本穩(wěn)定性準(zhǔn)則(25)中,僅用μ-v曲線
的斜率μ′st不能確定摩擦振動(dòng)穩(wěn)定性。按由于紙基材料法向位移波動(dòng)(對(duì)LHS第二項(xiàng))甚至μ′st>0造成負(fù)阻尼變成系統(tǒng)可能不穩(wěn)定,反之,采用降低該負(fù)阻尼同時(shí)有可能增加穩(wěn)定性。一低的摩擦系數(shù)μst,一小的法向力Nst和高的振動(dòng)頻率ω對(duì)摩擦振動(dòng)得出高的穩(wěn)定性結(jié)果。Nst和ω的影響已經(jīng)被實(shí)驗(yàn)證實(shí)。作為對(duì)材料特性的影響,gz和ηz在LHS第二項(xiàng)應(yīng)是較低的,因?yàn)閷?duì)上述標(biāo)準(zhǔn)狀況,我們估計(jì)ωηz/gz=3.9×10-7?1。觀察式(6),增大紙基材料的孔隙率α和減少潤(rùn)滑油的粒度模量Kf預(yù)期和減少紙質(zhì)材料的剪切模量G一樣是有效的。在另一方面,提供ωηz很小,僅在式(7)中出現(xiàn)的參量(β,ρs,ρf,ηf)幾乎對(duì)摩擦振動(dòng)沒(méi)有影響。在圖6(c)—(f)中,各個(gè)別參數(shù)對(duì)臨界速度的影響似乎在進(jìn)行實(shí)驗(yàn)的小的范圍內(nèi)(關(guān)于(e)和(f)參數(shù)是不變的),但用本理論的計(jì)算結(jié)果表示,G,α和Kf改變,用代數(shù)學(xué)估算該臨界速度具有很大的影響(分別見(jiàn)圖6(c)(d)(e))。
一摩擦振動(dòng)模型,它具有除一切向外的法向自由度,建議用一由質(zhì)量m,一個(gè)阻尼器c和一彈簧k組成的集合單自由度系統(tǒng),用來(lái)表示試驗(yàn)裝置的動(dòng)態(tài)特性,用一由粘性液體充滿的多孔彈性體,表示含潤(rùn)滑油的紙基材料。該模型振動(dòng)采取在這樣的方向,即法向和切向振動(dòng)相位,其幅值成比例。提出了一新的摩擦振動(dòng)理論,同時(shí)考慮到紙基材料的變形和潤(rùn)滑油流動(dòng)。當(dāng)和實(shí)驗(yàn)找到的穩(wěn)定性極限比較時(shí),發(fā)現(xiàn)常規(guī)的理論不能給出正確的穩(wěn)定性極限,而本理論獲得的穩(wěn)定性極限可與實(shí)驗(yàn)吻合,并定性地考慮到各參量的影響。為使系統(tǒng)對(duì)摩擦振動(dòng)更加穩(wěn)定,該紙基材料的彈性模量應(yīng)較低,這點(diǎn)已被實(shí)驗(yàn)和理論證實(shí)。此外,由理論研究預(yù)期,紙基材料的多孔性應(yīng)增大,潤(rùn)滑油的粒度模數(shù)應(yīng)較低。(谷雨譯自 Transactions of the ASME July 1996,Vol.118)
圖6 各參量對(duì)臨界速度的影響Fig.6 Influence of each parameter on critical velocity
感謝
作者對(duì)支持實(shí)驗(yàn)的Tonen公司,NSK-Waner K.K.和Sany Denki有限公司和Toyota物理和化學(xué)研究所的幫助表示感謝。
[1]Armstrong-Hélouvry,B.,1993.“Stick-Slip and Control in Low-Speed Motion,”IEEE Transactions on Automatic Control,Vol.38,No.10,pp.1483-1496.
[2]Aronov,V.,D'Souza,A.F.,Kalpakjian,S.,and Shareef.I.,1984.“Interactions Among Friction,Wear and System Stiffness.”ASME Journal of Tribology,Vol.106,No.1,pp.54-69.
[3]Bardet,J.P.,1992,“A Viscoelastic Model for the Dynamic Behavior of Samrated Poroelastic Solids,"ASME Journal of Applied Mechanics,Vol.59,No.1,pp.128-135.
[4]Biot,M.A.,1956,“Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid,”The Journal of the Acoustical Society of America,Vol.28,No.2,pp.168-191.
[5]Dasai,M.,1990,“Noise and Vibration in Wet Brake and Wet Clutch,”Journal of Japanese Society of Tribologists,Vol.35,No.5,pp.326-330.(in Japanese).
[6]Friesen,T.V.,1983,“Chatter in Wet Brakes,”SAE Paper,831318.
[7]Hiramatsu,T.,Akagi,T.,and Yoneda,H.,1985,“Control Technology of Minimal Slip-Type Torque Converter Clutch,”SAE Paper,850460.
[8]Ichiba,Y.,and Nagasawa,Y.,1994,“The Relationship between Disc Brake Squeal and Friction Characteristics,”Journal of Japanese Society of Tribologists,Vol.39,No.2,pp.93-97(in Japanese).
[9]Karo,Y.,Akasaka,R.,and Shibayama,T.,1994,“Experimental Study on Lock-Up Shudder Mechanism of an Automatic Transmission,”Journal of Japanese Society of Tribologists,Vol.39,No.12,pp.1067-1072(in Japanese).
[10]Millner,N.,1978, “An Analysis of Disk Brake Squeal,”SAE Paper,780332.
[11]Murakami,H.,Tsunada,T.,and Kitamura,T.,1984,“A Study Concerned with a Mechanism of Disk-Brake Squeal,”SAE Paper,841233.[12]Naruse,T.,1994,“The Tribology of a Mimmum-Slip Lock-Up Clutch-Control System,” Tribology International,Vol.27,No.l,pp.25-30.
[13]Nishiwaki,M.,Harada,H.,Okamura,H.,and Ikeuchi,T.,1989,“Study on Disk Brake Squeal,”SAE Paper,890864.
[14]Oden,J.T.,and Martins,J.A.C.,1985,“Models and Computational Methods for Dynamic Friction Phenomena,”Computer Methods in Applied Mechanics and Engineering,Vol.52,pp.527-634.
[15]Sakamoto,T.,1987,“Normal Displacement and Dynamic Friction Characteristics in a Stick-Slip Process,”Tribology International,Vol.20,No.1,pp.25-31.
[16]Soom,A.,and Kim,C.,1983a,“Interactions Between Dynamic Normal and Frictional Forces During Unlubricated Sliding,”ASME Journal of Lubrication Technology,Vol.105,No.2,pp.221-229.
[17]Soom,A.,and Kim,C.,1983b,“Roughness-Induced Dynamic Loading at Dry and Boundary-Lubricated Sliding Contacts,”ASME Journal of Lubrication Technology,Vol.105,No.4,pp.514-517.
[18]Ting,L.L.,1975,“Engagement Behavior of Lubricated Porous Annular Disks,”Wear,Vol.34,pp.159-182.
[19]Tolstoi,D.M.,1967,“Significance of the Normal Degree of Freedom and Natural Normal Vibrations in Contact Friction,”Wear,Vol.10,pp.199-213.
[20]Tsangarides,M.C.,and Tobler,W.E.,1985,“Dynamic Behavior of a Torque Converter with Centrifugal Bypass Clutch,”SAE Paper,850461.
附錄A APPENDIX A
用符ω′表示法向振動(dòng)頻率,式(14)和式(15)變成以下形式:
可以按式(23)形式計(jì)算提供給動(dòng)態(tài)系統(tǒng)的時(shí)間平均功率pz為
式中
如果ω′≠0,RHS的第二項(xiàng)為零.
附錄B APPENDIX B
依據(jù)波動(dòng)公式對(duì)擴(kuò)大的波動(dòng)導(dǎo)出法向Voigt體的動(dòng)態(tài)響應(yīng),當(dāng)考慮在z向平面波增生時(shí),Voigt體任意位置的法向位移uz(z,t)表示如下:
給定指數(shù)性的衰減波uz(z,t)表示為以下形式:
用邊界條件解式(31):
在這樣情況,用式(12)給出Voigt體的壓縮變形uz0,求得Voigt體的法向應(yīng)力σzz如下:
表面法向力N(t)表示如下:
假定Voigt體的厚度T大大小于產(chǎn)生波的波長(zhǎng):
按式(14)可求得 N(t).
名稱符號(hào) Nomenclature
本文表明由摩擦造成的扭轉(zhuǎn)振動(dòng)采用一線性振動(dòng)系統(tǒng)模型,同一符號(hào)有時(shí)代表兩系統(tǒng)不同的量,在這種情況,表示扭振系統(tǒng)的量示于[]內(nèi)。
A=接觸面積[接觸面積×名義半徑]contact area[contract area×mean radius]
c=檢測(cè)系統(tǒng)摩擦力[轉(zhuǎn)矩]的阻尼damping of the frictional force[torque]detection system
F=摩擦力[轉(zhuǎn)矩]frictional force[torque]
f=摩擦振動(dòng)的頻率frequency of the frictional vibration
G=紙基材料的剪切模量shear modulus of the paper material
gx,gz=Voigt體縱向壓縮剪切彈性模量elas-tic modulus in shear,in longitudinal compression of the Voigt body
Kf=潤(rùn)滑油粒度模量bulk modulus of the lubricant
k=檢測(cè)系統(tǒng)摩擦力[轉(zhuǎn)矩]剛度stiffness of the frictional force[torque]detection system
m=檢測(cè)系統(tǒng)摩擦力[轉(zhuǎn)矩]剛度質(zhì)量[慣性矩]mass[moment of inertia]of the frictional force[torque]detection system
N=法向力[法向力×名義半徑]normal force[normal force×mean radius]
nv=由于滑動(dòng)速度波動(dòng)在臨界狀態(tài)負(fù)阻尼negative damping in the critical state due to the fluctuation of the sliding velocity
μ=摩擦系數(shù)friction coefficient
ξ=檢測(cè)系統(tǒng)摩擦力[轉(zhuǎn)矩]切向位移[角位移]tangential displacement[angular displacement]of the frictional force[torque]detection system
ρ=Voigt體密度density of the Voigt body
ρf,ρs=紙基材料潤(rùn)滑油密度 density of the lubricant,of the paper material
σzz=Voigt體法向應(yīng)力normal stress in the Voigt body
τzx=Voigt體剪切應(yīng)力shear stress in the Voigt body
φ=法向振動(dòng)和切向振動(dòng)間相位角(見(jiàn)圖(13))phase angle between the normal vibration and the tangential vibration(see Eq.(13))
ω=摩擦振動(dòng)角頻率angular frequency of the frictional vibration
p=接觸壓力contact pressure
r=法向振動(dòng)與切向振動(dòng)的振幅比amplitude ratio of the normal vibration to the tangential vibration(see Eq.(21))
T=紙基材料厚度thickness of the paper material
t=時(shí)間time
ux,uz=Voigt體切向、法向位移tangential,normal displacement of the Voigt body
v=滑動(dòng)速度[角速度]sliding velocity[angular velocity]
x=Voigt體切向座標(biāo)tangential coordinate in the Voigt body
z=Voigt體法向座標(biāo)normal coordinate in the Voigt body
α=紙基材料多孔性porosity of the paper material
β=紙基材料Darcy滲透性Darcy’s permeability of the paper material
ζ=檢測(cè)系統(tǒng)摩擦力[轉(zhuǎn)矩]法向位移normal displacement of the frictional force[torque]detection system
ηf=潤(rùn)滑油粘度viscosity of the lubricant
ηx,ηz=Voigt體縱向壓縮剪切粘性模量viscous modulus in shear,in longitudinal compression of the Voigt body
κ=指數(shù)性衰減波的角波動(dòng)數(shù)angular wave number of the exponentially attenuated wave
Λ=Voigt體Lame模量 Lame’s modulus of the Voigt body
腳注Subscripts
crit概指摩擦振動(dòng)發(fā)生的臨界狀態(tài)(穩(wěn)定極限)denotes the critical state of frictional vibration generation(stability limit)
st概指穩(wěn)定狀態(tài)denotes the steady state
0概指Voigt體表面denotes the surface of the Voigt body
其它符號(hào)Othersymbols
Δ概指復(fù)式振幅denotes the complex amplitude
|概指振幅denotes the amplitude