為2個發(fā)展階段:①2000-2007年快速下降階段,水貧困風險指數(shù)出現(xiàn)了持續(xù)下降,從2000年的0.889發(fā)展到2007年的0.570,下降幅度較大,這一時期生態(tài)系統(tǒng)和資源系統(tǒng)起到積極推動作用,分別從2000年的0.877和1.084下降為2007年的0.707和0.381,雖然經(jīng)濟系統(tǒng)和社會系統(tǒng)風險測評結(jié)果也呈現(xiàn)出下降的變化趨勢,但整體作用不突出,2006年水貧困風險測評結(jié)果上升作用明顯,在資源系統(tǒng)的拉動作用減弱,生態(tài)系統(tǒng)風險化發(fā)展的背景下,其他系統(tǒng)并未形成承接性推動優(yōu)勢。②2008-2011年波動發(fā)展階段,期間內(nèi)水貧困風險測評值下降速度放緩,綜合測評值在0.45-0.60之間波動,盡管資源系統(tǒng)風險指數(shù)拉動作用減弱,但經(jīng)濟子系統(tǒng)發(fā)展強勁,風險得到有效管理,彌補了社會和生態(tài)系統(tǒng)風險對農(nóng)村水貧困表2中國農(nóng)村水貧困子系統(tǒng)風險得分
4.2農(nóng)村水貧困子系統(tǒng)風險分析
為深入剖析不同地區(qū)間農(nóng)村水貧困風險差異,進一步了解各地區(qū)農(nóng)村水貧困程度及災害風險原因,將我國各省市(自治區(qū))各子系統(tǒng)歷年風險測評結(jié)果(見表2)與農(nóng)村水貧困風險測評結(jié)果(見表3)進行比較分析,探尋農(nóng)村水貧困發(fā)展中各子系統(tǒng)的風險現(xiàn)狀和發(fā)展局限,將各子系統(tǒng)的風險發(fā)展狀況進行如下分析,限于版面問題,表2僅列出部分計算結(jié)果。
4.2.1經(jīng)濟系統(tǒng)
比較2000-2011年各地區(qū)經(jīng)濟系統(tǒng)與農(nóng)村水貧困風險綜合測評值得分及其排名,層次劃分明顯,地區(qū)間發(fā)展水平差異性大。其中,福建、廣西、海南、云南、西藏、青海和寧夏經(jīng)濟系統(tǒng)風險整體優(yōu)于農(nóng)村水貧困風險,經(jīng)濟系統(tǒng)風險管理水平有效地降低了農(nóng)村水貧困災害形成的可能性;北京、河北、遼寧、吉林、黑龍江、上海、江蘇、浙江、安徽、江西、山東、湖北、重慶、貴州、甘肅和新疆等16個地區(qū)經(jīng)濟系統(tǒng)風險排名與農(nóng)村水貧困風險得分排名基本一致;而天津、山西、內(nèi)蒙古、河南、湖南、廣東、四川和陜西8個省農(nóng)業(yè)經(jīng)濟發(fā)展狀況對農(nóng)村水貧困的發(fā)展起阻礙作用。具體體現(xiàn)在,天津市農(nóng)業(yè)經(jīng)濟增長速度低于全國平均水平而政府在農(nóng)林水三項中的投資比重過低,導致地區(qū)經(jīng)濟系統(tǒng)出現(xiàn)高脆弱性和低適應(yīng)性的發(fā)展狀況;河南和陜西省作為我國農(nóng)業(yè)大省,產(chǎn)業(yè)結(jié)構(gòu)未實現(xiàn)優(yōu)化轉(zhuǎn)型,第一產(chǎn)業(yè)比重過高,成為地區(qū)控制經(jīng)濟系統(tǒng)脆弱性的障礙因素;山西省農(nóng)業(yè)經(jīng)濟發(fā)展偏離度高、地區(qū)人均生產(chǎn)總值以及農(nóng)林水三項財政支出比重不足,使經(jīng)濟系統(tǒng)高災害危險性、高脆弱性和低適應(yīng)性狀況交織出現(xiàn);內(nèi)蒙古是我國生產(chǎn)農(nóng)畜產(chǎn)品的主要省份,隨著農(nóng)牧業(yè)發(fā)展方式的轉(zhuǎn)變,農(nóng)牧業(yè)結(jié)構(gòu)調(diào)整逐步優(yōu)化,但較高的農(nóng)業(yè)經(jīng)濟滯后率、農(nóng)村水利基礎(chǔ)建設(shè)比重和環(huán)境治理力度不足的現(xiàn)狀,使得內(nèi)蒙古農(nóng)村經(jīng)濟出現(xiàn)高危險性和低適應(yīng)的風險化發(fā)展趨勢;湖南和廣東經(jīng)濟系統(tǒng)風險化發(fā)展表現(xiàn)為農(nóng)村經(jīng)濟系統(tǒng)高暴露性和低適應(yīng)性,政府部門應(yīng)加大農(nóng)村改水投資比重、注重農(nóng)村水污染問題的解決;四川地處我國西南地區(qū),經(jīng)濟系統(tǒng)風險化發(fā)展主要體現(xiàn)在農(nóng)村居民恩格爾系數(shù)較低而引發(fā)的經(jīng)濟系統(tǒng)高危害性及系統(tǒng)高脆弱性,適應(yīng)性發(fā)展能力不足,更使得經(jīng)濟發(fā)展不具可持續(xù)性??傊?,對于水資源嚴重匱乏的西部地區(qū)而言,提高水資源利用效率、制定合理的水資源管理政策對農(nóng)業(yè)經(jīng)濟的發(fā)展則顯得更為重要[19]。
4.2.2社會系統(tǒng)
觀察2000-2011年農(nóng)村社會系統(tǒng)和農(nóng)村水貧困風險綜合測評得分和排名,安徽、福建、江西、湖南、廣東、廣西、海南和重慶地區(qū)農(nóng)村社會系統(tǒng)對水貧困風險的降低起積極拉動作用,天津、山西、內(nèi)蒙古、吉林、黑龍江、上海、浙江、河南、湖北、四川、貴州、西藏、甘肅和青海等14個地區(qū)農(nóng)村水資源能夠較好的承接社會系統(tǒng)的穩(wěn)步發(fā)展,其他地區(qū)社會系統(tǒng)與全國社會系統(tǒng)的發(fā)展狀態(tài)整體一致,社會系統(tǒng)風險較大成為農(nóng)村水貧困風險管理的重要限制因素。在城鄉(xiāng)發(fā)展差距逐步拉大,以社會基礎(chǔ)保障設(shè)施為主體的農(nóng)村民生保障體系未完善的背景下,系統(tǒng)風險惡化了農(nóng)村水貧困狀況,北京、河北和山東由于農(nóng)村社會系統(tǒng)的高危險性和承災體的高暴露性,使農(nóng)村水貧困風險壓力較大,體現(xiàn)在區(qū)內(nèi)農(nóng)村飲用水安全未得到有效保障,境內(nèi)氟水、砷水、苦咸水等不達標水質(zhì)類型分布廣泛,此外,河北和山東農(nóng)村人口比重高,糧食產(chǎn)量高,暴露于災害中,易遭受較大損失;遼寧、江蘇、陜西、寧夏和新疆社會系統(tǒng)的高災害風險體現(xiàn)在系統(tǒng)的高危險性、高脆弱性和低適應(yīng)性,農(nóng)村改水受益人口和鄉(xiāng)辦水電站數(shù)量不足直接制約了農(nóng)村水資源的利用和配置,科技事業(yè)投入費用不足和農(nóng)村衛(wèi)生廁所普及率不高,使社會系統(tǒng)成為農(nóng)村水貧困發(fā)展的“短板因素”;云南受地形的限制,水資源開發(fā)利用難度高、社會配套基礎(chǔ)設(shè)施展開困難且地區(qū)經(jīng)濟發(fā)展水平不高,資金支撐作用不足,農(nóng)村人口生活水平普遍較低,系統(tǒng)易陷入高危險性,高暴露性、系統(tǒng)高敏感性和低適應(yīng)性的惡性循環(huán)中,爆發(fā)水貧困的風險較大。
4.2.3生態(tài)系統(tǒng)
與農(nóng)村水貧困風險綜合測評結(jié)果相比,江蘇、安徽、河南、貴州、西藏、陜西和新疆等地區(qū)農(nóng)業(yè)生態(tài)系統(tǒng)風險得分整體優(yōu)勢明顯。內(nèi)蒙古、吉林、浙江、湖南、廣東、廣西、云南、青海和寧夏生態(tài)系統(tǒng)發(fā)展滯后于農(nóng)村水貧困發(fā)展,增加了總體水貧困系統(tǒng)風險,其中,內(nèi)蒙古和吉林位于我國東北地區(qū),水資源年際變化較大,農(nóng)田易遭受水旱災影響,農(nóng)業(yè)節(jié)水灌溉面積比重不足等造成農(nóng)田生態(tài)系統(tǒng)的高危險性和高脆弱性;浙江和湖南生態(tài)系統(tǒng)風險較大的主要原因在于系統(tǒng)的高脆弱性,具體表現(xiàn)為浙江省的高生態(tài)需水率和湖南省的農(nóng)業(yè)節(jié)水灌溉面積的不足;廣東、廣西和云南地處我國南部,生態(tài)環(huán)境本底條件優(yōu)越,但以犧牲生態(tài)環(huán)境為代價的粗放型農(nóng)業(yè)經(jīng)濟的發(fā)展,使得農(nóng)田畝均用水量較高,農(nóng)田旱澇保收面積比重較低,加劇了生態(tài)系統(tǒng)的災害風險,高暴露性、高脆弱性和低適應(yīng)性,使農(nóng)村生態(tài)環(huán)境有災害化的發(fā)展傾向;青海和寧夏地處我國干旱半干旱的西北地區(qū),年降水量少,耕地沙化面積不斷擴大,水土流失嚴重,青海省有“中華水塔”的美譽,更是我國主要河流的發(fā)源地,境內(nèi)生態(tài)環(huán)境的失衡會嚴重影響中下游流域的水質(zhì),高脆弱性和低適應(yīng)性的農(nóng)村生態(tài)系統(tǒng)風險化發(fā)展對我國水資源影響意義深遠。除以上省份以外,其他省份生態(tài)系統(tǒng)發(fā)展狀態(tài)與農(nóng)村水貧困狀態(tài)基本一致。
4.2.4資源系統(tǒng)
對比2000-2011年資源系統(tǒng)和農(nóng)村水貧困風險綜合得分,其中,北京、天津、河北、遼寧、上海、安徽、福建、江西、山東等9個地區(qū)資源系統(tǒng)風險得分高于水貧困得分,其中,北京、天津、河北、山東地處我國華北平原,降水年際變化較大,自然水資源短缺嚴重,跨流域調(diào)水等引水工程的建設(shè)有效的緩解了地區(qū)用水壓力,但由于產(chǎn)業(yè)間用水結(jié)構(gòu)分配不合理,使得農(nóng)業(yè)用水大量擠出,農(nóng)村水資源系統(tǒng)高危險性和高脆弱性使得地區(qū)農(nóng)村水貧困風險有加大的趨勢,遼寧省資源系統(tǒng)風險控制的障礙因子主要在于系統(tǒng)的高脆弱性和低適應(yīng)性,分別體現(xiàn)在農(nóng)村人均生活用水和提高農(nóng)業(yè)用水效率方面;上海、安徽、福建和江西地處我國東南部,區(qū)內(nèi)河網(wǎng)密布,降水量豐富,水資源本底優(yōu)勢明顯對農(nóng)村水貧困的緩解起良好的推動作用,但從另一角度而言也間接增加了系統(tǒng)暴露性,由于該部分地區(qū)大多是豐水區(qū),用水壓力小,人們易形成了水資源“無限可用”的觀念,節(jié)水、愛水、護水意識不強,綜合作用導致萬元GDP用水和單位農(nóng)業(yè)增加值用水降低不明顯,高暴露性和低減災能力使得地區(qū)面臨水貧困加劇的風險。湖北、四川、貴州、西藏和青海地區(qū)資源系統(tǒng)發(fā)展過程中雖然出現(xiàn)過波動,但農(nóng)村水資源系統(tǒng)風險整體優(yōu)于農(nóng)村水貧困狀況,積極拉動水貧困狀況的改善,而其他省份農(nóng)村水資源能基本負擔農(nóng)村生產(chǎn)生活的各項需要,對水貧困系統(tǒng)風險作用不明顯。吉林、陜西和青海省農(nóng)村水貧困風險主要是由于經(jīng)濟系統(tǒng)、生態(tài)系統(tǒng)和資源系統(tǒng)的風險化發(fā)展造成的。以青海省為例,青海省是我國主要河流的發(fā)源地,其人均水資源量是全國平均水平的近5倍,水資源分布不均衡的局面制約著該地區(qū)水資源的整體利用,跨流域調(diào)水和蓄水工程的不斷推進,有效的改善了自然水資源不均衡局面,但是大量的財力、物力的投入也給地方政府帶來較大的經(jīng)濟負擔,土地沙化不斷加劇,水環(huán)境保護力度遠遠不足。海南省水資源豐富,降水密集,其農(nóng)村水貧困的災害風險重點體現(xiàn)在經(jīng)濟系統(tǒng)和生態(tài)系統(tǒng),應(yīng)充分利用其優(yōu)越的水土資源,提高農(nóng)業(yè)生產(chǎn)效率,積極開展綠色農(nóng)業(yè),在保護生態(tài)環(huán)境的同時積極引導農(nóng)業(yè)模式的轉(zhuǎn)變。重慶和貴州經(jīng)濟發(fā)展優(yōu)勢不明顯,地處云貴高原上,農(nóng)村水利設(shè)施難展開,用水成本較高,經(jīng)濟系統(tǒng)和社會系統(tǒng)風險惡化了水貧困狀況;西藏是我國水資源的重要儲備地區(qū),藏東南低山平原區(qū)更是我國降水最豐富的地區(qū)之一,其農(nóng)村水貧困發(fā)展的弊端在于經(jīng)濟系統(tǒng)、社會系統(tǒng)和生態(tài)系統(tǒng)的高風險,由于地理位置偏僻,境內(nèi)多冰川災害,高寒的惡劣氣候,交通、水利等基礎(chǔ)設(shè)施建設(shè)難以展開,不能有效提高邊疆地區(qū)農(nóng)村的生活水平,應(yīng)穩(wěn)步將西藏未開發(fā)利用的水資源納入框架,真正的改善西藏農(nóng)村水貧困狀況。山西、寧夏和新疆位于我國干旱、半干旱地區(qū),農(nóng)村水貧困的災害風險體現(xiàn)在社會系統(tǒng)、生態(tài)系統(tǒng)和資源系統(tǒng),由于自然降水不足,蒸發(fā)能力大,農(nóng)村水資源供需矛盾突出,產(chǎn)業(yè)用水激增的局面更使農(nóng)村水貧困風險狀況堪憂。
4.3.2中度風險水貧困地區(qū)
包括北京、天津、內(nèi)蒙古、江西、河南、湖北、湖南、廣東、廣西、云南和甘肅等11個地區(qū)。根據(jù)地理位置可劃分為兩個集群,分別是以北京、天津、內(nèi)蒙古、河南和甘肅為中心的集群和以江西、湖北、湖南、廣東、廣西和云南為中心的集群。關(guān)于第一集群,北京、天津地處華北平原,人口密集,自然水資源短缺嚴重,為保證經(jīng)濟的持續(xù)高速發(fā)展,在工業(yè)化進程中,由于其他產(chǎn)業(yè)對農(nóng)業(yè)用水形成擠占趨勢,迫使農(nóng)業(yè)過多的擠占了生態(tài)用水,地下水資源過度超采惡化了生態(tài)環(huán)境,該地區(qū)農(nóng)村社會系統(tǒng)、生態(tài)系統(tǒng)和資源系統(tǒng)都呈現(xiàn)出不同程度的災害化,內(nèi)蒙古、河南和甘肅等地區(qū)農(nóng)村水貧困風險化狀況是由于經(jīng)濟系統(tǒng)和生態(tài)系統(tǒng)的災害風險發(fā)展造成的,以河南省為例,河南省是我國農(nóng)業(yè)大省,應(yīng)積極調(diào)整農(nóng)作物的種植結(jié)構(gòu),普及節(jié)水設(shè)施和節(jié)水技術(shù),政府應(yīng)加大農(nóng)村水利基礎(chǔ)建設(shè)投入,實現(xiàn)農(nóng)村經(jīng)濟和農(nóng)業(yè)用水的和諧發(fā)展。第二集群全部位于我國南部,農(nóng)村水貧困問題主要集中在經(jīng)濟系統(tǒng)、社會系統(tǒng)和生態(tài)系統(tǒng),江西、湖北和湖南位于長江中下游地區(qū),水網(wǎng)密布,淡水資源豐富,優(yōu)越的自然條件使得農(nóng)業(yè)生產(chǎn)水平較高,由于粗放農(nóng)業(yè)發(fā)展的遺留問題,水資源浪費和污染嚴重,地區(qū)水土流失面積不斷擴大。云南省位于長江流域上游地區(qū),境內(nèi)水資源多源于大氣降水補給,人均水資源豐富,但境內(nèi)多災害,旱災波及范圍廣,發(fā)生頻率高,高暴露性進一步惡化了該地區(qū)農(nóng)村水貧困狀況。廣東和廣西省自然水資源豐富,但由于供水水源污染嚴重,粗放的農(nóng)田灌溉方式及其他形式的用水不當加劇了地區(qū)農(nóng)村水貧困狀況,在各項產(chǎn)業(yè)發(fā)展的過程中,應(yīng)注意提高農(nóng)村經(jīng)濟的發(fā)展效率,降低經(jīng)濟系統(tǒng)和生態(tài)系統(tǒng)的系統(tǒng)風險,逐步縮小與低度風險水貧困地區(qū)間的差距。
4.3.3低度風險水貧困地區(qū)
包括河北、遼寧、黑龍江、上海、江蘇、浙江、安徽、福建、山東和四川等10個省(市)地區(qū)。黑龍江是我國重要的商品糧基地,也是我國最早實現(xiàn)農(nóng)業(yè)大規(guī)模機械化生產(chǎn)的省份,其農(nóng)業(yè)發(fā)展模式積極帶動了其他產(chǎn)業(yè)的轉(zhuǎn)型,雖然整體農(nóng)村水貧困較低,但從用水結(jié)構(gòu)上看,農(nóng)業(yè)用水仍是該地區(qū)用水比重最高的產(chǎn)業(yè),而農(nóng)田灌溉用水又占據(jù)了農(nóng)業(yè)用水的主體部分,農(nóng)田用水效率低下,灌溉設(shè)備老化以及節(jié)水灌溉普及率低等現(xiàn)象普遍,增加了社會系統(tǒng)和資源系統(tǒng)的系統(tǒng)風險;河北和安徽位于我國中部,自然水資源不足且分布不均衡,地區(qū)間均出現(xiàn)不同程度的輸供水不足,但在農(nóng)村基層水利工程的持續(xù)深入過程中,有效改善高硬度及含氟量高的水體質(zhì)量,節(jié)水農(nóng)作物的普及,有效的壓縮農(nóng)田灌溉用水量,配套噴灌、滴灌、和波涌灌等節(jié)水技術(shù)的使用,改善了社會系統(tǒng)和資源系統(tǒng)的風險狀況。四川省雖然屬于低度風險水貧困地區(qū),但應(yīng)積極引導地區(qū)農(nóng)村經(jīng)濟的發(fā)展模式和經(jīng)濟產(chǎn)業(yè)結(jié)構(gòu)的調(diào)整,以扭轉(zhuǎn)農(nóng)村經(jīng)濟的風險化發(fā)展趨勢。遼寧、上海、江蘇、浙江、福建和山東屬于我國東部沿海省份,自然水資源和生態(tài)環(huán)境條件相對優(yōu)越,水資源承受的壓力較小,農(nóng)村經(jīng)濟生活較為富足,政府在農(nóng)村水利工程實施過程中起較好的調(diào)控作用,使得地區(qū)農(nóng)村水貧困壓力較小,各地區(qū)應(yīng)均衡各子系統(tǒng)風險發(fā)展的狀況,使各系統(tǒng)風險得到有效控制,進而促進我國農(nóng)村實現(xiàn)水資源的可持續(xù)利用。近幾年極端天氣的頻繁出現(xiàn),水資源問題面臨更大的不確定性和嚴峻的挑戰(zhàn)性,如干旱災害和洪水災害等頻發(fā),溫度和降雨量或蒸發(fā)量變化規(guī)律和趨勢難以預測等問題突出[21]。低度風險水貧困地區(qū)應(yīng)在承災體高暴露性的狀態(tài)下,有效控制生態(tài)系統(tǒng)和資源系統(tǒng)風險,協(xié)調(diào)各子系統(tǒng)的發(fā)展,徹底解決水貧困返貧化的趨勢。
5結(jié)論
本文在對水貧困理論認識和理解的基礎(chǔ)上,結(jié)合系統(tǒng)災害風險的相關(guān)理論,以災害風險為研究切入點,遵循綜合性、可比較性、可獲得性的原則,對農(nóng)村水貧困問題進行新的探討,在經(jīng)濟系統(tǒng)、社會系統(tǒng)、生態(tài)系統(tǒng)和資源系統(tǒng)中,選擇能夠表征危險性、暴露性、承災體脆弱性和適應(yīng)性的指標,構(gòu)建災害學視角下農(nóng)村水貧困的評價指標體系,將各省份4個子系統(tǒng)與農(nóng)村水貧困風險測評結(jié)果進行比較分析,得到不同地區(qū)子系統(tǒng)發(fā)展狀況以及對農(nóng)村水貧困狀況的影響作用,為降低系統(tǒng)風險程度,提高子系統(tǒng)能力找到突破方向,綜合子系統(tǒng)的影響作用,利用農(nóng)村水貧困風險綜合測評得分,對31個地區(qū)進行分類研究,從空間角度上看,農(nóng)村水貧困風險呈現(xiàn)出從東南向西北不斷加劇的發(fā)展趨勢,并利用實證計算結(jié)果分析不同層次農(nóng)村水資源發(fā)展的限制性條件,為相關(guān)部門因地制宜的制定農(nóng)村水資源管理政策提供理論借鑒依據(jù)。
(編輯:王愛萍)
參考文獻(References)
[1]Claudia Heidecke. Development and Evaluation of a Regional Water Poverty Index for Benin[R]. International Food Policy Research Institute, Environment and Production Technology Division, 2006.35-35.
[2]Ohlsson L. Water Conflicts and Social Resource Scarcity[R]. Den Haag:European Geophysical Society, 1999.12-23.
[3]Sullivan A, Meigh R, GiacomelloI M. The Water Poverty Index: Development and Application at the Community Scale[J]. Natural Resources Forum, 2003, 27(3): 189-199.
[4]Sullivan Caroline, Charles J, Eric C, et al. Mapping the Links between Water, Poverty and Food Security[R]. Wallingford, 2005.23-24.
[5]Kragelund C, Nielsen J L, Thomsen T R, et al. Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge[J]. FEMS Microbiology Ecology, 2005, (1):111-22.
[6]Phil A, Len D. Canadian Water Sustainability Index[R]. Project Report, 2007:1-27.
[7]PérezFoguet A G. Analyzing Water Poverty in Basins[J]. Water Resources Management, 2011, (14): 3595-3612.
[8]Ricard Giné Garriga, Agustí Pérez Foguet, Molina J L, et al. Application of Bayesian Networks to Assess Water Poverty[A].ⅡInternational Conference on Sustainability Measurement and Modeling[C].Barcelona:Centro Internacional de Métodos Numéricos en Ingeniería(CIMNE), 2009.
[9]曹建廷.水匱乏指數(shù)及其在水資源開發(fā)利用中的應(yīng)用[J].中國水利,2005,(9):22-24.[Cao Jianting. Water Poverty Index:a Concise Tool to Evaluate the Progresses in Water Resource Utilization[J]. Chinese Water Resources, 2005, (9): 22-24.]
[10]何棟材,徐中民,王廣玉.水貧困測量及應(yīng)用的國際研究進展[J].干旱區(qū)地理,2009,32(2):296-303.[He Dongcai, Xu Zhongmin, Wang Guangyu. Progresses in the International Research on Water Poverty Measure and Application[J]. Arid Land Geography, 2009, 32(2): 296-303.]
[11]邵薇薇,楊大文.水貧乏指數(shù)的概念及其在中國主要流域的初步應(yīng)用[J].水利學報.2007,38(7):866-872.[Shao Weiwei, Yang Dawen. Water Poverty Index and its Application to Main River Basins in China[J]. Journal of Hydraulic Engineering. 2007, 38(7): 866-872.]
[12]孫才志,王雪妮.基于WPIESDA模型的中國水貧困評價及空間關(guān)聯(lián)格局分析[J].資源科學,2011,33(6):1072-1082.[Sun Caizhi, Wang Xueni. Research on the Assessment and Spatial Correlation Pattern of Water Poverty in China Based on WPIESDA Model. Resources Science, 2011, 33(6): 1072-1082.]
[13]曹茜,劉銳.基于WPI模型的贛江流域水資源貧困評價[J].資源科學,2012,34(7):1306-1311.[Cao Qian, Liu Rui. Assessment of Water Poverty in Ganjiang Basin Based on WPI Model[J]. Resources Science, 2012, 34(7): 1306-1311.]
[14]孫才志,湯瑋佳,鄒瑋.中國農(nóng)村水貧困測度及空間格局機理[J].地理研究,2012,31(8):1445-1454.[Sun Caizhi, Tang Weijia, Zou Wei. Measure of Water Poverty Conditions and its Spatial Pattern Mechanism in Chinas Rural Areas[J]. Geographical Research, 2012, 31(8) :1445-1454.]
[15]Kelsall W, Ikonic, Harrison, et al. Optical Cavities for Si/SiGe Tetrahertz Quantum Cascade Emitters[J]. Optical Materials, 2004, (5): 851-854.
[16]Davidson R A, Lamber K B. Comparing the Hurricane Disaster risk of US Coastal Counties[J]. Nat Hazards Review, 2001, (8):132-142.
[17]孫才志,遲克續(xù).大連市水資源安全評價模型的構(gòu)建及其應(yīng)用[J].安全與環(huán)境學報,2008,8(1):115-118.[Sun Caizhi, Chi Kexu. Establishment and Application of the Assessment Model for Water Resources Safety in Dalian[J]. Journal of Safety and Environment, 2008, 8(1) :115-118.]
[18]潘丹,應(yīng)瑞瑤.中國水資源與農(nóng)業(yè)經(jīng)濟增長關(guān)系研究:基于面板VAR模型[J].中國人口·資源與環(huán)境,2012,22(1):161-166.[Pan Dan, Ying Ruiyao. Relationship Between Water Resource and Agricultural Economic Growth in China: Research Based on Panel VAR[J].China Population,Resources and Environment, 2012, 22(1): 161-166.]
[19]孫才志,陳麗新,劉玉玉.中國省級間農(nóng)產(chǎn)品虛擬水流動適宜性評價[J].地理研究,2011,30(4):612-621.[Sun Caizhi, Chen Lixin, Liu Yuyu. Suitability Evaluation of Crops Virtual Water Flows in China[J]. Geographical Research, 2011, 30(4): 612-621.]
[20]劉燕華,錢鳳魁,王文濤,等.應(yīng)對氣候變化的適應(yīng)技術(shù)框架研究[J].中國人口·資源與環(huán)境,2013,23(5):1-6.[Liu Yanhua, Qian Fengkui, Wang Wentao, et al. A Review of Researches on Chinese Water Footprint[J].
AbstractIn this paper based on the understanding of the related theories with water poverty, the disaster risk management was set as a key point and the index system with risk measurement of rural water poverty in China was established. The index system consists of 44 indexes, including 4 subsystems, which are economic system, social system, ecological system and resource system. After evaluating the water poverty risk of 31 provinces and municipalities in China from 2000 to 2011, the scores of the 4 subsystems risk were compared with those of the rural water poverty risk in each province. The results showed the development situation of subsystems in different regions. The water poverty risk was reduced and meanwhile the direction of realizing the adaptive development of the subsystems was found. Furthermore, the spatial distribution pattern of rural water poverty risk in China was analyzed. Specifically, by classifying the 31 regions using the clustering of ordered sample, the situation of the rural water poverty were classified into 3 categories: high risk of water poverty, moderate risk of water poverty and low risk of water poverty. The results indicated that the degree of rural water poverty accelerated increased from southeast to northwest in China. Most of the rural areas belonged to moderate and high risk of water poverty, while the rural areas with low water poverty risks usually were the eastern coastal provinces. The reason was that, in these areas, the rural economic development level was relatively high and the social supporting facilities were perfect. Moreover, the pressure of water poverty risk in these areas was lower. However, we should still actively coordinate the comprehensive development of each system in order to reduce the disaster risk of the subsystems and to realize the sustainable utilization of water resources in the rural areas.
Key wordsrural water poverty; disaster risk index; objective and subjective weights method
[10]何棟材,徐中民,王廣玉.水貧困測量及應(yīng)用的國際研究進展[J].干旱區(qū)地理,2009,32(2):296-303.[He Dongcai, Xu Zhongmin, Wang Guangyu. Progresses in the International Research on Water Poverty Measure and Application[J]. Arid Land Geography, 2009, 32(2): 296-303.]
[11]邵薇薇,楊大文.水貧乏指數(shù)的概念及其在中國主要流域的初步應(yīng)用[J].水利學報.2007,38(7):866-872.[Shao Weiwei, Yang Dawen. Water Poverty Index and its Application to Main River Basins in China[J]. Journal of Hydraulic Engineering. 2007, 38(7): 866-872.]
[12]孫才志,王雪妮.基于WPIESDA模型的中國水貧困評價及空間關(guān)聯(lián)格局分析[J].資源科學,2011,33(6):1072-1082.[Sun Caizhi, Wang Xueni. Research on the Assessment and Spatial Correlation Pattern of Water Poverty in China Based on WPIESDA Model. Resources Science, 2011, 33(6): 1072-1082.]
[13]曹茜,劉銳.基于WPI模型的贛江流域水資源貧困評價[J].資源科學,2012,34(7):1306-1311.[Cao Qian, Liu Rui. Assessment of Water Poverty in Ganjiang Basin Based on WPI Model[J]. Resources Science, 2012, 34(7): 1306-1311.]
[14]孫才志,湯瑋佳,鄒瑋.中國農(nóng)村水貧困測度及空間格局機理[J].地理研究,2012,31(8):1445-1454.[Sun Caizhi, Tang Weijia, Zou Wei. Measure of Water Poverty Conditions and its Spatial Pattern Mechanism in Chinas Rural Areas[J]. Geographical Research, 2012, 31(8) :1445-1454.]
[15]Kelsall W, Ikonic, Harrison, et al. Optical Cavities for Si/SiGe Tetrahertz Quantum Cascade Emitters[J]. Optical Materials, 2004, (5): 851-854.
[16]Davidson R A, Lamber K B. Comparing the Hurricane Disaster risk of US Coastal Counties[J]. Nat Hazards Review, 2001, (8):132-142.
[17]孫才志,遲克續(xù).大連市水資源安全評價模型的構(gòu)建及其應(yīng)用[J].安全與環(huán)境學報,2008,8(1):115-118.[Sun Caizhi, Chi Kexu. Establishment and Application of the Assessment Model for Water Resources Safety in Dalian[J]. Journal of Safety and Environment, 2008, 8(1) :115-118.]
[18]潘丹,應(yīng)瑞瑤.中國水資源與農(nóng)業(yè)經(jīng)濟增長關(guān)系研究:基于面板VAR模型[J].中國人口·資源與環(huán)境,2012,22(1):161-166.[Pan Dan, Ying Ruiyao. Relationship Between Water Resource and Agricultural Economic Growth in China: Research Based on Panel VAR[J].China Population,Resources and Environment, 2012, 22(1): 161-166.]
[19]孫才志,陳麗新,劉玉玉.中國省級間農(nóng)產(chǎn)品虛擬水流動適宜性評價[J].地理研究,2011,30(4):612-621.[Sun Caizhi, Chen Lixin, Liu Yuyu. Suitability Evaluation of Crops Virtual Water Flows in China[J]. Geographical Research, 2011, 30(4): 612-621.]
[20]劉燕華,錢鳳魁,王文濤,等.應(yīng)對氣候變化的適應(yīng)技術(shù)框架研究[J].中國人口·資源與環(huán)境,2013,23(5):1-6.[Liu Yanhua, Qian Fengkui, Wang Wentao, et al. A Review of Researches on Chinese Water Footprint[J].
AbstractIn this paper based on the understanding of the related theories with water poverty, the disaster risk management was set as a key point and the index system with risk measurement of rural water poverty in China was established. The index system consists of 44 indexes, including 4 subsystems, which are economic system, social system, ecological system and resource system. After evaluating the water poverty risk of 31 provinces and municipalities in China from 2000 to 2011, the scores of the 4 subsystems risk were compared with those of the rural water poverty risk in each province. The results showed the development situation of subsystems in different regions. The water poverty risk was reduced and meanwhile the direction of realizing the adaptive development of the subsystems was found. Furthermore, the spatial distribution pattern of rural water poverty risk in China was analyzed. Specifically, by classifying the 31 regions using the clustering of ordered sample, the situation of the rural water poverty were classified into 3 categories: high risk of water poverty, moderate risk of water poverty and low risk of water poverty. The results indicated that the degree of rural water poverty accelerated increased from southeast to northwest in China. Most of the rural areas belonged to moderate and high risk of water poverty, while the rural areas with low water poverty risks usually were the eastern coastal provinces. The reason was that, in these areas, the rural economic development level was relatively high and the social supporting facilities were perfect. Moreover, the pressure of water poverty risk in these areas was lower. However, we should still actively coordinate the comprehensive development of each system in order to reduce the disaster risk of the subsystems and to realize the sustainable utilization of water resources in the rural areas.
Key wordsrural water poverty; disaster risk index; objective and subjective weights method
[10]何棟材,徐中民,王廣玉.水貧困測量及應(yīng)用的國際研究進展[J].干旱區(qū)地理,2009,32(2):296-303.[He Dongcai, Xu Zhongmin, Wang Guangyu. Progresses in the International Research on Water Poverty Measure and Application[J]. Arid Land Geography, 2009, 32(2): 296-303.]
[11]邵薇薇,楊大文.水貧乏指數(shù)的概念及其在中國主要流域的初步應(yīng)用[J].水利學報.2007,38(7):866-872.[Shao Weiwei, Yang Dawen. Water Poverty Index and its Application to Main River Basins in China[J]. Journal of Hydraulic Engineering. 2007, 38(7): 866-872.]
[12]孫才志,王雪妮.基于WPIESDA模型的中國水貧困評價及空間關(guān)聯(lián)格局分析[J].資源科學,2011,33(6):1072-1082.[Sun Caizhi, Wang Xueni. Research on the Assessment and Spatial Correlation Pattern of Water Poverty in China Based on WPIESDA Model. Resources Science, 2011, 33(6): 1072-1082.]
[13]曹茜,劉銳.基于WPI模型的贛江流域水資源貧困評價[J].資源科學,2012,34(7):1306-1311.[Cao Qian, Liu Rui. Assessment of Water Poverty in Ganjiang Basin Based on WPI Model[J]. Resources Science, 2012, 34(7): 1306-1311.]
[14]孫才志,湯瑋佳,鄒瑋.中國農(nóng)村水貧困測度及空間格局機理[J].地理研究,2012,31(8):1445-1454.[Sun Caizhi, Tang Weijia, Zou Wei. Measure of Water Poverty Conditions and its Spatial Pattern Mechanism in Chinas Rural Areas[J]. Geographical Research, 2012, 31(8) :1445-1454.]
[15]Kelsall W, Ikonic, Harrison, et al. Optical Cavities for Si/SiGe Tetrahertz Quantum Cascade Emitters[J]. Optical Materials, 2004, (5): 851-854.
[16]Davidson R A, Lamber K B. Comparing the Hurricane Disaster risk of US Coastal Counties[J]. Nat Hazards Review, 2001, (8):132-142.
[17]孫才志,遲克續(xù).大連市水資源安全評價模型的構(gòu)建及其應(yīng)用[J].安全與環(huán)境學報,2008,8(1):115-118.[Sun Caizhi, Chi Kexu. Establishment and Application of the Assessment Model for Water Resources Safety in Dalian[J]. Journal of Safety and Environment, 2008, 8(1) :115-118.]
[18]潘丹,應(yīng)瑞瑤.中國水資源與農(nóng)業(yè)經(jīng)濟增長關(guān)系研究:基于面板VAR模型[J].中國人口·資源與環(huán)境,2012,22(1):161-166.[Pan Dan, Ying Ruiyao. Relationship Between Water Resource and Agricultural Economic Growth in China: Research Based on Panel VAR[J].China Population,Resources and Environment, 2012, 22(1): 161-166.]
[19]孫才志,陳麗新,劉玉玉.中國省級間農(nóng)產(chǎn)品虛擬水流動適宜性評價[J].地理研究,2011,30(4):612-621.[Sun Caizhi, Chen Lixin, Liu Yuyu. Suitability Evaluation of Crops Virtual Water Flows in China[J]. Geographical Research, 2011, 30(4): 612-621.]
[20]劉燕華,錢鳳魁,王文濤,等.應(yīng)對氣候變化的適應(yīng)技術(shù)框架研究[J].中國人口·資源與環(huán)境,2013,23(5):1-6.[Liu Yanhua, Qian Fengkui, Wang Wentao, et al. A Review of Researches on Chinese Water Footprint[J].
AbstractIn this paper based on the understanding of the related theories with water poverty, the disaster risk management was set as a key point and the index system with risk measurement of rural water poverty in China was established. The index system consists of 44 indexes, including 4 subsystems, which are economic system, social system, ecological system and resource system. After evaluating the water poverty risk of 31 provinces and municipalities in China from 2000 to 2011, the scores of the 4 subsystems risk were compared with those of the rural water poverty risk in each province. The results showed the development situation of subsystems in different regions. The water poverty risk was reduced and meanwhile the direction of realizing the adaptive development of the subsystems was found. Furthermore, the spatial distribution pattern of rural water poverty risk in China was analyzed. Specifically, by classifying the 31 regions using the clustering of ordered sample, the situation of the rural water poverty were classified into 3 categories: high risk of water poverty, moderate risk of water poverty and low risk of water poverty. The results indicated that the degree of rural water poverty accelerated increased from southeast to northwest in China. Most of the rural areas belonged to moderate and high risk of water poverty, while the rural areas with low water poverty risks usually were the eastern coastal provinces. The reason was that, in these areas, the rural economic development level was relatively high and the social supporting facilities were perfect. Moreover, the pressure of water poverty risk in these areas was lower. However, we should still actively coordinate the comprehensive development of each system in order to reduce the disaster risk of the subsystems and to realize the sustainable utilization of water resources in the rural areas.
Key wordsrural water poverty; disaster risk index; objective and subjective weights method