亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A double inequality for the modulus of the Gr?tzsch ring in Rn

        2018-01-25 03:21:40,
        關(guān)鍵詞:預(yù)學(xué)中學(xué)教師本課

        ,

        (School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China)

        0 Notation and Main Results

        wheremis then-dimensional Lebesgue measure. By [1, Theorem 8.28, (8.31), (8.34) and (8.35)], the conformal capacity capRG,n(s) of the Gr?tzsch ringRG,n(s) can be expressed by

        γn(s)≡capRG,n(s)≡M(Δ(Bn,[se1,∞])),

        while the (conformal) modulus ofRG,n(1/r) is defined by

        whereωn-1is the surface area of the unit sphereSn-1=?Bn. Clearly,μ(r)≡M2(r) is exactly the so-called Gr?tzsch ring function, which has the following expression

        (1)

        where

        The Gr?tzsch ring constantλnis defined by

        which is indispensable in the study ofMn(r) andγn(s). It is well known thatλ2=4. Unfortunately, so far we have only known some estimates forλnwhenn≥3, among which is the following double inequality

        2e0.76(n-1)<λn≤2en+(1/n)-(3/2),n≥3

        (2)

        (see [1, Theorem 12.21(1)] and [3]).

        Now we introduce the gamma and beta functions, and some constants depending only onn, which are needed in the study of the properties ofMn(r) andγn(s). As usual, for complex numbersxandywith Rex>0 and Rey>0, the gamma and beta functions are defined by

        respectively. (Cf. [4] and [5].) It is well known that, forn≥3, the volume Ωnof Bnand the (n-1)-dimensional surface areaωn-1ofSn-1can be expressed by

        respectively. (Cf. [1, 2.23] and [6].) Let

        In particular,

        Some properties of Ωn,ωn-1,Jn,cnandAnwere given in [1, pp.38-44&163] and in [6].

        In the sequel, we let arth denote the inverse function of the hyperbolic tangent tanh, that is,

        During the past decades, many properties have been obtained forμ(r) (cf. [1]-[2] and [7]). The known properties ofMn(r), however, are much less than those ofμ(r), because of lack of effective tools for the study ofMn(r) whenn≥3. For example, we have no explicit expression as or similar to (1) forMn(r) whenn≥3. For the known properties ofMn(r) and its related functions, the reader is referred to [1], [3] and [7-13]. Some of these known results forMn(r) are related to the constantsλn,Ωn,ωn-1,Jn,cnandAn. For example, the following inequalities hold

        (3)

        (4)

        (5)

        forr∈(0,1) andn≥3 (see [1, Theorems 11.20(1), 11.21(2)&(4), and 11.21(5) ]).

        h2(r)+h2(r′)=μ(r)μ(r′)≡π2/4

        by [1, (5.2)]. It is well known that for eachn≥2, allr∈(0,1) and for allK>0,

        φK,n(r)2+φ1/K,n(r′)2=1?Mn(r)Mn(r′)=const,

        (6)

        Later, [1, 11.36(2)] says that for eachn≥2 and allr∈(0,1),

        (7)

        However, the proof of the second inequality in (7) given in [1, p.244] contains an error. This proof in [1, p.244] is as follows: [1, Corollary 11.23(1) and (4) ] yield

        and the upper bound in (7) follows, since [1, Theorem 1.25 ] implies that the function

        合作學(xué)習(xí)應(yīng)該建立在學(xué)生自主學(xué)習(xí)基礎(chǔ)上,為進(jìn)一步提升學(xué)生合作學(xué)習(xí)效率,作為中學(xué)教師要合理引導(dǎo)學(xué)生自主預(yù)學(xué),使學(xué)生對本課學(xué)習(xí)內(nèi)容形成初步認(rèn)識。

        is increasing from (0,1) onto (1,2 logλn). It is easy to see that by this “proof ”, one can only obtain the following inequality

        so that the upper bound forhn(r)+hn(r′), which we can obtain by this method, is as follows

        consisting with that in (6). So far, the known best upper bound forhn(r)+hn(r′) is given by (6).

        In addition to indicating the error in the proof of (7) given in [1, p.244] as above-mentioned, the main purpose of this paper is to improve the upper bound given in (6) by proving the following result.

        Theorem1Lethn(r)=r′2Mn(r)Mn(r′)n-1. Then for eachn≥2 and allr∈(0,1),

        (8)

        where

        1 Proof of Theorem 1

        The proof of Theorem 1 stated in Section 0 requires the following lemma.

        1.1 A Technical Lemma

        Lemma1a) Forr∈(0,1), letg(r)=r2/arthrandf(r)=g′(r)/r. Thenfis strictly decreasing from (0,1) onto (-∞,∞).

        (9)

        Proof:a) Differentiation gives

        so that

        (10)

        Clearly,f(0+)=∞ andf(1-)=-∞. By differentiation,

        (11)

        b) It is easy to verify that

        Then the remaining conclusions are clear.

        1.2 Proof of Theorem 1

        The first inequality in (8) was proved in [8, Theorem 5.1(3)].

        LetH(r)=hn(r)+hn(r′), andFbe as in Lemma 1 b). By (5), we see that

        (12)

        On the other hand, the following inequality holds

        Mn(r)

        (13)

        for eachn≥2 and all 0

        is strictly decreasing from (0,1) onto (0,1) by [1, Theorem 11.21(4)]. It follows from (12) and (13) that

        This, together with Lemma 1 b), yields

        (14)

        By (2), the following double inequality holds

        (15)

        where

        This yields the second inequality in (8) as desired.

        [1] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley and Sons,1997.

        [2] Ahlfors L V. Lectures on Quasiconformal Mappings[M]. 2nd ed. American Mathematical Society,2005.

        [3] Anderson G D, Frame J S. Numerical estimates for a Gr?tzsch ring constant[J]. Constr Approx,1988,4:223-242.

        [4] Abramowitz M, Stegun I A(Eds.). Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables[M]. New York: Dover,1965.

        [5] Qiu S L, Vuorinen M. Handbook of Complex Analysis: Special Function in Geometric Function Theory: Volume 2[M]. Elsevier B V,2005:621-659.

        [6] Qiu S L, Vuorinen M. Some properties of the gamma and psi functions with applications[J]. Math Comput,2005,74(250):723-742.

        [7] Qiu S L. Gr?tzsch ring and Ramanujan’s modular equations[J]. Acta Mathematica Sinica,2000,43(2):283-290.

        [8] Anderson G D, Qiu S L, Vamanamurthy M K. Gr?tzsch ring and quasiconformal distortion functions[J]. Hokkaido Math J,1995,24(3):551-566.

        [9] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal invariants, quasiconformal maps, and special functions[M]//Quasiconformal Space Mappings. Berlin-Heidelberg: Springer-Verlag,1992:1-19.

        [10] Anderson G D, Vamanamurthy M K, Vuorinen M. Inequalities for quasiconformal mappings in space[J]. Pacific J Math,1993,160:1-18.

        [11] Ikoma K. An estimate for the modulus of the Gr?tzsch ring inn-space[J]. Bull Yamagata Univ Natur Sci,1967,6:395-400.

        [12] Qiu S L, Vamanamurthy M K. Elliptic integrals and the modulus of Gr?tzsch ring[J]. PanAmer Math J,1995,5(2):41-60.

        [13] Vuorinen M. On the boundary behavior of locallyK-quasiconformal mappings in space[J]. Ann Acad Sci Fenn Ser A I,1980,5:79-95.

        猜你喜歡
        預(yù)學(xué)中學(xué)教師本課
        淺談注重預(yù)學(xué)設(shè)計提升小學(xué)語文核心素養(yǎng)
        名師在線繪本課
        教師作品
        江蘇教育(2022年69期)2022-10-24 09:45:24
        明確預(yù)學(xué)起點(diǎn) 構(gòu)建教學(xué)基點(diǎn)
        從“封閉”走向“開放”——北京市遠(yuǎn)郊區(qū)中學(xué)教師教育創(chuàng)新的瓶頸與突破
        青年心理(2021年28期)2021-05-23 13:20:44
        人教版八年級物理下冊《液體的壓強(qiáng)》教學(xué)設(shè)計
        成長(2020年3期)2020-05-27 03:45:44
        小學(xué)數(shù)學(xué)有效預(yù)學(xué)策略探索
        中學(xué)教師工作投入問卷的編制
        西藏中學(xué)教師職業(yè)認(rèn)同現(xiàn)狀及其提升建議
        西藏科技(2015年12期)2015-09-26 12:13:43
        單(雙)腳蹬地翻身上成支撐教學(xué)設(shè)計(片斷)
        91国在线啪精品一区| 国内最真实的xxxx人伦| 痉挛高潮喷水av无码免费| 亚洲精品你懂的在线观看| 国产精品人成在线观看| 深夜福利国产精品中文字幕| 色欲av伊人久久大香线蕉影院| 亚洲 自拍 另类 欧美 综合| 乱人伦视频69| 亚洲av中文字字幕乱码软件| 色噜噜亚洲男人的天堂| 国产精品久久久久av福利动漫| 日韩欧美国产自由二区 | 色综合久久人妻精品日韩| 亚洲av无码专区国产乱码4se| 真人作爱免费视频| аⅴ天堂国产最新版在线中文| 亚洲一区二区三区亚洲| 国产欧美在线观看不卡| 欧美大屁股xxxxhd黑色| 欧美高清视频一区| 久久熟女少妇一区二区三区| 男人添女人囗交做爰视频| 欧美性狂猛xxxxx深喉| 久久精品美女久久| 亚洲福利二区三区四区| 成午夜精品一区二区三区| 99久久精品自在自看国产| 日本福利视频免费久久久 | 人成午夜免费视频无码| 亚洲深深色噜噜狠狠爱网站| 亚洲精品国产精品av| 在线视频中文字幕一区二区三区| 国产揄拍国产精品| 欧美亚洲国产人妖系列视| 亚洲国产女同在线观看| 国自产拍偷拍精品啪啪一区二区| 欧美亚洲国产精品久久高清| 中文字幕一区二区三区97| 亚洲色图三级在线观看| 男人j进女人j啪啪无遮挡|