亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        模式植物基因功能突變數(shù)據(jù)庫資源報(bào)告

        2014-07-18 08:09:48潘曉寒
        江蘇農(nóng)業(yè)科學(xué) 2014年2期
        關(guān)鍵詞:標(biāo)簽數(shù)據(jù)庫

        摘要:擬南芥與水稻是植物基因組中的模式生物,植物的基因功能及基因結(jié)構(gòu)間的相關(guān)聯(lián)系一直是研究的重點(diǎn),通過對這2種模式生物進(jìn)行基因敲除來確定基因功能是目前對植物基因研究最為普遍的做法。目前,關(guān)于基因功能突變體的數(shù)據(jù)資源的介紹并不充分,針對這種情況,本文介紹了基因功能研究的大規(guī)模隨機(jī)敲除突變的常見載體標(biāo)簽及其方法,并給出了與其相應(yīng)的相關(guān)數(shù)據(jù)庫的介紹。

        關(guān)鍵詞:基因敲除;數(shù)據(jù)庫;模式生物;標(biāo)簽

        中圖分類號: Q754文獻(xiàn)標(biāo)志碼: A文章編號:1002-1302(2014)02-0039-04

        收稿日期:2013-07-18

        作者簡介:潘曉寒(1988—),女,江蘇宜興人,碩士研究生,研究方向?yàn)樯镞M(jìn)化。E-mail:huajianji00@163.com。目前,基因研究已逐漸由結(jié)構(gòu)基因組學(xué)向功能基因組學(xué)領(lǐng)域展開。擬南芥和水稻作為模式生物,在植物中率先展開基因功能的研究[1]。目前,對基因功能的研究方法有許多種,而建立敲除突變體庫是最常見的方法[2]。基因敲除是指用方法使植物基因失活,然后通過觀察表型來確定基因結(jié)構(gòu)和功能的關(guān)系。最初,γ射線、化學(xué)誘變劑EMS等物理化學(xué)誘變方法被用來制作突變體[3],之后同源重組[4]、基因沉默、RNA干擾[5]等方法也被用來制作突變體,但這些方法都不足以在多細(xì)胞生物體中構(gòu)建能夠包含所有基因的突變體庫。自農(nóng)桿菌在單子葉植物中的轉(zhuǎn)化技術(shù)獲得成功后,利用外源序列對植物基因組的大規(guī)模插入來構(gòu)建突變體庫成為最常用也是最可靠的辦法[6-7]。根據(jù)插入元件的不同,大規(guī)模外源基因的插入建立的突變體庫可以大致分為3種:T-DNA插入構(gòu)建的突變體庫[8-9]、轉(zhuǎn)座子插入構(gòu)建的突變體庫[10-11]以及反轉(zhuǎn)座子插入構(gòu)建的突變體庫[12-13]。目前在全世界范圍內(nèi)已建立了大量的上述3種元件作為突變工具的水稻和擬南芥的突變數(shù)據(jù)[14-15]。

        隨著研究深入,更多的突變體庫在全世界范圍內(nèi)建立起來[16],在擬南芥中更是實(shí)現(xiàn)了幾乎全部基因都有敲除突變的高覆蓋率[2]。在其他植物(如玉米、馬鈴薯、小麥、苜蓿等)中也都有插入突變數(shù)據(jù)庫的存在[17-19],不過數(shù)據(jù)尚不夠充分。本文介紹了一些重要的擬南芥和水稻突變體庫目前的規(guī)模和制造突變株的方法,為需要突變株種子以及數(shù)據(jù)的學(xué)者提供方便。

        1大規(guī)模外源基因插入構(gòu)建突變體庫的幾種常用方法

        1.1T-DNA插入構(gòu)建突變體庫

        T-DNA突變體庫的建立首先需要制作載體Ti質(zhì)粒??剐曰虮徽先胼d體,然后導(dǎo)入農(nóng)桿菌中。取植物的愈傷組織進(jìn)行誘導(dǎo)和繼代培養(yǎng),將繼代培養(yǎng)的植物愈傷組織放入農(nóng)桿菌培養(yǎng)液之中,使其感染農(nóng)桿菌,最后轉(zhuǎn)入選擇培養(yǎng)基培養(yǎng)。在進(jìn)行完2次選擇培養(yǎng)后,將長出的抗性愈傷組織通過組織分化形成植株,對植株進(jìn)行轉(zhuǎn)基因檢測來確?;蚯贸ぷ鞯耐瓿?。提取植物DNA,用TAIL-PCR等方法得到旁鄰序列,測序比對全基因組序列得到T-DNA插入的具體位置[20]。

        1.2轉(zhuǎn)座子插入構(gòu)建突變體庫

        轉(zhuǎn)座子系統(tǒng)分為一元系統(tǒng)和雙元系統(tǒng)2種。雙元系統(tǒng)是將Ac轉(zhuǎn)座子和Ds轉(zhuǎn)座子分別插入到2個(gè)T-DNA載體之中[21],侵染植株,讓2種植株雜交得到F1代,又通過自交得到F2代,在F2代中對Ac轉(zhuǎn)座酶進(jìn)行篩選。為了穩(wěn)定Ds的插入位置使其不再轉(zhuǎn)移,需要對Ac轉(zhuǎn)座子的存在進(jìn)行排除。一元系統(tǒng)簡化了雙元系統(tǒng),同時(shí)將Ac的轉(zhuǎn)座酶編碼序列和Ds轉(zhuǎn)座子載入一個(gè)T-DNA載體上,通過轉(zhuǎn)座酶的存在使Ds跳躍移位。因此在第一代中就能得到Ds跳躍的植株[22-23]。當(dāng)Ds轉(zhuǎn)座子轉(zhuǎn)移出原插入位點(diǎn)后,則可以通過篩選將轉(zhuǎn)座酶基因去除,得到穩(wěn)定遺傳突變株。目前作為轉(zhuǎn)座子插入的轉(zhuǎn)座子有玉米轉(zhuǎn)座子Ac/Ds、En/Spm以及金魚草轉(zhuǎn)座子Tam3。

        1.3反轉(zhuǎn)座子標(biāo)簽插入法

        1999年,Sato等利用水稻逆轉(zhuǎn)座子Tos17基因敲除體系分離了6個(gè)水稻knl-型同源異型框基因,發(fā)現(xiàn)了水稻矮化突變基因OSH15。Tos17從此成為植物基因水稻中的一個(gè)內(nèi)源反轉(zhuǎn)座子突變載體[24],主要被用來在水稻中進(jìn)行突變體數(shù)據(jù)庫的研究[25]。Tos17在自然條件下約有4個(gè)拷貝數(shù),在組培的條件下激活,可有5~30個(gè)拷貝數(shù)插入,分化成植株后就失活,因此Tos17插入引起的突變可以穩(wěn)定遺傳[26]。Tos17的拷貝數(shù)隨著組織培養(yǎng)時(shí)間延長而增多,可以通過控制組織培養(yǎng)時(shí)間來控制轉(zhuǎn)座的拷貝數(shù)[27]。

        2相關(guān)植物突變數(shù)據(jù)庫的介紹

        2.1擬南芥突變數(shù)據(jù)庫

        下面分別介紹了水稻和擬南芥的一些常用的重要突變數(shù)據(jù)庫,表1列出了質(zhì)粒中所存在的各種元件及其作用。

        縮寫名稱作用19S CaMV Pro花椰菜花葉病毒19S啟動子35S CaMV Pro花椰菜花葉病毒35S啟動子Amp氨芐青霉素抗性基因F1 oriF1噬菌體復(fù)制起始位點(diǎn)GAL4/VP16酵母轉(zhuǎn)錄激活蛋白Gal4基因/單純皰疹病毒蛋白VP16蛋白基因GFP綠色熒光蛋白基因GUS轉(zhuǎn)β-葡糖醛酸酶基因Hph潮霉素抗性基因aph(4)-IaHyg潮霉素抗性基因aph(4)-IbI2水稻α微管A1基因第二內(nèi)含子MAS Pro甘露堿合成酶雙向啟動子Nos pro農(nóng)桿菌胭脂堿啟動子Nos Ter農(nóng)桿菌胭脂堿終止子NptⅡ新霉素磷酸轉(zhuǎn)移酶,抗卡那霉素基因OsTubA1水稻α微管A1基因OsTubA1 Pro水稻α微管A1基因啟動子OsTubA1 Ter水稻α微管A1基因終止子ployAployA尾巴pUC oripUC質(zhì)粒的復(fù)制起點(diǎn)pUC18 patial sequencepUC18質(zhì)粒部分序列Sul1磺胺藥物抗性基因

        2.1.1SALK T-DNA 數(shù)據(jù)庫SALK實(shí)驗(yàn)室是目前用 T-DNA 插入的方法建立的擬南芥基因組插入突變數(shù)據(jù)庫中突變最為可觀的實(shí)驗(yàn)室。數(shù)據(jù)庫使用傳統(tǒng)的T-DNA載體,對擬南芥生態(tài)型col進(jìn)行基因敲除工作。目前完成137 259個(gè)轉(zhuǎn)基因植株,敲除擬南芥96%以上基因。這個(gè)插入數(shù)目在擬南芥中已經(jīng)接近飽和[2]。SALK實(shí)驗(yàn)室使用的質(zhì)粒載體是pROK2,這是一個(gè)由pBIN19改良后的質(zhì)粒,擁有卡那霉素抗性基因[28]。圖1給出了SALK實(shí)驗(yàn)室的載體結(jié)構(gòu)。

        2.1.2RATM(Riken)Ac/Ds轉(zhuǎn)座子敲除數(shù)據(jù)庫RATM數(shù)據(jù)庫是一個(gè)采用Ds轉(zhuǎn)座子對擬南芥進(jìn)行基因敲除的數(shù)據(jù)庫[29]。這個(gè)基因敲除數(shù)據(jù)庫已有17 671個(gè)突變株。突變體庫采用雙元載體的方法,將含有Ac轉(zhuǎn)座酶序列的T-DNA插入突變株與含有Ds轉(zhuǎn)座子的T-DNA插入突變株雜交,得到突變株種子,然后對種子進(jìn)行植株培養(yǎng),再自交對種子進(jìn)行篩選,剔除那些含有Ac轉(zhuǎn)座酶的不穩(wěn)定植株。圖2給出了RTAM轉(zhuǎn)座子標(biāo)簽的結(jié)構(gòu)。

        2.1.3GABI-Kat T-DNA數(shù)據(jù)庫GABI-Kat數(shù)據(jù)庫是一個(gè)使用T-DNA對擬南芥生態(tài)型col-0進(jìn)行基因敲除的數(shù)據(jù)庫,在T-DNA插入數(shù)據(jù)庫數(shù)目僅次于SALK T-DNA 數(shù)據(jù)庫。目前已有130 000條側(cè)翼序列標(biāo)簽以及70 578左右的突變株系。其中被敲除的基因數(shù)量達(dá)62.5%[30]。質(zhì)粒是pAC161、pADIS1、pAC160和pGABI1[31],通過加入增強(qiáng)子作為激活標(biāo)簽。F1代抗性植株的種子在F2代時(shí)可能會丟失插入的T-DNA,因此所有的二代種都必須經(jīng)過檢驗(yàn)確定 T-DNA 插入。目前這個(gè)數(shù)據(jù)庫的T-DNA保留率在78%左右[32]。圖3給出了GABI-Kat載體pAC161的結(jié)構(gòu)。

        2.2水稻突變數(shù)據(jù)庫

        2.2.1POSTECH RISD T-DNA數(shù)據(jù)庫RISD數(shù)據(jù)庫是由韓國postech中心植物功能基因組實(shí)驗(yàn)室構(gòu)建的以傳統(tǒng)的 T-DNA 為載體的數(shù)據(jù)庫, 大約有47 932個(gè)T-DNA插入突

        變株[33-34]。另外在T-DNA的插入過程中,需通過組培的階段,因而產(chǎn)生反轉(zhuǎn)座子Tos17的新插入,生成一部分新的突變株。使用的載體有pGA2707、pGA2717以及激活標(biāo)簽載體pGA2715、pGA2772[35]。圖4給出postech實(shí)驗(yàn)室T-DNA載體pGA2707的結(jié)構(gòu)。

        2.2.2SHIP T-DNA數(shù)據(jù)庫SHIP數(shù)據(jù)庫是中國科學(xué)院上海植物生態(tài)生理研究所建立的T-DNA插入突變體庫,以水稻粳稻中花11作為受體品種。對插入到基因的突變株植株進(jìn)行分離,使用的質(zhì)粒為pSMR-J18R,這是水稻基因突變研究較常見的載體,少數(shù)植株采用質(zhì)粒pCAMBIA1301[36]。圖5給出SHIP實(shí)驗(yàn)室T-DNA載體pSMR-J18R的結(jié)構(gòu)。

        2.2.3RTIM Tos17突變數(shù)據(jù)庫RTIM數(shù)據(jù)庫由日本農(nóng)業(yè)資源研究所(NIAS)開展構(gòu)建,采用的水稻株系是粳稻品種日本晴[37]。該數(shù)據(jù)庫利用Tos17反轉(zhuǎn)座子來制造突變數(shù)據(jù)庫[38],突變株中反轉(zhuǎn)座子插入位點(diǎn)數(shù)量較高,通常每個(gè)突變株都帶有10~12個(gè)反轉(zhuǎn)座子插入。

        3植物突變數(shù)據(jù)庫的研究前景

        基因功能的研究繼基因結(jié)構(gòu)研究之后對生物自身信息進(jìn)一步解密,直接關(guān)系到生物表型和遺傳信息之間的聯(lián)系,因此尤為被關(guān)注。目前,植物基因功能研究正如火如荼地展開,單個(gè)基因進(jìn)行敲除后進(jìn)行培育獲得的穩(wěn)定遺傳的純和突變株系為后續(xù)展開的基因功能的研究提供了很好的研究模型。例如,在植物信號傳導(dǎo)、抗逆性研究上突變株起到了不可替代的作用。此外,基因功能獲得突變株也和功能缺失突變株系一樣在研究中得到重視。本文介紹的這些數(shù)據(jù)庫大部分都提供突變株種子,以滿足研究者們對基因功能研究的需要。

        隨著模式生物基因組研究的深入,各種非模式生物的基因組研究也開始進(jìn)行。同一個(gè)基因結(jié)構(gòu)在不同植物是否擁有相同的功能,基因結(jié)構(gòu)進(jìn)化的同時(shí)是否帶入了功能的演變,基因在不斷進(jìn)化分化的同時(shí),功能又受到怎樣的影響,基因數(shù)量的演變與功能的存在有何關(guān)系,都是在植物功能數(shù)據(jù)庫進(jìn)一步完善后所需解決的問題。另外,載體的構(gòu)建及抗性基因的篩選等步驟,都將在未來進(jìn)一步精簡,更多的為了專門的研究而提出的新方法也將陸續(xù)出現(xiàn)。

        參考文獻(xiàn):

        [1]Arabidopsis G I. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature,2000,408(6814):796-815.

        [2]Alonso J M,Stepanova A N,Leisse T J,et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana[J]. Science Signaling,2003,301(5633):653-657.

        [3]Till B J,Colbert T,Codomo C,et al. High-throughput TILLING for Arabidopsis[J]. Methods Mol Biol,2006,323:127-135.

        [4]Rong Y S,Golic K G. Gene targeting by homologous recombination in Drosophila[J]. Science,2000,288(5473):2013-2018.

        [5]Dietzl G,Chen D,Schnorrer F,et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila[J]. Nature,2007,448(7150):151-156.

        [6]lker B,Li Y,Rosso M G,et al. T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants[J]. Nature Biotechnology,2008,26(9):1015-1017.

        [7]Lorieux M,Blein M,Lozano J,et al. Indepth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches[J]. Plant Biotechnol J,2012,10(5):555-568.

        [8]Fu F F,Ye R,Xu S P,et al. Studies on rice seed quality through analysis of a large-scale T-DNA insertion population[J]. Cell Research,2009,19(3):380-391.

        [9]Li Y,Rosso M G,Viehoever P,et al. GABI-Kat SimpleSearch:an Arabidopsis thaliana T-DNA mutant database with detailed information for confirmed insertions[J]. Nucleic Acids Research,2007,35(Suppl 1):D874-D878.

        [10]Kumar C S,Wing R A,Sundaresan V. Efficient insertional mutagenesis in rice using the maize En/Spm elements[J]. The Plant Journal,2005,44(5):879-892.

        [11]Schneider A,Kirch T,Gigolashvili T,et al. A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations[J]. FEBS Letters,2005,579(21):4622-4628.

        [12]Hirochika H,Miyao A,Yamazaki M,et al. Retrotransposons of rice as a tool for the functional analysis of genes[C]//Rice genetics Ⅳ. Proceedings of the Fourth International Rice Genetics Symposium,2001:279-292.

        [13]Petit J,Bourgeois E,Stenger W,et al. Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus[J]. Molecular Genetics and Genomics,2009,282(6):633-652.

        [14]閻雙勇,譚振波,李仕貴. 水稻插入突變庫構(gòu)建研究進(jìn)展[J]. 中國生物工程雜志,2004,24(6):48-53.

        [15]趙霞,周波,李玉花. T-DNA插入突變在植物功能基因組學(xué)中的應(yīng)用[J]. 生物技術(shù)通訊,2009,20(6):880-884.

        [16]An G,Jeong D H,Jung K H,et al. Reverse genetic approaches for functional genomics of rice[J]. Plant Molecular Biology,2005,59(1):111-123.

        [17]Supartana P,Shimizu T,Nogawa M,et al. Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens[J]. Journal of Bioscience and Bioengineering,2006,102(3):162-170.

        [18]Scholte M,dErfurth I,Rippa S,et al. T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery[J]. Molecular Breeding,2002,10(4):203-215.

        [19]Tadege M,Wen J,He J,et al. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula[J]. The Plant Journal,2008,54(2):335-347.

        [20]李愛宏,張亞芳,吳昌銀,等. 水稻T-DNA插入突變體庫的篩選及遺傳分析[J]. 遺傳學(xué)報(bào),2006,33(4):319-329.

        [21]Johnson A A T,Yu S M,Tester M. Activation tagging systems in rice[M]//Rice functional genomics. New York:Springer,2007:333-353.

        [22]Wan S,Wu J,Zhang Z,et al. Activation tagging,an efficient tool for functional analysis of the rice genome[J]. Plant Molecular Biology,2009,69(1/2):69-80.

        [23]Greco R,Ouwerkerk P B F,De Kam R J,et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice[J]. Theoretical and Applied Genetics,2003,108(1):10-24.

        [24]Sato Y,Sentoku N,Miura Y,et al. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants[J]. EMBO J,1999,18(4):992-1002.

        [25]Hirochika H,Mew T W,Brar D S,et al. Insertional mutagenesis in rice using the endogenous retrotransposon[J]. Rice Science:Innovations and Impact for Livelihood,2003:205.

        [26]Miyao A,Tanaka K,Murata K,et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome[J]. Plant Cell,2003,15(8):1771-1780.

        [27]Hirochika H. Insertional mutagenesis with Tos17 for functional analysis of rice genes[J]. Breeding Science,2010,60(5):486-492.

        [28]lker B,Peiter E,Dixon D P,et al. Getting the most out of publicly available T-DNA insertion lines[J]. The Plant Journal,2008,56(4):665-677.

        [29]Ito T,Motohashi R,Kuromori T,et al. A resource of 5814 dissociation transposon-tagged and sequence-indexed lines of Arabidopsis transposed from start loci on chromosome 5[J]. Plant and Cell Physiology,2005,46(7):1149-1153.

        [30]Kleinboelting N,Huep G,Kloetgen A,et al. GABI-Kat Simple Search:new features of the Arabidopsis thaliana T-DNA mutant database[J]. Nucleic Acids Research,2012,40(Suppl 1):D1211-D1215.

        [31]Rosso M G,Li Y,Strizhov N,et al. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics[J]. Plant Molecular Biology,2003,53(1/2):247-259.

        [32]Riao-Pachón D M,Nagel A,Neigenfind J,et al. GabiPD:the GABI primary database—a plant integrative ‘omics database[J]. Nucleic Acids Research,2009,37(Suppl 1):D954-D959.

        [33]An G,Lee S,Kim S H,et al. Molecular genetics using T-DNA in rice[J]. Plant and Cell Physiology,2005,46(1):14-22.

        [34]Jeong D H,An S,Park S,et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice[J]. Plant J,2006,45(1):123-132.

        [35]An S,Park S,Jeong D H,et al. Generation and analysis of end sequence database for T-DNA tagging lines in rice[J]. Plant Physiology,2003,133(4):2040-2047.

        [36]Wu G Z,Shi Q M,Niu Y,et al. Shanghai RAPESEED Database:a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica[J]. Nucleic Acids Research,2008,36(Suppl 1):D1044-D1047.

        [37]Cheng C,Daigen M,Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17[J]. Molecular Genetics and Genomics,2006,276(4):378-390.

        [38]Miyao A,Hirochika H. Transposon insertion lines of rice for analysis of gene function[M]//Rice blast:interaction with rice and control. Netherlands:Springer,2004:107-112.

        [22]Wan S,Wu J,Zhang Z,et al. Activation tagging,an efficient tool for functional analysis of the rice genome[J]. Plant Molecular Biology,2009,69(1/2):69-80.

        [23]Greco R,Ouwerkerk P B F,De Kam R J,et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice[J]. Theoretical and Applied Genetics,2003,108(1):10-24.

        [24]Sato Y,Sentoku N,Miura Y,et al. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants[J]. EMBO J,1999,18(4):992-1002.

        [25]Hirochika H,Mew T W,Brar D S,et al. Insertional mutagenesis in rice using the endogenous retrotransposon[J]. Rice Science:Innovations and Impact for Livelihood,2003:205.

        [26]Miyao A,Tanaka K,Murata K,et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome[J]. Plant Cell,2003,15(8):1771-1780.

        [27]Hirochika H. Insertional mutagenesis with Tos17 for functional analysis of rice genes[J]. Breeding Science,2010,60(5):486-492.

        [28]lker B,Peiter E,Dixon D P,et al. Getting the most out of publicly available T-DNA insertion lines[J]. The Plant Journal,2008,56(4):665-677.

        [29]Ito T,Motohashi R,Kuromori T,et al. A resource of 5814 dissociation transposon-tagged and sequence-indexed lines of Arabidopsis transposed from start loci on chromosome 5[J]. Plant and Cell Physiology,2005,46(7):1149-1153.

        [30]Kleinboelting N,Huep G,Kloetgen A,et al. GABI-Kat Simple Search:new features of the Arabidopsis thaliana T-DNA mutant database[J]. Nucleic Acids Research,2012,40(Suppl 1):D1211-D1215.

        [31]Rosso M G,Li Y,Strizhov N,et al. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics[J]. Plant Molecular Biology,2003,53(1/2):247-259.

        [32]Riao-Pachón D M,Nagel A,Neigenfind J,et al. GabiPD:the GABI primary database—a plant integrative ‘omics database[J]. Nucleic Acids Research,2009,37(Suppl 1):D954-D959.

        [33]An G,Lee S,Kim S H,et al. Molecular genetics using T-DNA in rice[J]. Plant and Cell Physiology,2005,46(1):14-22.

        [34]Jeong D H,An S,Park S,et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice[J]. Plant J,2006,45(1):123-132.

        [35]An S,Park S,Jeong D H,et al. Generation and analysis of end sequence database for T-DNA tagging lines in rice[J]. Plant Physiology,2003,133(4):2040-2047.

        [36]Wu G Z,Shi Q M,Niu Y,et al. Shanghai RAPESEED Database:a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica[J]. Nucleic Acids Research,2008,36(Suppl 1):D1044-D1047.

        [37]Cheng C,Daigen M,Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17[J]. Molecular Genetics and Genomics,2006,276(4):378-390.

        [38]Miyao A,Hirochika H. Transposon insertion lines of rice for analysis of gene function[M]//Rice blast:interaction with rice and control. Netherlands:Springer,2004:107-112.

        [22]Wan S,Wu J,Zhang Z,et al. Activation tagging,an efficient tool for functional analysis of the rice genome[J]. Plant Molecular Biology,2009,69(1/2):69-80.

        [23]Greco R,Ouwerkerk P B F,De Kam R J,et al. Transpositional behaviour of an Ac/Ds system for reverse genetics in rice[J]. Theoretical and Applied Genetics,2003,108(1):10-24.

        [24]Sato Y,Sentoku N,Miura Y,et al. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants[J]. EMBO J,1999,18(4):992-1002.

        [25]Hirochika H,Mew T W,Brar D S,et al. Insertional mutagenesis in rice using the endogenous retrotransposon[J]. Rice Science:Innovations and Impact for Livelihood,2003:205.

        [26]Miyao A,Tanaka K,Murata K,et al. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome[J]. Plant Cell,2003,15(8):1771-1780.

        [27]Hirochika H. Insertional mutagenesis with Tos17 for functional analysis of rice genes[J]. Breeding Science,2010,60(5):486-492.

        [28]lker B,Peiter E,Dixon D P,et al. Getting the most out of publicly available T-DNA insertion lines[J]. The Plant Journal,2008,56(4):665-677.

        [29]Ito T,Motohashi R,Kuromori T,et al. A resource of 5814 dissociation transposon-tagged and sequence-indexed lines of Arabidopsis transposed from start loci on chromosome 5[J]. Plant and Cell Physiology,2005,46(7):1149-1153.

        [30]Kleinboelting N,Huep G,Kloetgen A,et al. GABI-Kat Simple Search:new features of the Arabidopsis thaliana T-DNA mutant database[J]. Nucleic Acids Research,2012,40(Suppl 1):D1211-D1215.

        [31]Rosso M G,Li Y,Strizhov N,et al. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics[J]. Plant Molecular Biology,2003,53(1/2):247-259.

        [32]Riao-Pachón D M,Nagel A,Neigenfind J,et al. GabiPD:the GABI primary database—a plant integrative ‘omics database[J]. Nucleic Acids Research,2009,37(Suppl 1):D954-D959.

        [33]An G,Lee S,Kim S H,et al. Molecular genetics using T-DNA in rice[J]. Plant and Cell Physiology,2005,46(1):14-22.

        [34]Jeong D H,An S,Park S,et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice[J]. Plant J,2006,45(1):123-132.

        [35]An S,Park S,Jeong D H,et al. Generation and analysis of end sequence database for T-DNA tagging lines in rice[J]. Plant Physiology,2003,133(4):2040-2047.

        [36]Wu G Z,Shi Q M,Niu Y,et al. Shanghai RAPESEED Database:a resource for functional genomics studies of seed development and fatty acid metabolism of Brassica[J]. Nucleic Acids Research,2008,36(Suppl 1):D1044-D1047.

        [37]Cheng C,Daigen M,Hirochika H. Epigenetic regulation of the rice retrotransposon Tos17[J]. Molecular Genetics and Genomics,2006,276(4):378-390.

        [38]Miyao A,Hirochika H. Transposon insertion lines of rice for analysis of gene function[M]//Rice blast:interaction with rice and control. Netherlands:Springer,2004:107-112.

        猜你喜歡
        標(biāo)簽數(shù)據(jù)庫
        拒標(biāo)簽
        無懼標(biāo)簽 Alfa Romeo Giulia 200HP
        車迷(2018年11期)2018-08-30 03:20:32
        不害怕撕掉標(biāo)簽的人,都活出了真正的漂亮
        海峽姐妹(2018年3期)2018-05-09 08:21:02
        數(shù)據(jù)庫
        數(shù)據(jù)庫
        數(shù)據(jù)庫
        標(biāo)簽化傷害了誰
        數(shù)據(jù)庫
        數(shù)據(jù)庫
        科學(xué)家的標(biāo)簽
        一区二区三区一片黄理论片| 亚洲黄色一级在线观看| 久久婷婷综合激情亚洲狠狠| 老岳肥屁熟女四五十路| 国产av久久在线观看| av国产传媒精品免费| 成人毛片av免费| 99精品国产在热久久| 日日猛噜噜狠狠扒开双腿小说| 亚洲AV无码精品一区二区三区l| av毛片一区二区少妇颜射| 亚洲熟女熟妇另类中文| 绝顶高潮合集videos| 精品国产这么小也不放过| 国产精品18久久久| 亚洲综合av在线在线播放| 亚洲乱码一区AV春药高潮 | 人妻少妇中文字幕在线观看| 全免费a级毛片免费看无码| 成人国产精品一区二区视频| 色婷婷日日躁夜夜躁| 精品18在线观看免费视频| 98精品国产高清在线xxxx| 青青草原亚洲在线视频| 狂插美女流出白浆视频在线观看| 国产精品女同一区二区免费站| 国产av熟女一区二区三区 | 亚洲一区自拍高清亚洲精品| 国内精品无码一区二区三区| 亚洲中文欧美日韩在线人| 亚洲精品一区二区三区av| 久久精品中文字幕有码| 色偷偷av一区二区三区| 熟女精品视频一区二区三区| 国产日韩A∨无码免费播放| 久久精品中文字幕第一页| 麻豆精品国产免费av影片| 天堂8在线新版官网| 成年女人黄小视频| 欧洲极品少妇| 欧美日本视频一区|