羅洪奔
摘 要:提出了一種基于灰色ARIMA的金融時間序列智能混合預測模型。首先建立金融時間序列灰色預測模型,并采用PSO算法對灰色模型的三個參數(shù)進行優(yōu)化;利用ARIMA算法對預測模型的殘差進行分析,同時采用遺傳算法對ARIMA的系數(shù)進行優(yōu)化;最后用ARIMA的殘差預測結果對灰色預測模型進行補償。結果表明,以較好的精度擬合一段時期內MA<107的時間序列,預測誤差控制在5%以上,與單純的灰色預測算法和神經(jīng)網(wǎng)絡算法相比,在平均絕對誤差、均方根誤差和趨勢準確率三項評價指標上,具有明顯優(yōu)勢。
關鍵詞: 金融時間序列;灰色預測;ARIMA;PSO;遺傳算法
中圖分類號:TP273+.23 文獻標識碼: A 文章編號:1003-7217(2014)02-0027-08
一、引 言
金融市場屬典型的復雜系統(tǒng),呈現(xiàn)出較強的非線性和時變性特征[1]。其內部因素和位置變量之間的關系很難用準確的數(shù)學公式加以描述, 難以建立完整的動力方程。因此,研究針對金融時間序列的分析和預測方法,具有十分重要的意義。
近年來,智能算法被越來越多地應用于金融時間序列的預測中,如神經(jīng)網(wǎng)絡、支持向量機等算法。這類方法一定程度上能解決市場非線性、非平穩(wěn)性和高信噪比等問題, 但由于訓練速度慢,學習過程誤差容易陷入局部極小點,很難保證學習精度。另外,這類方法只能保證在有限樣本的情況下經(jīng)驗風險最小,而預測精度難以保證,泛化能力不高,應用范圍受到了一定限制。
鑒此,本文從金融市場的特性和變化規(guī)律出發(fā),提出一種基于灰色-ARIMA的智能混合預測方法。將傳統(tǒng)方法與智能方法相結合,利用灰色理論建立金融時間序列模型。為了避免參數(shù)估計引入的誤差,采用粒子群算法(簡稱PSO)對灰色模型參數(shù)進行尋優(yōu),同時利用ARIMA算法對預測模型的殘差進行分析,以達到消除殘差的目的;為進一步提升算法的精度,采用遺傳算法對ARIMA的系數(shù)進行估計。
二、金融時間序列預測算法的提出
金融時間序列呈現(xiàn)出的波動性、非平穩(wěn)性、周期性、樣本少的特點對預測算法提出了較高的要求。鄧聚龍(1982)提出的灰色系統(tǒng)理論認為,任何隨機過程都是在一定時區(qū)范圍內變化的灰色過程,通過細分處理,可歸結為一種連續(xù)的、平穩(wěn)的、動態(tài)的隨機過程[2]。對金融時間序列這類“貧信息,小樣本”問題,灰色系統(tǒng)理論有較好的分析效果,能夠有效地分析金融時間序列變化地本質規(guī)律和變化周期。
傳統(tǒng)的灰色預測方法在處理數(shù)據(jù)時都做了一定的條件假設,這些假設在對于金融時間序列的預測問題中不一定成立。同時金融活動中存在大量由突發(fā)因素造成的波動性和非平穩(wěn)性變化,這些變化可能無規(guī)律可循,灰色模型難以辨識,使得辨識得到的金融時間序列模型與真實數(shù)據(jù)間存在較大的誤差,成為提高預測模型精度的瓶頸[3]。因此,本文提出一種混合預測模型(如圖1所示),該混合預測模型由灰色預測和殘差預測兩部分組成。改進灰色預測模型,采用灰色理論的系統(tǒng)分析方法對原始金融時間序列數(shù)據(jù)進行辨識,從而逼近金融市場的變化規(guī)律。為了減少參數(shù)假設所引入的系統(tǒng)誤差,將灰色模型進行擴展,采用PSO方法對模型參數(shù)進行優(yōu)化,提升模型精度。
圖1 預測算法原理圖
基于ARIMA算法的殘差預測模型,針對金融時間序列的波動性和非平穩(wěn)性特點,將灰色預測模型與原始序列間的殘差進行分析,建立殘差預測模型,對灰色預測模型進行修正。為降低ARIMA參數(shù)預估引入的預測風險,引入遺傳算法進行優(yōu)化。
三、灰色預測模型
金融時間序列的精確預測是保證金融市場高效、穩(wěn)定運行的基礎。在灰色系統(tǒng)領域,金融活動可以看作在一定時區(qū)、一定范圍內變化的灰色過程。其本質是:通過對歷史金融數(shù)據(jù)進行累加生成,整理成規(guī)律性較強的數(shù)據(jù)序列,結合微分擬合法建立微分方程來描述生成時間序列的規(guī)律,實現(xiàn)對將來時刻的預測。GM(1,1)是最為傳統(tǒng)的灰色預測算法,由于對于背景值選取做了一定假設和限制,造成預測誤差偏大。針對這一問題,本文在GM(1,1)的基礎上引入向量β,將其推廣為GM(1,1,β)模型,并采用PSO算法優(yōu)化該模型的關鍵參數(shù),提高預測精度。
從表1的結果可以看出,對50個交易日的預測數(shù)據(jù)進行分析,本文提出的組合預測算法在. RMSE、MAPE和F. 三項指標遠小于其他兩種預測算法,表明灰色ARIMA算法能夠學習和跟蹤股市變化情況,具有很好擬合能力?;疑獳RIMA算法在50次趨勢預測中,正確趨勢45次,準確率為90%,對未來具有很好的判斷能力,從而說明灰色ARIMA算法對上證綜合指數(shù)的趨勢有很好的跟蹤能力。
六、結論
以上在對金融時間序列自身特點充分分析的基礎上,針對金融市場中存在的干擾因素眾多,關系復雜,呈現(xiàn)波動性、非平穩(wěn)性,提出了一種灰色-ARIMA的金融時間序列的智能混合預測模型。
從實證分析的結果上看,本文算法能以較好的精度擬合一段時期內金融時間序列數(shù)據(jù),由于采用了殘差消除和智能優(yōu)化方法,模型預測精度比單純的灰色預測算法有了較大提升,從而提供了一種新的分析金融時間序列的有效途徑。
參考文獻:
[1]倪麗萍, 倪志偉. 一種基于趨勢分形維數(shù)的股指時間序列相似性分析方法[J]. 系統(tǒng)工程理論與實踐,2012,21(9):76-78.
[2]毛麗, 左青松, 劉冠麟. 車用三效催化轉化器剩余壽命的非等間隔灰色預測[J]. 中南大學學報(自然科學版), 2012, 16(4): 59-61.
[3]周國雄, 吳 敏. 基于改進的灰色預測的模糊神經(jīng)網(wǎng)絡預測[J]. 系統(tǒng)仿真學報,2010,22(10):68-71.
[4]魏徳敏,文星宇. 基于混合PSO算法的桁架動力響應優(yōu)化[J]. 振動與沖擊, 2011, 22(5): 92-95.
[5]黃安強, 肖進, 汪壽陽. 一個基于集成情境知識的組合預測方法[J]. 系統(tǒng)工程理論與實踐, 2011, (1):123-127.
[6]A. Azaron, C. Perkgoz, M. Sakawa. A genetic algorithm approach for the timecost tradeoff in PERT networks[J]. Applied Mathematics and Computation, 2005, 168 (2): 1317-1339.
[7]李松, 劉力軍, 解永樂. 遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡的短時交通流混沌預測[J]. 控制與決策, 2011, 26(5): 76-81.
(責任編輯:姚德權)
An Intelligent Hybrid Prediction for Financial Time Series Based on the GreyARIMA
LUO Hongben1,2
. (1.School of Business,Central South University, Changsha, Hunan 410083,China;
2.Office of Scientific R&D Hunan University,Changsha,Hunan 410082,China).
Abstract:An Intelligent hybrid financial time series forecasting model is proposed based on a grey ARIMA. First, the financial times series grey forecasting model is constructed, and at the same time three parameters were optimized using PSO algorithm. The grey forecasting model residuals are then analyzed with ARIMA, and the coefficients for the ARIMA model are optimized with a genetic algorithm. Finally, the predicative results of the ARIMA model are used to compensate the grey forcasting model.The empirical results show that the algorithm proposed in this paper can have better fitting precision for a period of MA<107 time series data with the prediction error controlled within 5%; compared with the grey prediction algorithm and the neural network algorithm, the algorithm has obvious advantages in terms of the mean absolute error, root mean square error and the trend prediction.
Key words:Financial Time Series; Grey Prediction; ARIMA; PSO; Genetic Algorithm
[5]黃安強, 肖進, 汪壽陽. 一個基于集成情境知識的組合預測方法[J]. 系統(tǒng)工程理論與實踐, 2011, (1):123-127.
[6]A. Azaron, C. Perkgoz, M. Sakawa. A genetic algorithm approach for the timecost tradeoff in PERT networks[J]. Applied Mathematics and Computation, 2005, 168 (2): 1317-1339.
[7]李松, 劉力軍, 解永樂. 遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡的短時交通流混沌預測[J]. 控制與決策, 2011, 26(5): 76-81.
(責任編輯:姚德權)
An Intelligent Hybrid Prediction for Financial Time Series Based on the GreyARIMA
LUO Hongben1,2
. (1.School of Business,Central South University, Changsha, Hunan 410083,China;
2.Office of Scientific R&D Hunan University,Changsha,Hunan 410082,China).
Abstract:An Intelligent hybrid financial time series forecasting model is proposed based on a grey ARIMA. First, the financial times series grey forecasting model is constructed, and at the same time three parameters were optimized using PSO algorithm. The grey forecasting model residuals are then analyzed with ARIMA, and the coefficients for the ARIMA model are optimized with a genetic algorithm. Finally, the predicative results of the ARIMA model are used to compensate the grey forcasting model.The empirical results show that the algorithm proposed in this paper can have better fitting precision for a period of MA<107 time series data with the prediction error controlled within 5%; compared with the grey prediction algorithm and the neural network algorithm, the algorithm has obvious advantages in terms of the mean absolute error, root mean square error and the trend prediction.
Key words:Financial Time Series; Grey Prediction; ARIMA; PSO; Genetic Algorithm
[5]黃安強, 肖進, 汪壽陽. 一個基于集成情境知識的組合預測方法[J]. 系統(tǒng)工程理論與實踐, 2011, (1):123-127.
[6]A. Azaron, C. Perkgoz, M. Sakawa. A genetic algorithm approach for the timecost tradeoff in PERT networks[J]. Applied Mathematics and Computation, 2005, 168 (2): 1317-1339.
[7]李松, 劉力軍, 解永樂. 遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡的短時交通流混沌預測[J]. 控制與決策, 2011, 26(5): 76-81.
(責任編輯:姚德權)
An Intelligent Hybrid Prediction for Financial Time Series Based on the GreyARIMA
LUO Hongben1,2
. (1.School of Business,Central South University, Changsha, Hunan 410083,China;
2.Office of Scientific R&D Hunan University,Changsha,Hunan 410082,China).
Abstract:An Intelligent hybrid financial time series forecasting model is proposed based on a grey ARIMA. First, the financial times series grey forecasting model is constructed, and at the same time three parameters were optimized using PSO algorithm. The grey forecasting model residuals are then analyzed with ARIMA, and the coefficients for the ARIMA model are optimized with a genetic algorithm. Finally, the predicative results of the ARIMA model are used to compensate the grey forcasting model.The empirical results show that the algorithm proposed in this paper can have better fitting precision for a period of MA<107 time series data with the prediction error controlled within 5%; compared with the grey prediction algorithm and the neural network algorithm, the algorithm has obvious advantages in terms of the mean absolute error, root mean square error and the trend prediction.
Key words:Financial Time Series; Grey Prediction; ARIMA; PSO; Genetic Algorithm