齊天宇 楊遠哲 張希良
摘要建立全球性跨區(qū)域碳市場被認為是全球氣候治理的有效方式而一直備受關注。即將在2015年建成的歐盟-澳大利亞鏈接碳市場將成為國際跨區(qū)域碳市場的重要嘗試。為分析建立多國參與的國際跨區(qū)碳市場的全球減排效果及其對各參與國的能源經濟影響,本文采用表達能源經濟系統(tǒng)相互關系的全球動態(tài)可計算一般均衡模型做出定量研究。模型將全球經濟體分為20個經濟部門和19個區(qū)域,并刻畫有17種能源生產技術。同時為模擬全球碳市場政策,模型將碳排放權作為與化石能源消費相綁定的必要投入考慮到經濟部門的各個生產與消費環(huán)節(jié)當中。在外生設置碳排放配額的同時,模型允許碳排放權像商品一樣在不同區(qū)域與部門之間進行交易??紤]到全球碳市場的進展速度,本文選取2020年為研究時點,分別設計了四種情景(參考情景、獨立碳市場情景、歐盟-澳大利亞鏈接情景以及中國-歐盟-澳大利亞鏈接情景)來探討歐盟、中國、澳大利亞三國參與下的全球碳市場及其影響。研究表明,在各國2020年減排目標約束下各國碳市場的排放權價格有較大差別,澳大利亞碳價最高(32美元/t CO2),歐盟價格稍低(17.5美元/t CO2),而中國碳價最低(10美元/t CO2)。同時盡管中國的相對減排量(3%)低于歐盟(9%)與澳大利亞(18%),中國的絕對減排量也遠遠大于歐盟與澳大利亞兩個國家。由于中國相對減排成本較低,中國加入歐盟-澳大利亞鏈接碳市場將促使國際碳價從22美元/t降至12美元/t,歐盟和澳大利亞分別向中國轉移71%和81%的本國減排任務,同時分別獲得0.03%和0.06%的福利增加。由于排放約束影響,中國工業(yè)部門的能效提升1.4%,煤炭發(fā)電量下降3.3%,而清潔能源發(fā)電量則上升3.5%。
關鍵詞排放交易體系;全球排放市場;可計算一般均衡模型
中圖分類號F224文獻標識碼A文章編號1002-2104(2014)03-0019-06doi:103969/jissn1002-2104201403004
全球氣候變化給人類生存和社會可持續(xù)發(fā)展帶來了嚴峻挑戰(zhàn),世界各國意識到在實現(xiàn)經濟發(fā)展的同時,需要降低經濟增長所帶來的碳排放。碳排放交易體系(Emission Trading Schemes, ETS)作為基于市場機制下的政策工具一直被認為是成本有效的減排手段,正在被越來越多的國家所采用。目前已開展排放權交易體系的國家和區(qū)域包括歐盟、美國加州、澳大利亞、新西蘭、哈薩克斯坦、西部氣候倡議(Western Climate Initiative,包括美國、加拿大、墨西哥部分州/?。┮约爸袊纳钲诘鹊?,另有中國的部分省市以及韓國已經明確公布即將開展碳市場的計劃及實施方案。據世界銀行的統(tǒng)計,2011年全球碳市場總交易量達103億t CO2e[1]。
伴隨碳排放權交易體系在全球各國的日漸推廣,建立全球跨區(qū)域的國際性碳市場,以實現(xiàn)在更大范圍內匹配減排資源、降低減排成本的方案正在被人們廣泛討論[2-3],但實際進展十分緩慢。這主要一方面是由于當前國際社會尚未形成統(tǒng)一而明確的減排目標,各國減排權責不明,同時也缺乏具有實際約束力的“自頂向下”的協(xié)調機構及機制來推進全球共同減排行動的開展;另一方面由于各國碳市場機制與實施細則存在較大差異,實現(xiàn)各區(qū)域自發(fā)的“自底向上”式的碳市場整合并形成一致性的交易平臺存在諸多機制障礙,具有巨大挑戰(zhàn)。此外,全球主要排放國家及區(qū)域只有歐盟已經實施了碳市場政策,盡管中國與美國已開始為建立本國碳市場做出準備,但是實際建立時間尚有很大不確定性。同時,全球還有諸如印度、俄羅斯等主要排放國尚沒有建立碳市場的行動計劃。因此,從目前來看,短期內建立全球框架下包含世界主要區(qū)域的全球碳市場具有很大的困難。
盡管困難重重,國際社會已經開始從區(qū)域層面與產業(yè)層面為建立全球碳市場做出努力。即將開展的歐盟與澳大利亞兩個跨區(qū)域碳市場鏈接就是一次重要的嘗試。澳大利亞政府已明確表示計劃在2015年左右建立本國碳市場并與歐盟碳市場實現(xiàn)交易對接[4]。如果該鏈接市場得以建立,將使歐盟與澳大利亞成為全球第一個建立在兩個獨立區(qū)域基礎上的國際性碳市場。除了與歐盟合作以外,澳大利亞也在尋求與包括中國在內的其他國家合作建立跨區(qū)域碳市場。對此中國也表現(xiàn)出較大興趣[5],并已經在多個場合表示愿意在本國碳市場完善以后加入全球碳市場的意向[6]。當前中國已經著手在國內建立區(qū)域碳市場試點,為全國碳市場的建立做好準備。中國第一個地方性碳市場試點已經開始在深圳運行[7],同時關于中國參與全球碳市場影響的相關研究也在逐步開展[8-9]。
本研究基于歐盟與澳大利亞碳市場,考慮中國未來加入全球碳市場后對全球碳市場交易規(guī)模及全球碳價的影響,以及國際碳排放權交易體系下對各國能源與經濟系統(tǒng)的影響。
齊天宇等:國際跨區(qū)碳市場及其能源經濟影響評估中國人口·資源與環(huán)境2014年第3期1模型工具
為模擬市場機制下的碳排放權交易機制與定價規(guī)則,本研究采用全球能源經濟模型(China in Global Energy Model, CGEM)作為分析工具對全球碳市場及其影響作出評估。該模型為全球多區(qū)域動態(tài)可計算一般均衡模型,模型基于經濟學一般均衡理論,對社會經濟生產與消費,產品市場的供給與需求等相互關系具有清晰表述。模型分為20個經濟部門,包括5種能源生產部門(煤炭、原油、天然氣、成品油及電力), 10種工業(yè)部門(化工、鋼鐵、有色、非金屬、金屬制品、裝備制造業(yè)、食品加工業(yè)、采礦業(yè)、建筑業(yè)、其他工業(yè)),3種農業(yè)部門(農業(yè)、林業(yè)及畜牧業(yè))以及2種服務業(yè)部門(交通服務業(yè)及其他服務業(yè))。各部門生產活動采用嵌套結構的常替代彈性生產函數
本研究在模型中將碳排放空間作為一種自然要素考慮到經濟部門的各個生產與消費環(huán)節(jié)當中。在經濟生產與消費的過程中,只要有化石能源的消費并產生CO2排放的經濟活動,都必須綁定投入相應的CO2排放權,CO2排放權作為自然要素其供給(亦即排放限額)由外生給定,初始免費在各經濟部門之間分配,并可自由貿易。在實際生產與消費過程中,各經濟部門消費自身分配的排放空間,自身排放空間不足的要么通過減少自身的化石能源消費,要么通過向其他主體購買CO2排放權獲得?;茉聪M的CO2排放數量采用IPCC中規(guī)定的常排放因子[10]進行核算。
模型數據庫主要基于最新的全球貿易分析項目(GTAP 8)全球能源與經濟數據庫[11]。該數據庫包括了全球129個國家57個產業(yè)部門的2007年經濟與能源的生產與消費量數據,以及不同地區(qū)間的能源與商品雙邊貿易流量。研究中根據需要我們將其整合形成包含全球19區(qū)域(見圖2)與20個生產部門的模型數據庫。2.1情景框架
考慮到全球碳市場的進展速度,本文以2020年為研究時點,開發(fā)了四種情景以研究歐盟、中國、澳大利亞三國參與下的全球碳市場及其影響(見表1)。第一種情景為各國無碳市場下的參考情景(No ETS),以觀察沒有碳市場政策下各國能源與排放情況。另外三種為有碳市場下的政策情景:①三個區(qū)域建立獨立碳市場情景(Separate),沒有跨區(qū)域碳市場形成;②歐盟與澳大利亞碳市場進行鏈接的情景(EUANZ),中國仍為獨立碳市場;以及③中國、歐盟與澳大利亞三個地區(qū)碳市場全部連接的情景(EAC)。
2.2碳市場設計
為在模型中對各國碳市場的影響作出模擬,需要對歐盟、澳大利亞以及中國2020年碳市場的排放配額及覆蓋部門等關鍵運行機制做出設定。歐盟已經出臺了碳交易體系第三階段(2013-2020)具體運行方案,相關機制比較明確。而中國與澳大利亞兩國碳市場機制尚未構建,本文在研究過程中基于可獲得信息對這兩個區(qū)域的排放配額與覆蓋部門等細則作出相應假設。具體三區(qū)域相應設定介紹如下。
覆蓋部門。 根據歐盟ETS第三期實施方案,其覆蓋范圍沿用已有的涵蓋部門(包括農業(yè)、非金屬礦物質制品業(yè)、黑色金屬冶煉及壓延業(yè)、有色金屬冶煉及壓延業(yè)、金屬制品業(yè)、電熱力生產與供應、石油制品業(yè)),本研究中歐盟碳市場涵蓋部門據此設計。澳大利亞目前尚沒有明確未來ETS覆蓋部門,考慮到其即將與歐盟碳市場對接,本研究假定其覆蓋部門與歐盟相同。中國目前也沒有全國性碳市場的設計細則,從7個試點省市的碳交易機制方案來看,覆蓋部門范圍差異較大。當前已實施的深圳碳市場主要覆蓋了工業(yè)與大型公共建筑業(yè)[13],而上海則在此基礎上包括了航空、港口、商業(yè)、賓館與金融等行業(yè)的排放[14]。本研究假定中國選取最廣泛的覆蓋范圍,即中國碳市場覆蓋除農業(yè)以外的所有經濟部門。
配額設計。配額設計方面,本文假定各區(qū)域碳市場的排放配額與各區(qū)域2020年減排目標成比例。在計算過程中,本研究先核算出2020年減排目標下各國2020年目標排放量(歐盟2020年的國家減排目標是在2010年的水平上減少21%的溫室氣體排放[15];澳大利亞2020年的國家減排目標是在2000年排放標準上無條件減排5%;中國則為2020年的排放強度在2005年水平減少40%-45%),再根據各國2010年的碳市場覆蓋部門的排放量占總排放量的份額,將2020年各地區(qū)目標排放量按比例計算得到相應碳市場覆蓋部門的排放配額量。
3.1獨立碳市場影響
我們首先對各區(qū)域獨立碳市場做出分析,獨立碳市場的影響結果如表3所示。各地區(qū)碳價有較大差別,澳大利亞碳價最高,達到32美元/ t CO2($32/t CO2),歐盟價格稍低($17.5/t CO2),而中國碳價最低($10/t CO2)。中國碳價相對較低反應了中國相對另外兩個區(qū)域具有更低的減排成本。具體來說,中國碳價的高低與排放約束的強度、生產技術水平以及碳市場覆蓋范圍等相關,同時也受到未來經濟增速假設等不確定性因素的影響。從排放配額來看,中國的減排比例低于其他兩個地區(qū)。根據本研究假設,盡管2020年中國絕對減排量(351 106 t)比歐盟(177 106 t)以及澳大利亞(53 106 t)要大,但從減排成本來看,中國總體生產技術,尤其是高耗能工業(yè)的生產技術比歐盟及澳大利亞要落后,且相對于其他地區(qū)中國的煤炭在能源生產中所占比例更大。 2010年中國單位經濟產出的碳排放為1.59 kg CO2/美元,比歐盟(0.39 kg CO2/美元)高出六倍,比澳大利亞高出三倍(0.39 kg CO2/美元)。中國通過采用新技術,以及使用資本、勞動力來代替能源及煤炭消耗等途徑有著較大的減排空間。
3.2全球碳市場影響
全球碳市場情景EUANZ與EAC兩種情景的結果如表3所示。首先在沒有中國的參與下,歐盟與澳大利亞鏈接的EUANZ情景中,歐盟與澳大利亞碳市場連接后的碳價為22美元/ t CO2($22/t CO2),澳大利亞從歐盟碳市場中購買14.41 106 t的排放配額,這一交易額占到了澳大
利亞減排總量的27%。與此同時,澳大利亞將會支付歐盟3.2億美元。
4結論
碳排放作為基于市場的政策工具被認為是成本有效的減排手段,并被期望在國際應對全球氣候變化合作中扮演更加重要的角色。本文選取歐盟、澳大利亞和中國三個區(qū)域為案例,基于2015年即將形成的歐盟-澳大利亞鏈接碳市場,分析中國-歐盟-澳大利亞這三個地區(qū)形成全球碳市場后的規(guī)模,及其對各地區(qū)產生的影響。通過分析我們發(fā)現(xiàn),即使給中國設定3%減排這樣一個較為溫和的減排目標,中國的絕對減排量也遠遠大于歐盟與澳大利亞兩個國家。巨大的經濟與排放規(guī)模使得中國的加入對歐盟-澳大利亞碳市場產生巨大的影響。中國的低成本減排機會將會使全球碳價從22.2美元/t下降至12.12美元/t。歐盟和澳大利亞分別向中國轉移71.2%和81.1%的減排責任,最終會使各地區(qū)的福利增加。同時,由于排放約束影響,中國工業(yè)部門的能效提升1.4%,煤炭發(fā)電量下降3.3%,而清潔能源發(fā)電量則上升3.5%。
本研究對我國未來建立國內碳市場機制具有一定的啟示作用。首先通過本文分析說明了碳市場配額與市場覆蓋范圍對于未來碳價具有重要影響,因而在我國未來設計時應予以重點考慮;其次,研究表明未來碳市場在促進我國工業(yè)能效提升的同時,也會增加我國高耗能產業(yè)的生產成本,影響產業(yè)競爭力,在設計中應予以綜合考慮;此外,研究通過不同國家貿易的推演,間接反映出初始配額在不同部門的分配將影響到未來各部門在碳市場中的利益分配,未來設計碳市場時也應認真考慮。
值得注意的是,本研究是對未來國際區(qū)域性碳市場的減排效果及其經濟影響的初步分析,由于分析對象中澳大利亞與中國的碳市場機制尚未形成,分析過程中做了較多假設,使得分析結果具有較多的不確定性。例如,在本研究中假設中國碳市場覆蓋了工業(yè)和服務業(yè)所有部門,但在實際制定我國碳市場范圍時考慮到核查成本與市場效率等因素肯定無法覆蓋這么多部門。同時在本研究中碳配額的數量按照我國碳強度下降目標制定,受到我國未來經濟發(fā)展不確定性的影響。這些因素都會間接影響到我國未來碳市場的碳價格。此外本文在研究中采用完全自由市場假設,沒有將市場缺陷、碳排放戰(zhàn)略發(fā)展資源與中國參與全球碳市場的可行性等復雜因素考慮在內,可作為以后進一步研究討論的方向。
(編輯:劉照勝)
參考文獻(References)
[1]World Bank. State and Trends of the Carbon Market 2012 [R]. Washington DC: World Bank, 2012.
[2]EU Commission. Towards a Comprehensive Climate Change Agreement in Copenhagen: Communication from the Commission [R]. Brussels: the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, 2009.
[3]ICAP. International Carbon Action Partnership Political Declaration [N/OL]. Lisbon, 2007-10-29[2013-09-05]. http://icapcarbonaction.com/index.php?option=com_content&view=article&id=12&Itemid=4.
[4]Department of Climate Change and Energy Efficiency. Securing a Clean Energy Future: the Australian Governments Climate Change Plan [R]. Canberra: Department of Climate Change and Energy Efficiency, No. ACT 2601,2011.
[5]張小軍,唐明. 中國和澳大利亞同意在建立碳市場領域加強合作 [N/OL]. 北京:新華社, 2013-3-27[2013-9-5]. http://www.gov.cn/jrzg/2013-03/27/content_2364158.htm.[Zhang Xiaojun, Tang Ming. China and Australia Agree to Strengthen Cooperation in the Field of Carbon Market Establishment [N/OL]. Beijing: Xinhua News Agency, 2013-3-27[2013-9-5]. http://www.gov.cn/jrzg/2013-03/27/content_2364158.htm.]
[6]Han G Y, Olsson M, Hallding K, et al. Chinas Carbon Emission Trading: An Overview of Current Development [R]. Sweden: FORES, 2012.
[7]周強. 深圳率先啟動碳排放權交易探路中國碳市場 [N/OL]. 北京:新華社, 2013-6-30[2013-9-5]. http://news.xinhuanet.com/fortune/2013-06/20/c_116227291.htm.[Zhou Qiang. Shenzhen to Start Emission Trading Scheme, Explore Carbon Market in China [N/OL]. Beijing: Xinhua News Agency, 2013-6-30[2013-9-5]. http://news.xinhuanet.com/fortune/2013-06/20/c_116227291.htm.]
[8]中華人民共和國國家發(fā)展和改革委員會. 解振華副主任主持召開中國低碳發(fā)展宏觀戰(zhàn)略研究項目領導小組和專家委員會會議 [N/OL]. 北京:中華人民共和國國家發(fā)展和改革委員會, 2012-6-13[2013-9-5]. http://www.ndrc.gov.cn/tpxw/t20120613_485787.htm.[National Development and Reform Commission. Xie Zhenhua, Deputy Director, Holds the Leading Group and Expert Committee Meeting of Development of China Low-carbon Macro Strategy Research Project[N/OL]. Beijing: National Development and Reform Commission, 2012-6-13[2013-9-5]. http: //www.ndrc.gov.cn/tpxw/t20 120613_485787.htm.]
[9]Claire G, Niven W, Henry J. What to Expect from Sectoral Trading: A US-China Example [J]. Climate Change Economics, 2011, 2(1): 9-26.
[10]IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories [R]. Geneva: IPCC, 2006.
[11]Rutherford T F, Sergey P V. GTAP in GAMS and GTAP-EG: Global Datasets for Economic Research and Illustrative Models [G/OL]. 2000.
[12]Badri N, Angel A, Robert M. Global Trade, Assistance, and Production: The GTAP 8 Data Base [M]. 2012.
[13]林群燁,王登楷.中國大陸碳市場發(fā)展現(xiàn)狀介紹 [N/OL]. 綠基會通訊,2013-10 [2013-11-5]. http://www.tgpf.org.tw/upload/publish/publish_70/%E4%B8%AD%E5%9C%8B%E5%A4%A7%E9%99%B8%E7%A2%B3%E5%B8%82%E5%A0%B4%E7%99%BC%E5%B1%95%E7%8F%BE%E6%B3%81%E4%BB%8B%E7%B4%B9.pdf.[Lin Qiuye, Wang Dengkai. State of Carbon Market in China [N/OL]. Green Foundation Newsletter, 2013-10 [2013-11-5]. http://www.tgpf.org.tw/upload/publish/publish_70/%E4%B8%AD%E5%9C%8B%E5%A4%A7%E9%99%B8%E7%A2%B3%E5%B8%82%E5%A0%B4%E7%99%BC%E5%B1%95%E7%8F%BE%E6%B3%81%E4%BB%8B%E7%B4%B9.pdf.]
[14]China Daily. Shanghai to Pilot Carbon Trade in 2013 [N/OL]. Beijing: China Daily, 2012-7-27[2013-9-5] http://www.chinadaily.com.cn/bizchina/2012-07/27/content_15624507.htm.
[15]European Union. Emissions Trading System (EU ETS) [R]. Brussels: European Commission, 2012.
AbstractThe establishment of global multiregional carbon market is considered as a cost effective approach to facilitate global emission abatement and has been widely concerned. The ongoing planned linkage between the European Unions carbon market and a new emissions trading system in Australia in 2015 would be an important attempt to the practice of building up an international carbon market across different regions. To understand the abatement effect of such a global carbon market and to study its energy and economic impact on different market participants, this paper adopts a global dynamic computable general equilibrium model with a detailed representation of the interactions between energy and economic systems. Our model includes 20 economic sectors and 19 regions, and describes in detail 17 energy technologies. Bundled with fossil fuel consumptions, the emission permits are considered as an essential input in each of the production and consumption activities in the economic system to simulate global carbon market policies. Carbon emission permits are endogenously set in the model, and can be traded between sectors and regions. Considering the current development of global carbon market, this study takes 2020 as the study period. Four scenarios (reference scenario, independent carbon market scenario, EUAustralia scenario, and ChinaEUAustralia scenario) are designed to evaluate the impact of the global carbon market involving China, the EU, and Australia. We find that the carbon price of the three countries vary a lot, from 32 $/t CO2 in Australia, to 17.5 $/t CO2 in the EU, and to 10 $/t CO2 in China. Though the relative emission reduction (3%) of China is lower than that of the EU (9%) and Australia (18%), the absolute emission reduction of China is far greater than that of the EU and Australia. When China is included in the carbon market which already includes the EU and Australia, the prevailing global carbon price falls from 22 $/t CO2 to 12 $/t CO2, due to the relatively lower abatement cost in China. 71% of the EUs and 81% of Australias domestic reduction burden would be transferred to China, increasing 0.03% of the EUs and 0.06% of Australias welfare. The emission constraint improves the energy efficiency of Chinas industry sector by 1.4%, reduces coal consumption by 3.3%, and increases clean energy by 3.5%.
Key wordsemissions trading system; global carbon market; computable general equilibrium model
[9]Claire G, Niven W, Henry J. What to Expect from Sectoral Trading: A US-China Example [J]. Climate Change Economics, 2011, 2(1): 9-26.
[10]IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories [R]. Geneva: IPCC, 2006.
[11]Rutherford T F, Sergey P V. GTAP in GAMS and GTAP-EG: Global Datasets for Economic Research and Illustrative Models [G/OL]. 2000.
[12]Badri N, Angel A, Robert M. Global Trade, Assistance, and Production: The GTAP 8 Data Base [M]. 2012.
[13]林群燁,王登楷.中國大陸碳市場發(fā)展現(xiàn)狀介紹 [N/OL]. 綠基會通訊,2013-10 [2013-11-5]. http://www.tgpf.org.tw/upload/publish/publish_70/%E4%B8%AD%E5%9C%8B%E5%A4%A7%E9%99%B8%E7%A2%B3%E5%B8%82%E5%A0%B4%E7%99%BC%E5%B1%95%E7%8F%BE%E6%B3%81%E4%BB%8B%E7%B4%B9.pdf.[Lin Qiuye, Wang Dengkai. State of Carbon Market in China [N/OL]. Green Foundation Newsletter, 2013-10 [2013-11-5]. http://www.tgpf.org.tw/upload/publish/publish_70/%E4%B8%AD%E5%9C%8B%E5%A4%A7%E9%99%B8%E7%A2%B3%E5%B8%82%E5%A0%B4%E7%99%BC%E5%B1%95%E7%8F%BE%E6%B3%81%E4%BB%8B%E7%B4%B9.pdf.]
[14]China Daily. Shanghai to Pilot Carbon Trade in 2013 [N/OL]. Beijing: China Daily, 2012-7-27[2013-9-5] http://www.chinadaily.com.cn/bizchina/2012-07/27/content_15624507.htm.
[15]European Union. Emissions Trading System (EU ETS) [R]. Brussels: European Commission, 2012.
AbstractThe establishment of global multiregional carbon market is considered as a cost effective approach to facilitate global emission abatement and has been widely concerned. The ongoing planned linkage between the European Unions carbon market and a new emissions trading system in Australia in 2015 would be an important attempt to the practice of building up an international carbon market across different regions. To understand the abatement effect of such a global carbon market and to study its energy and economic impact on different market participants, this paper adopts a global dynamic computable general equilibrium model with a detailed representation of the interactions between energy and economic systems. Our model includes 20 economic sectors and 19 regions, and describes in detail 17 energy technologies. Bundled with fossil fuel consumptions, the emission permits are considered as an essential input in each of the production and consumption activities in the economic system to simulate global carbon market policies. Carbon emission permits are endogenously set in the model, and can be traded between sectors and regions. Considering the current development of global carbon market, this study takes 2020 as the study period. Four scenarios (reference scenario, independent carbon market scenario, EUAustralia scenario, and ChinaEUAustralia scenario) are designed to evaluate the impact of the global carbon market involving China, the EU, and Australia. We find that the carbon price of the three countries vary a lot, from 32 $/t CO2 in Australia, to 17.5 $/t CO2 in the EU, and to 10 $/t CO2 in China. Though the relative emission reduction (3%) of China is lower than that of the EU (9%) and Australia (18%), the absolute emission reduction of China is far greater than that of the EU and Australia. When China is included in the carbon market which already includes the EU and Australia, the prevailing global carbon price falls from 22 $/t CO2 to 12 $/t CO2, due to the relatively lower abatement cost in China. 71% of the EUs and 81% of Australias domestic reduction burden would be transferred to China, increasing 0.03% of the EUs and 0.06% of Australias welfare. The emission constraint improves the energy efficiency of Chinas industry sector by 1.4%, reduces coal consumption by 3.3%, and increases clean energy by 3.5%.
Key wordsemissions trading system; global carbon market; computable general equilibrium model
[9]Claire G, Niven W, Henry J. What to Expect from Sectoral Trading: A US-China Example [J]. Climate Change Economics, 2011, 2(1): 9-26.
[10]IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories [R]. Geneva: IPCC, 2006.
[11]Rutherford T F, Sergey P V. GTAP in GAMS and GTAP-EG: Global Datasets for Economic Research and Illustrative Models [G/OL]. 2000.
[12]Badri N, Angel A, Robert M. Global Trade, Assistance, and Production: The GTAP 8 Data Base [M]. 2012.
[13]林群燁,王登楷.中國大陸碳市場發(fā)展現(xiàn)狀介紹 [N/OL]. 綠基會通訊,2013-10 [2013-11-5]. http://www.tgpf.org.tw/upload/publish/publish_70/%E4%B8%AD%E5%9C%8B%E5%A4%A7%E9%99%B8%E7%A2%B3%E5%B8%82%E5%A0%B4%E7%99%BC%E5%B1%95%E7%8F%BE%E6%B3%81%E4%BB%8B%E7%B4%B9.pdf.[Lin Qiuye, Wang Dengkai. State of Carbon Market in China [N/OL]. Green Foundation Newsletter, 2013-10 [2013-11-5]. http://www.tgpf.org.tw/upload/publish/publish_70/%E4%B8%AD%E5%9C%8B%E5%A4%A7%E9%99%B8%E7%A2%B3%E5%B8%82%E5%A0%B4%E7%99%BC%E5%B1%95%E7%8F%BE%E6%B3%81%E4%BB%8B%E7%B4%B9.pdf.]
[14]China Daily. Shanghai to Pilot Carbon Trade in 2013 [N/OL]. Beijing: China Daily, 2012-7-27[2013-9-5] http://www.chinadaily.com.cn/bizchina/2012-07/27/content_15624507.htm.
[15]European Union. Emissions Trading System (EU ETS) [R]. Brussels: European Commission, 2012.
AbstractThe establishment of global multiregional carbon market is considered as a cost effective approach to facilitate global emission abatement and has been widely concerned. The ongoing planned linkage between the European Unions carbon market and a new emissions trading system in Australia in 2015 would be an important attempt to the practice of building up an international carbon market across different regions. To understand the abatement effect of such a global carbon market and to study its energy and economic impact on different market participants, this paper adopts a global dynamic computable general equilibrium model with a detailed representation of the interactions between energy and economic systems. Our model includes 20 economic sectors and 19 regions, and describes in detail 17 energy technologies. Bundled with fossil fuel consumptions, the emission permits are considered as an essential input in each of the production and consumption activities in the economic system to simulate global carbon market policies. Carbon emission permits are endogenously set in the model, and can be traded between sectors and regions. Considering the current development of global carbon market, this study takes 2020 as the study period. Four scenarios (reference scenario, independent carbon market scenario, EUAustralia scenario, and ChinaEUAustralia scenario) are designed to evaluate the impact of the global carbon market involving China, the EU, and Australia. We find that the carbon price of the three countries vary a lot, from 32 $/t CO2 in Australia, to 17.5 $/t CO2 in the EU, and to 10 $/t CO2 in China. Though the relative emission reduction (3%) of China is lower than that of the EU (9%) and Australia (18%), the absolute emission reduction of China is far greater than that of the EU and Australia. When China is included in the carbon market which already includes the EU and Australia, the prevailing global carbon price falls from 22 $/t CO2 to 12 $/t CO2, due to the relatively lower abatement cost in China. 71% of the EUs and 81% of Australias domestic reduction burden would be transferred to China, increasing 0.03% of the EUs and 0.06% of Australias welfare. The emission constraint improves the energy efficiency of Chinas industry sector by 1.4%, reduces coal consumption by 3.3%, and increases clean energy by 3.5%.
Key wordsemissions trading system; global carbon market; computable general equilibrium model