亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一個(gè)楊樹GDSL基因組織表達(dá)的特性及其在擬南芥異源的表達(dá)

        2014-07-16 05:13:12奈婕菲程玉祥
        江蘇農(nóng)業(yè)科學(xué) 2014年3期
        關(guān)鍵詞:擬南芥轉(zhuǎn)基因

        奈婕菲+程玉祥

        摘要:GDSL酯酶為脂肪水解酶家族的一個(gè)分支,參與植物生長(zhǎng)發(fā)育和防御反應(yīng)等多種功能。半定量RT-PCR分析結(jié)果顯示,毛果楊GDSL酯酶基因Potri.002G253400在頂端莖組織中高豐度特異性表達(dá);構(gòu)建Potri.002G253400-GFP融合的植物表達(dá)載體,轉(zhuǎn)化模式植物擬南芥并獲得其過(guò)量表達(dá)的轉(zhuǎn)基因株系7個(gè);激光共聚焦顯微鏡檢測(cè)結(jié)果顯示,GFP熒光蛋白高豐度表達(dá)于轉(zhuǎn)基因植株根的細(xì)胞壁區(qū)域,說(shuō)明Potri.002G253400蛋白可能定位于細(xì)胞壁。

        關(guān)鍵詞:毛果楊;擬南芥;GDSL酯酶;載體構(gòu)建;轉(zhuǎn)基因

        中圖分類號(hào): S792.110.4 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):1002-1302(2014)03-0016-03

        GDSL酯酶是脂肪水解酶超家族的一個(gè)亞家族,它具有廣泛的底物特異性和專一性,能夠水解多種酯類物質(zhì)[1]。它因具有GDS(L)保守區(qū)域(pfam,PF00657)簡(jiǎn)稱GDSL,其中G、D和S分別代表甘氨酸、天冬氨酸和絲氨酸等氨基酸殘基[2]。近年來(lái),人們從水稻、向日葵、擬南芥和玉米等多種植物體內(nèi)分離出GDSL酯酶,并鑒定出它具有脂肪酰酯水解酶活性[3]。植物GDSL酯酶是一個(gè)多基因家族,在12個(gè)不同的植物物種內(nèi)發(fā)現(xiàn)GDSL酯酶成員超過(guò)1 100個(gè),如苔蘚、葡萄、高粱、水稻、擬南芥和楊樹基因組各存在57、96、130、144、108、126個(gè)GDSL家族成員[4-5]。GDSL酯酶參與植物發(fā)育、形態(tài)發(fā)生、次級(jí)代謝合成及多種防御反應(yīng)[6-8]。最近,Dharmawardhana等報(bào)道了楊樹莖由初級(jí)到次級(jí)生長(zhǎng)轉(zhuǎn)變中轉(zhuǎn)錄組變化模式[9],一個(gè)GDSL基因Potri.002G253400是逐漸降低轉(zhuǎn)錄組聚類成員之一,這一信息初步暗示它可能參與了楊樹莖的初級(jí)生長(zhǎng)。本研究通過(guò)半定量RT-PCR手段鑒定Potri.002G253400在不同木質(zhì)化程度莖節(jié)中轉(zhuǎn)錄表達(dá)模式,構(gòu)建Potri.002G253400融合綠色熒光蛋白基因GFP的植物表達(dá)載體,在擬南芥中過(guò)量表達(dá)Potri.002G253400-GFP并分析該蛋白細(xì)胞內(nèi)的定位情況。這為今后解析GDSL酯酶在楊樹莖初級(jí)生長(zhǎng)中的作用提供了理論基礎(chǔ)。

        1 材料與方法

        1.1 材料

        1.1.1 植物材料 以溫室生長(zhǎng)至3個(gè)月的毛果楊為試驗(yàn)材料,從頂端向基部分別取其第1至第6莖節(jié)、第9莖節(jié)、成熟葉、老葉各組織,用于基因表達(dá)分析。用于外源基因遺傳轉(zhuǎn)化的植物材料為野生型擬南芥(col-0)。

        1.1.2 載體、菌株和培養(yǎng)基 pENTR/SD/D-TOPO(Invitrogen公司)和pGWB5用于轉(zhuǎn)基因植物表達(dá)載體構(gòu)建,轉(zhuǎn)化菌株為大腸桿菌TOP10和DH5α,大腸桿菌和GV3101農(nóng)桿菌分別用LB和 YEP培養(yǎng)基培養(yǎng),轉(zhuǎn)基因擬南芥在含50 mg/L卡那霉素的1/2MS培養(yǎng)基上篩選。

        1.1.3 試劑 NA提取試劑pBIOZOL Reagent購(gòu)自Bioflux公司,DNA Marker、dNTP、PrimeScript RT reagent Kit with gDNA eraser 試劑盒購(gòu)自TaKaRa公司,質(zhì)粒提取試劑盒購(gòu)于Promega公司,LR Clonase購(gòu)自Invitrogen公司,卡那霉素、慶大霉素等藥品購(gòu)自Sigma公司。

        1.2 方法

        1.2.1 總RNA提取和cDNA的合成 材料經(jīng)過(guò)液氮速凍后研碎至粉末,用pBIOZOL懸浮粉末后裝入1.5 mL離心管中,0.1 g樣品加入0.5 mL的pBIOZOL,具體操作步驟參照pBIOZOL plant total RNA Extraction Reagent說(shuō)明書。提取的RNA用不含核糖核酸酶的水溶解,測(cè)定其濃度和純度。總cDNA合成使用PrimeScript RT reagent Kit with gDNA eraser試劑盒,操作步驟參照其說(shuō)明書。

        1.2.2 Potri.002G253400基因引物 用Primer 5.0設(shè)計(jì)Potri.002G253400半定量PCR引物,序列為UP:5′-GATTATCCAACCCACAGACCAAC-3′和 DN:5′-GGCTAACTCCGCAGGAACACAAC-3′,片段擴(kuò)增長(zhǎng)度為333 bp。Potri.002G253400基因CDS全長(zhǎng)片段擴(kuò)增引物為cds-UP:5′-CACCATGTCAATTCCTAGGATTTTTC-3′和cds-DN:5′-GAGCTTGGCATCCAGGGCCA-3′,擴(kuò)增片段長(zhǎng)度為1 110 bp。

        1.2.3 PCR擴(kuò)增 以所用毛果楊樣品的cDNA為模板,半定量和全長(zhǎng)CDS的PCR擴(kuò)增體系均為20 μL,上下游引物各 0.5 μL,1.0 μL模板,1.0 μL Taq DNA聚合酶,2.0 μL dNTP,2.0 μL 10×Buffer,13 μL水。PCR反應(yīng)程序:95 ℃ 預(yù)變性 5 min,95 ℃變性30 s,62 ℃ 退火30 s,72 ℃延伸(半定量和CDS PCR延伸分別為30、90 s),半定量和全長(zhǎng)CDS的PCR擴(kuò)增循環(huán)分別為25、33次。

        1.2.4 植物表達(dá)載體構(gòu)建 采用Gateway技術(shù)構(gòu)建載體,取25 ng pENTR/SD/D-TOPO載體和15~30 ng Potri.002G253400基因片段相連接,反應(yīng)體系為5 μL,反應(yīng)時(shí)間 2 h。取 1 μL 連接產(chǎn)物轉(zhuǎn)化TOPO10感受態(tài)細(xì)胞,操作參見說(shuō)明書。用cds-UP和cds-DN基因引物PCR擴(kuò)增鑒定含Potri.002G253400融合質(zhì)粒菌落,并進(jìn)行DNA測(cè)序確認(rèn)。取30 ng pENTR/SD/D-TOPO-Potri.002G253400和120 ng pGWB5載體進(jìn)行LR反應(yīng),反應(yīng)體系2.5 μL、反應(yīng)時(shí)間8~12 h。取 1 μL 反應(yīng)產(chǎn)物轉(zhuǎn)化DH5α感受態(tài)細(xì)胞,PCR鑒定含 pGWB5-Potri.002G253400 菌落,重組質(zhì)粒轉(zhuǎn)化GV3101農(nóng)桿菌。

        1.2.5 擬南芥遺傳轉(zhuǎn)化 擬南芥遺傳轉(zhuǎn)化沾染法參見文獻(xiàn)[10]。

        1.2.6 基因組DNA提取 擬南芥基因組DNA提取方法參見文獻(xiàn)[11]。

        1.2.7 綠色熒光蛋白GFP檢測(cè) 綠色熒光蛋白GFP的激光共聚焦觀察方法參見文獻(xiàn)[12]。

        2 結(jié)果與分析

        2.1 楊樹Potri.002G253400基因表達(dá)特性

        以毛果楊第1至第6莖節(jié)、第9莖節(jié)各cDNA為模板,進(jìn)行半定量RT-PCR,結(jié)果顯示,Potri.002G253400基因轉(zhuǎn)錄水平在第1莖節(jié)處最高,其次為第2、第3莖節(jié),第4至第6、第9莖節(jié)中觀察不到。此外,使用內(nèi)參基因Actin作為半定量 RT-PCR 內(nèi)標(biāo),Actin基因擴(kuò)增數(shù)據(jù)顯示第1至第6、第9莖節(jié)各樣品cDNA模板濃度基本相等(圖1-A)。這個(gè)結(jié)果表明 Potri.002G253400 基因在頂端組織中大量轉(zhuǎn)錄表達(dá)。筆者進(jìn)一步在幼莖、老莖、成熟葉和老葉中檢測(cè)Potri.002G253400基因轉(zhuǎn)錄表達(dá)水平,結(jié)果顯示,在成熟葉中該基因的轉(zhuǎn)錄表達(dá)水平很低(圖1-B)。說(shuō)明Potri.002G253400基因高豐度表達(dá)在毛果楊的頂端分生組織。

        2.2 融合Potri.002G253400-GFP植物表達(dá)載體構(gòu)建

        以毛果楊幼莖cDNA為模板,用cds-UP和cds-DN引物RT-PCR擴(kuò)增得到約1.1 kb的片段(圖2-A),該片段長(zhǎng)度與Potri.002G253400基因理論長(zhǎng)度基本吻合。將該DNA片段連接到pENTR/SD/D-TOPO載體上,融合質(zhì)粒pENTR/SD/D-TOPO-Potri.002G253400約為3.7 kb(圖2-A),初步表明目的DNA片段已連接到pENTR/SD/D-TOPO載體上。將該質(zhì)粒進(jìn)行DNA測(cè)序,結(jié)果表明pENTR/SD/D-TOPO載體上DNA片段為Potri.002G253400全長(zhǎng)cds片段。

        通過(guò)LR反應(yīng)將pENTR/SD/D-TOPO載體上的Potri.002G253400片段同源重組到pGWB5植物表達(dá)載體上,融合質(zhì)粒pGWB5-Potri.002G253400電泳檢測(cè)結(jié)果如圖2所示。以該質(zhì)粒DNA為模板,用Potri.002G253400引物進(jìn)行PCR擴(kuò)增,得到的1.1 kb特異條帶與目標(biāo)基因片段大小相符(圖2-B)。由于pGWB5載體上融合報(bào)告基因GFP,這樣構(gòu)建了C端融合GFP的Potri.002G253400-GFP基因。把 pGWB5-Potri.002G253400 質(zhì)粒轉(zhuǎn)化GV3101農(nóng)桿菌,用于 Potri.002G253400 基因遺傳轉(zhuǎn)化擬南芥試驗(yàn)。

        2.3 Potri.002G253400-GFP轉(zhuǎn)基因擬南芥分析

        將上述農(nóng)桿菌轉(zhuǎn)化擬南芥,篩選獲得7株抗卡那霉素的抗性植株。提取各株系基因組DNA作為模板,用Potri.002G253400基因引物擴(kuò)增,得到Potri.002G253400目的DNA片段(圖3),結(jié)果表明Potri.002G253400基因已轉(zhuǎn)入擬南芥基因組,然后筆者分析了擬南芥基因組轉(zhuǎn)入的Potri.002G253400基因轉(zhuǎn)錄表達(dá)。RT-PCR分析結(jié)果如圖3所示,未轉(zhuǎn)入Potri.002G253400基因的野生型擬南芥中沒(méi)有擴(kuò)增出特異條帶,而轉(zhuǎn)基因植株中擴(kuò)增出很亮的特異條帶,且大小與Potri.002G253400片段大小吻合。這表明轉(zhuǎn)入到擬南芥基因組的Potri.002G253400呈現(xiàn)出高豐度的轉(zhuǎn)錄表達(dá)。

        由于轉(zhuǎn)入基因是Potri.002G253400-GFP,所以筆者通過(guò)激光共聚焦顯微鏡檢測(cè)轉(zhuǎn)基因擬南芥中GFP蛋白熒光信號(hào),熒光信號(hào)集中在轉(zhuǎn)基因擬南芥根組織的細(xì)胞膜或細(xì)胞壁區(qū)域(圖4)。通過(guò)蛋白定位預(yù)測(cè)生物學(xué)軟件PSORT(http://psort.hgc.jp/form.html)分析可知,Potri.002G253400蛋白最可能定位于細(xì)胞壁(0.820)上。

        3 結(jié)論與討論

        GDSL酯酶基因家族成員廣泛存在于植物界,其功能為參與生長(zhǎng)發(fā)育、形態(tài)發(fā)生和防御反應(yīng)等。例如,擬南芥GDSL酯酶GLIP1作為植物免疫力調(diào)節(jié)因子在植物抗病上起重要作用,GLIP2轉(zhuǎn)錄表達(dá)被水楊酸、茉莉酸和乙烯信號(hào)所誘導(dǎo)[3,13]。本研究結(jié)果表明,Potri.002G253400基因轉(zhuǎn)錄表達(dá)水平隨毛果楊莖從初級(jí)到次級(jí)生長(zhǎng)轉(zhuǎn)變而逐漸降低,且在成熟葉中轉(zhuǎn)錄水平也很低,這種特異的組織表達(dá)模式暗示其功能可能與楊樹莖的初級(jí)生長(zhǎng)相關(guān)。植物GDSL酯酶家族成員組織表達(dá)模式存在冗余性與特異性,如擬南芥EXL1只在花蕾中表達(dá)[14],油菜GDSL基因BnLIP2只在根中表達(dá)[15],而番茄GDSL1只在果皮表達(dá)強(qiáng)烈[16]。此外,筆者運(yùn)用GFP熒光蛋白分子檢測(cè)技術(shù)發(fā)現(xiàn),Potri.002G253400蛋白很可能定位在楊樹的細(xì)胞壁上。細(xì)胞壁是由木聚糖、纖維素、半纖維素以及果膠構(gòu)成的復(fù)雜糖類物質(zhì),這些成分物質(zhì)中存在大量的酯鍵。盡管還沒(méi)有鑒定出Potri.002G253400 GDSL酯酶水解底物,然而可基于其細(xì)胞壁定位推測(cè)它很可能參與細(xì)胞壁合成或作用細(xì)胞壁成分物質(zhì)的水解修飾。筆者將利用Potri.002G253400過(guò)量表達(dá)遺傳材料進(jìn)一步探討該GDSL酯酶在楊樹莖初級(jí)生長(zhǎng)中的作用以及其作用與細(xì)胞壁的關(guān)系。

        參考文獻(xiàn):

        [1]Akoh C C,Lee G C,Liaw Y C,et al. GDSL family of serine esterases/lipases[J]. Progress in Lipid Research,2004,43(6):534-552.

        [2]Brick D J,Brumlik M J,Buckley J T,et al. A new family of lipolytic plant enzymes with members in rice,arabidopsis and maize[J]. FEBS Letters,1995,377(3):475-480.

        [3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.

        [4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.

        [5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.

        [6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.

        [7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.

        [8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.

        [9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.

        [10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.

        [11]徐平麗,趙晉平,孟靜靜,等. 一種適宜擬南芥PCR檢測(cè)的DNA提取方法[J]. 農(nóng)業(yè)科學(xué)與技術(shù):英文版,2010,11(3):41-42,155.

        [12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.

        [13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.

        [14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.

        [15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.

        [16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.

        [3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.

        [4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.

        [5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.

        [6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.

        [7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.

        [8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.

        [9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.

        [10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.

        [11]徐平麗,趙晉平,孟靜靜,等. 一種適宜擬南芥PCR檢測(cè)的DNA提取方法[J]. 農(nóng)業(yè)科學(xué)與技術(shù):英文版,2010,11(3):41-42,155.

        [12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.

        [13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.

        [14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.

        [15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.

        [16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.

        [3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.

        [4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.

        [5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.

        [6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.

        [7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.

        [8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.

        [9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.

        [10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.

        [11]徐平麗,趙晉平,孟靜靜,等. 一種適宜擬南芥PCR檢測(cè)的DNA提取方法[J]. 農(nóng)業(yè)科學(xué)與技術(shù):英文版,2010,11(3):41-42,155.

        [12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.

        [13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.

        [14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.

        [15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.

        [16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.

        猜你喜歡
        擬南芥轉(zhuǎn)基因
        擬南芥:活得粗糙,才讓我有了上太空的資格
        探秘轉(zhuǎn)基因
        轉(zhuǎn)基因,你吃了嗎?
        轉(zhuǎn)基因生物,你怎么看?
        富天冬酰胺蛋白增強(qiáng)擬南芥輻射抗性的研究
        尿黑酸對(duì)擬南芥酪氨酸降解缺陷突變體sscd1的影響
        兩種LED光源作為擬南芥生長(zhǎng)光源的應(yīng)用探究
        擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機(jī)制探究
        Avp-iCre轉(zhuǎn)基因小鼠的鑒定
        天然的轉(zhuǎn)基因天然的轉(zhuǎn)基因“工程師”及其對(duì)轉(zhuǎn)基因食品的意蘊(yùn)
        国产在线观看免费视频软件| 国产欧美曰韩一区二区三区 | 久久精品国产亚洲av成人网 | 国产精品蝌蚪九色av综合网| 狠狠色噜噜狠狠狠777米奇小说| 亚洲精品成人区在线观看| 国产乱子伦精品免费女| 一区二区三区熟妇人妻18| 一区二区三区亚洲视频| 国产一区二区精品久久岳| 人妻av乱片av出轨| 中文字幕乱偷乱码亚洲| 富婆叫鸭一区二区三区| 中国少妇久久一区二区三区| 国产成人a∨激情视频厨房| 伊人狠狠色丁香婷婷综合| 欧洲一区在线观看| av在线不卡一区二区三区| 日韩一区在线精品视频| 日本特黄特色特爽大片| 无码视频一区二区三区在线观看| 国产好片日本一区二区三区四区 | 国产真实乱XXXⅩ视频| 亚洲天堂av在线免费播放 | 丝袜美腿视频一区二区| 99精品久久精品一区二区| 激情在线视频一区二区三区| 国产另类人妖在线观看| 青青草成人原视频在线播放视频| 国产精品黑丝高跟在线粉嫩| 人妻少妇偷人精品无码| 中文无码精品一区二区三区| 久久精品国产亚洲av桥本有菜| 一区二区三区视频亚洲| 成人免费无遮挡在线播放| 日产无人区一线二线三线新版| 极品粉嫩小仙女高潮喷水视频| 手机在线免费观看av不卡网站 | 青青草精品在线免费观看| 国产香蕉视频在线播放| 天天躁日日躁狠狠很躁|