奈婕菲+程玉祥
摘要:GDSL酯酶為脂肪水解酶家族的一個(gè)分支,參與植物生長(zhǎng)發(fā)育和防御反應(yīng)等多種功能。半定量RT-PCR分析結(jié)果顯示,毛果楊GDSL酯酶基因Potri.002G253400在頂端莖組織中高豐度特異性表達(dá);構(gòu)建Potri.002G253400-GFP融合的植物表達(dá)載體,轉(zhuǎn)化模式植物擬南芥并獲得其過(guò)量表達(dá)的轉(zhuǎn)基因株系7個(gè);激光共聚焦顯微鏡檢測(cè)結(jié)果顯示,GFP熒光蛋白高豐度表達(dá)于轉(zhuǎn)基因植株根的細(xì)胞壁區(qū)域,說(shuō)明Potri.002G253400蛋白可能定位于細(xì)胞壁。
關(guān)鍵詞:毛果楊;擬南芥;GDSL酯酶;載體構(gòu)建;轉(zhuǎn)基因
中圖分類號(hào): S792.110.4 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):1002-1302(2014)03-0016-03
GDSL酯酶是脂肪水解酶超家族的一個(gè)亞家族,它具有廣泛的底物特異性和專一性,能夠水解多種酯類物質(zhì)[1]。它因具有GDS(L)保守區(qū)域(pfam,PF00657)簡(jiǎn)稱GDSL,其中G、D和S分別代表甘氨酸、天冬氨酸和絲氨酸等氨基酸殘基[2]。近年來(lái),人們從水稻、向日葵、擬南芥和玉米等多種植物體內(nèi)分離出GDSL酯酶,并鑒定出它具有脂肪酰酯水解酶活性[3]。植物GDSL酯酶是一個(gè)多基因家族,在12個(gè)不同的植物物種內(nèi)發(fā)現(xiàn)GDSL酯酶成員超過(guò)1 100個(gè),如苔蘚、葡萄、高粱、水稻、擬南芥和楊樹基因組各存在57、96、130、144、108、126個(gè)GDSL家族成員[4-5]。GDSL酯酶參與植物發(fā)育、形態(tài)發(fā)生、次級(jí)代謝合成及多種防御反應(yīng)[6-8]。最近,Dharmawardhana等報(bào)道了楊樹莖由初級(jí)到次級(jí)生長(zhǎng)轉(zhuǎn)變中轉(zhuǎn)錄組變化模式[9],一個(gè)GDSL基因Potri.002G253400是逐漸降低轉(zhuǎn)錄組聚類成員之一,這一信息初步暗示它可能參與了楊樹莖的初級(jí)生長(zhǎng)。本研究通過(guò)半定量RT-PCR手段鑒定Potri.002G253400在不同木質(zhì)化程度莖節(jié)中轉(zhuǎn)錄表達(dá)模式,構(gòu)建Potri.002G253400融合綠色熒光蛋白基因GFP的植物表達(dá)載體,在擬南芥中過(guò)量表達(dá)Potri.002G253400-GFP并分析該蛋白細(xì)胞內(nèi)的定位情況。這為今后解析GDSL酯酶在楊樹莖初級(jí)生長(zhǎng)中的作用提供了理論基礎(chǔ)。
1 材料與方法
1.1 材料
1.1.1 植物材料 以溫室生長(zhǎng)至3個(gè)月的毛果楊為試驗(yàn)材料,從頂端向基部分別取其第1至第6莖節(jié)、第9莖節(jié)、成熟葉、老葉各組織,用于基因表達(dá)分析。用于外源基因遺傳轉(zhuǎn)化的植物材料為野生型擬南芥(col-0)。
1.1.2 載體、菌株和培養(yǎng)基 pENTR/SD/D-TOPO(Invitrogen公司)和pGWB5用于轉(zhuǎn)基因植物表達(dá)載體構(gòu)建,轉(zhuǎn)化菌株為大腸桿菌TOP10和DH5α,大腸桿菌和GV3101農(nóng)桿菌分別用LB和 YEP培養(yǎng)基培養(yǎng),轉(zhuǎn)基因擬南芥在含50 mg/L卡那霉素的1/2MS培養(yǎng)基上篩選。
1.1.3 試劑 NA提取試劑pBIOZOL Reagent購(gòu)自Bioflux公司,DNA Marker、dNTP、PrimeScript RT reagent Kit with gDNA eraser 試劑盒購(gòu)自TaKaRa公司,質(zhì)粒提取試劑盒購(gòu)于Promega公司,LR Clonase購(gòu)自Invitrogen公司,卡那霉素、慶大霉素等藥品購(gòu)自Sigma公司。
1.2 方法
1.2.1 總RNA提取和cDNA的合成 材料經(jīng)過(guò)液氮速凍后研碎至粉末,用pBIOZOL懸浮粉末后裝入1.5 mL離心管中,0.1 g樣品加入0.5 mL的pBIOZOL,具體操作步驟參照pBIOZOL plant total RNA Extraction Reagent說(shuō)明書。提取的RNA用不含核糖核酸酶的水溶解,測(cè)定其濃度和純度。總cDNA合成使用PrimeScript RT reagent Kit with gDNA eraser試劑盒,操作步驟參照其說(shuō)明書。
1.2.2 Potri.002G253400基因引物 用Primer 5.0設(shè)計(jì)Potri.002G253400半定量PCR引物,序列為UP:5′-GATTATCCAACCCACAGACCAAC-3′和 DN:5′-GGCTAACTCCGCAGGAACACAAC-3′,片段擴(kuò)增長(zhǎng)度為333 bp。Potri.002G253400基因CDS全長(zhǎng)片段擴(kuò)增引物為cds-UP:5′-CACCATGTCAATTCCTAGGATTTTTC-3′和cds-DN:5′-GAGCTTGGCATCCAGGGCCA-3′,擴(kuò)增片段長(zhǎng)度為1 110 bp。
1.2.3 PCR擴(kuò)增 以所用毛果楊樣品的cDNA為模板,半定量和全長(zhǎng)CDS的PCR擴(kuò)增體系均為20 μL,上下游引物各 0.5 μL,1.0 μL模板,1.0 μL Taq DNA聚合酶,2.0 μL dNTP,2.0 μL 10×Buffer,13 μL水。PCR反應(yīng)程序:95 ℃ 預(yù)變性 5 min,95 ℃變性30 s,62 ℃ 退火30 s,72 ℃延伸(半定量和CDS PCR延伸分別為30、90 s),半定量和全長(zhǎng)CDS的PCR擴(kuò)增循環(huán)分別為25、33次。
1.2.4 植物表達(dá)載體構(gòu)建 采用Gateway技術(shù)構(gòu)建載體,取25 ng pENTR/SD/D-TOPO載體和15~30 ng Potri.002G253400基因片段相連接,反應(yīng)體系為5 μL,反應(yīng)時(shí)間 2 h。取 1 μL 連接產(chǎn)物轉(zhuǎn)化TOPO10感受態(tài)細(xì)胞,操作參見說(shuō)明書。用cds-UP和cds-DN基因引物PCR擴(kuò)增鑒定含Potri.002G253400融合質(zhì)粒菌落,并進(jìn)行DNA測(cè)序確認(rèn)。取30 ng pENTR/SD/D-TOPO-Potri.002G253400和120 ng pGWB5載體進(jìn)行LR反應(yīng),反應(yīng)體系2.5 μL、反應(yīng)時(shí)間8~12 h。取 1 μL 反應(yīng)產(chǎn)物轉(zhuǎn)化DH5α感受態(tài)細(xì)胞,PCR鑒定含 pGWB5-Potri.002G253400 菌落,重組質(zhì)粒轉(zhuǎn)化GV3101農(nóng)桿菌。
1.2.5 擬南芥遺傳轉(zhuǎn)化 擬南芥遺傳轉(zhuǎn)化沾染法參見文獻(xiàn)[10]。
1.2.6 基因組DNA提取 擬南芥基因組DNA提取方法參見文獻(xiàn)[11]。
1.2.7 綠色熒光蛋白GFP檢測(cè) 綠色熒光蛋白GFP的激光共聚焦觀察方法參見文獻(xiàn)[12]。
2 結(jié)果與分析
2.1 楊樹Potri.002G253400基因表達(dá)特性
以毛果楊第1至第6莖節(jié)、第9莖節(jié)各cDNA為模板,進(jìn)行半定量RT-PCR,結(jié)果顯示,Potri.002G253400基因轉(zhuǎn)錄水平在第1莖節(jié)處最高,其次為第2、第3莖節(jié),第4至第6、第9莖節(jié)中觀察不到。此外,使用內(nèi)參基因Actin作為半定量 RT-PCR 內(nèi)標(biāo),Actin基因擴(kuò)增數(shù)據(jù)顯示第1至第6、第9莖節(jié)各樣品cDNA模板濃度基本相等(圖1-A)。這個(gè)結(jié)果表明 Potri.002G253400 基因在頂端組織中大量轉(zhuǎn)錄表達(dá)。筆者進(jìn)一步在幼莖、老莖、成熟葉和老葉中檢測(cè)Potri.002G253400基因轉(zhuǎn)錄表達(dá)水平,結(jié)果顯示,在成熟葉中該基因的轉(zhuǎn)錄表達(dá)水平很低(圖1-B)。說(shuō)明Potri.002G253400基因高豐度表達(dá)在毛果楊的頂端分生組織。
2.2 融合Potri.002G253400-GFP植物表達(dá)載體構(gòu)建
以毛果楊幼莖cDNA為模板,用cds-UP和cds-DN引物RT-PCR擴(kuò)增得到約1.1 kb的片段(圖2-A),該片段長(zhǎng)度與Potri.002G253400基因理論長(zhǎng)度基本吻合。將該DNA片段連接到pENTR/SD/D-TOPO載體上,融合質(zhì)粒pENTR/SD/D-TOPO-Potri.002G253400約為3.7 kb(圖2-A),初步表明目的DNA片段已連接到pENTR/SD/D-TOPO載體上。將該質(zhì)粒進(jìn)行DNA測(cè)序,結(jié)果表明pENTR/SD/D-TOPO載體上DNA片段為Potri.002G253400全長(zhǎng)cds片段。
通過(guò)LR反應(yīng)將pENTR/SD/D-TOPO載體上的Potri.002G253400片段同源重組到pGWB5植物表達(dá)載體上,融合質(zhì)粒pGWB5-Potri.002G253400電泳檢測(cè)結(jié)果如圖2所示。以該質(zhì)粒DNA為模板,用Potri.002G253400引物進(jìn)行PCR擴(kuò)增,得到的1.1 kb特異條帶與目標(biāo)基因片段大小相符(圖2-B)。由于pGWB5載體上融合報(bào)告基因GFP,這樣構(gòu)建了C端融合GFP的Potri.002G253400-GFP基因。把 pGWB5-Potri.002G253400 質(zhì)粒轉(zhuǎn)化GV3101農(nóng)桿菌,用于 Potri.002G253400 基因遺傳轉(zhuǎn)化擬南芥試驗(yàn)。
2.3 Potri.002G253400-GFP轉(zhuǎn)基因擬南芥分析
將上述農(nóng)桿菌轉(zhuǎn)化擬南芥,篩選獲得7株抗卡那霉素的抗性植株。提取各株系基因組DNA作為模板,用Potri.002G253400基因引物擴(kuò)增,得到Potri.002G253400目的DNA片段(圖3),結(jié)果表明Potri.002G253400基因已轉(zhuǎn)入擬南芥基因組,然后筆者分析了擬南芥基因組轉(zhuǎn)入的Potri.002G253400基因轉(zhuǎn)錄表達(dá)。RT-PCR分析結(jié)果如圖3所示,未轉(zhuǎn)入Potri.002G253400基因的野生型擬南芥中沒(méi)有擴(kuò)增出特異條帶,而轉(zhuǎn)基因植株中擴(kuò)增出很亮的特異條帶,且大小與Potri.002G253400片段大小吻合。這表明轉(zhuǎn)入到擬南芥基因組的Potri.002G253400呈現(xiàn)出高豐度的轉(zhuǎn)錄表達(dá)。
由于轉(zhuǎn)入基因是Potri.002G253400-GFP,所以筆者通過(guò)激光共聚焦顯微鏡檢測(cè)轉(zhuǎn)基因擬南芥中GFP蛋白熒光信號(hào),熒光信號(hào)集中在轉(zhuǎn)基因擬南芥根組織的細(xì)胞膜或細(xì)胞壁區(qū)域(圖4)。通過(guò)蛋白定位預(yù)測(cè)生物學(xué)軟件PSORT(http://psort.hgc.jp/form.html)分析可知,Potri.002G253400蛋白最可能定位于細(xì)胞壁(0.820)上。
3 結(jié)論與討論
GDSL酯酶基因家族成員廣泛存在于植物界,其功能為參與生長(zhǎng)發(fā)育、形態(tài)發(fā)生和防御反應(yīng)等。例如,擬南芥GDSL酯酶GLIP1作為植物免疫力調(diào)節(jié)因子在植物抗病上起重要作用,GLIP2轉(zhuǎn)錄表達(dá)被水楊酸、茉莉酸和乙烯信號(hào)所誘導(dǎo)[3,13]。本研究結(jié)果表明,Potri.002G253400基因轉(zhuǎn)錄表達(dá)水平隨毛果楊莖從初級(jí)到次級(jí)生長(zhǎng)轉(zhuǎn)變而逐漸降低,且在成熟葉中轉(zhuǎn)錄水平也很低,這種特異的組織表達(dá)模式暗示其功能可能與楊樹莖的初級(jí)生長(zhǎng)相關(guān)。植物GDSL酯酶家族成員組織表達(dá)模式存在冗余性與特異性,如擬南芥EXL1只在花蕾中表達(dá)[14],油菜GDSL基因BnLIP2只在根中表達(dá)[15],而番茄GDSL1只在果皮表達(dá)強(qiáng)烈[16]。此外,筆者運(yùn)用GFP熒光蛋白分子檢測(cè)技術(shù)發(fā)現(xiàn),Potri.002G253400蛋白很可能定位在楊樹的細(xì)胞壁上。細(xì)胞壁是由木聚糖、纖維素、半纖維素以及果膠構(gòu)成的復(fù)雜糖類物質(zhì),這些成分物質(zhì)中存在大量的酯鍵。盡管還沒(méi)有鑒定出Potri.002G253400 GDSL酯酶水解底物,然而可基于其細(xì)胞壁定位推測(cè)它很可能參與細(xì)胞壁合成或作用細(xì)胞壁成分物質(zhì)的水解修飾。筆者將利用Potri.002G253400過(guò)量表達(dá)遺傳材料進(jìn)一步探討該GDSL酯酶在楊樹莖初級(jí)生長(zhǎng)中的作用以及其作用與細(xì)胞壁的關(guān)系。
參考文獻(xiàn):
[1]Akoh C C,Lee G C,Liaw Y C,et al. GDSL family of serine esterases/lipases[J]. Progress in Lipid Research,2004,43(6):534-552.
[2]Brick D J,Brumlik M J,Buckley J T,et al. A new family of lipolytic plant enzymes with members in rice,arabidopsis and maize[J]. FEBS Letters,1995,377(3):475-480.
[3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.
[4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.
[5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.
[6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.
[7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.
[8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.
[9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.
[10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.
[11]徐平麗,趙晉平,孟靜靜,等. 一種適宜擬南芥PCR檢測(cè)的DNA提取方法[J]. 農(nóng)業(yè)科學(xué)與技術(shù):英文版,2010,11(3):41-42,155.
[12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.
[13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.
[14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.
[15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.
[16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.
[3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.
[4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.
[5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.
[6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.
[7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.
[8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.
[9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.
[10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.
[11]徐平麗,趙晉平,孟靜靜,等. 一種適宜擬南芥PCR檢測(cè)的DNA提取方法[J]. 農(nóng)業(yè)科學(xué)與技術(shù):英文版,2010,11(3):41-42,155.
[12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.
[13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.
[14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.
[15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.
[16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.
[3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.
[4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.
[5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.
[6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.
[7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.
[8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.
[9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.
[10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.
[11]徐平麗,趙晉平,孟靜靜,等. 一種適宜擬南芥PCR檢測(cè)的DNA提取方法[J]. 農(nóng)業(yè)科學(xué)與技術(shù):英文版,2010,11(3):41-42,155.
[12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.
[13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.
[14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.
[15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.
[16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.