亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A double inequality for the modulus of the Gr?tzsch ring in Rn

        2018-01-25 03:21:40,
        關(guān)鍵詞:預(yù)學(xué)中學(xué)教師本課

        ,

        (School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China)

        0 Notation and Main Results

        wheremis then-dimensional Lebesgue measure. By [1, Theorem 8.28, (8.31), (8.34) and (8.35)], the conformal capacity capRG,n(s) of the Gr?tzsch ringRG,n(s) can be expressed by

        γn(s)≡capRG,n(s)≡M(Δ(Bn,[se1,∞])),

        while the (conformal) modulus ofRG,n(1/r) is defined by

        whereωn-1is the surface area of the unit sphereSn-1=?Bn. Clearly,μ(r)≡M2(r) is exactly the so-called Gr?tzsch ring function, which has the following expression

        (1)

        where

        The Gr?tzsch ring constantλnis defined by

        which is indispensable in the study ofMn(r) andγn(s). It is well known thatλ2=4. Unfortunately, so far we have only known some estimates forλnwhenn≥3, among which is the following double inequality

        2e0.76(n-1)<λn≤2en+(1/n)-(3/2),n≥3

        (2)

        (see [1, Theorem 12.21(1)] and [3]).

        Now we introduce the gamma and beta functions, and some constants depending only onn, which are needed in the study of the properties ofMn(r) andγn(s). As usual, for complex numbersxandywith Rex>0 and Rey>0, the gamma and beta functions are defined by

        respectively. (Cf. [4] and [5].) It is well known that, forn≥3, the volume Ωnof Bnand the (n-1)-dimensional surface areaωn-1ofSn-1can be expressed by

        respectively. (Cf. [1, 2.23] and [6].) Let

        In particular,

        Some properties of Ωn,ωn-1,Jn,cnandAnwere given in [1, pp.38-44&163] and in [6].

        In the sequel, we let arth denote the inverse function of the hyperbolic tangent tanh, that is,

        During the past decades, many properties have been obtained forμ(r) (cf. [1]-[2] and [7]). The known properties ofMn(r), however, are much less than those ofμ(r), because of lack of effective tools for the study ofMn(r) whenn≥3. For example, we have no explicit expression as or similar to (1) forMn(r) whenn≥3. For the known properties ofMn(r) and its related functions, the reader is referred to [1], [3] and [7-13]. Some of these known results forMn(r) are related to the constantsλn,Ωn,ωn-1,Jn,cnandAn. For example, the following inequalities hold

        (3)

        (4)

        (5)

        forr∈(0,1) andn≥3 (see [1, Theorems 11.20(1), 11.21(2)&(4), and 11.21(5) ]).

        h2(r)+h2(r′)=μ(r)μ(r′)≡π2/4

        by [1, (5.2)]. It is well known that for eachn≥2, allr∈(0,1) and for allK>0,

        φK,n(r)2+φ1/K,n(r′)2=1?Mn(r)Mn(r′)=const,

        (6)

        Later, [1, 11.36(2)] says that for eachn≥2 and allr∈(0,1),

        (7)

        However, the proof of the second inequality in (7) given in [1, p.244] contains an error. This proof in [1, p.244] is as follows: [1, Corollary 11.23(1) and (4) ] yield

        and the upper bound in (7) follows, since [1, Theorem 1.25 ] implies that the function

        合作學(xué)習(xí)應(yīng)該建立在學(xué)生自主學(xué)習(xí)基礎(chǔ)上,為進(jìn)一步提升學(xué)生合作學(xué)習(xí)效率,作為中學(xué)教師要合理引導(dǎo)學(xué)生自主預(yù)學(xué),使學(xué)生對本課學(xué)習(xí)內(nèi)容形成初步認(rèn)識。

        is increasing from (0,1) onto (1,2 logλn). It is easy to see that by this “proof ”, one can only obtain the following inequality

        so that the upper bound forhn(r)+hn(r′), which we can obtain by this method, is as follows

        consisting with that in (6). So far, the known best upper bound forhn(r)+hn(r′) is given by (6).

        In addition to indicating the error in the proof of (7) given in [1, p.244] as above-mentioned, the main purpose of this paper is to improve the upper bound given in (6) by proving the following result.

        Theorem1Lethn(r)=r′2Mn(r)Mn(r′)n-1. Then for eachn≥2 and allr∈(0,1),

        (8)

        where

        1 Proof of Theorem 1

        The proof of Theorem 1 stated in Section 0 requires the following lemma.

        1.1 A Technical Lemma

        Lemma1a) Forr∈(0,1), letg(r)=r2/arthrandf(r)=g′(r)/r. Thenfis strictly decreasing from (0,1) onto (-∞,∞).

        (9)

        Proof:a) Differentiation gives

        so that

        (10)

        Clearly,f(0+)=∞ andf(1-)=-∞. By differentiation,

        (11)

        b) It is easy to verify that

        Then the remaining conclusions are clear.

        1.2 Proof of Theorem 1

        The first inequality in (8) was proved in [8, Theorem 5.1(3)].

        LetH(r)=hn(r)+hn(r′), andFbe as in Lemma 1 b). By (5), we see that

        (12)

        On the other hand, the following inequality holds

        Mn(r)

        (13)

        for eachn≥2 and all 0

        is strictly decreasing from (0,1) onto (0,1) by [1, Theorem 11.21(4)]. It follows from (12) and (13) that

        This, together with Lemma 1 b), yields

        (14)

        By (2), the following double inequality holds

        (15)

        where

        This yields the second inequality in (8) as desired.

        [1] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps[M]. New York: John Wiley and Sons,1997.

        [2] Ahlfors L V. Lectures on Quasiconformal Mappings[M]. 2nd ed. American Mathematical Society,2005.

        [3] Anderson G D, Frame J S. Numerical estimates for a Gr?tzsch ring constant[J]. Constr Approx,1988,4:223-242.

        [4] Abramowitz M, Stegun I A(Eds.). Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables[M]. New York: Dover,1965.

        [5] Qiu S L, Vuorinen M. Handbook of Complex Analysis: Special Function in Geometric Function Theory: Volume 2[M]. Elsevier B V,2005:621-659.

        [6] Qiu S L, Vuorinen M. Some properties of the gamma and psi functions with applications[J]. Math Comput,2005,74(250):723-742.

        [7] Qiu S L. Gr?tzsch ring and Ramanujan’s modular equations[J]. Acta Mathematica Sinica,2000,43(2):283-290.

        [8] Anderson G D, Qiu S L, Vamanamurthy M K. Gr?tzsch ring and quasiconformal distortion functions[J]. Hokkaido Math J,1995,24(3):551-566.

        [9] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal invariants, quasiconformal maps, and special functions[M]//Quasiconformal Space Mappings. Berlin-Heidelberg: Springer-Verlag,1992:1-19.

        [10] Anderson G D, Vamanamurthy M K, Vuorinen M. Inequalities for quasiconformal mappings in space[J]. Pacific J Math,1993,160:1-18.

        [11] Ikoma K. An estimate for the modulus of the Gr?tzsch ring inn-space[J]. Bull Yamagata Univ Natur Sci,1967,6:395-400.

        [12] Qiu S L, Vamanamurthy M K. Elliptic integrals and the modulus of Gr?tzsch ring[J]. PanAmer Math J,1995,5(2):41-60.

        [13] Vuorinen M. On the boundary behavior of locallyK-quasiconformal mappings in space[J]. Ann Acad Sci Fenn Ser A I,1980,5:79-95.

        猜你喜歡
        預(yù)學(xué)中學(xué)教師本課
        淺談注重預(yù)學(xué)設(shè)計提升小學(xué)語文核心素養(yǎng)
        名師在線繪本課
        教師作品
        江蘇教育(2022年69期)2022-10-24 09:45:24
        明確預(yù)學(xué)起點(diǎn) 構(gòu)建教學(xué)基點(diǎn)
        從“封閉”走向“開放”——北京市遠(yuǎn)郊區(qū)中學(xué)教師教育創(chuàng)新的瓶頸與突破
        青年心理(2021年28期)2021-05-23 13:20:44
        人教版八年級物理下冊《液體的壓強(qiáng)》教學(xué)設(shè)計
        成長(2020年3期)2020-05-27 03:45:44
        小學(xué)數(shù)學(xué)有效預(yù)學(xué)策略探索
        中學(xué)教師工作投入問卷的編制
        西藏中學(xué)教師職業(yè)認(rèn)同現(xiàn)狀及其提升建議
        西藏科技(2015年12期)2015-09-26 12:13:43
        單(雙)腳蹬地翻身上成支撐教學(xué)設(shè)計(片斷)
        亚洲精品6久久久久中文字幕| 亚洲国产精品无码中文字| 野狼第一精品社区| 国产成人精品三级麻豆| 天堂视频一区二区免费在线观看| 亚洲国产精品国自拍av| 色综合av综合无码综合网站| 又黄又爽又高潮免费毛片| 韩日无码不卡| 成人国产高清av一区二区三区| 亚洲av综合一区二区在线观看| 国产在线观看www污污污| 久久精品国产亚洲综合色| 中文字幕专区一区二区| 国产精品亚洲а∨无码播放| 天天爽夜夜爽夜夜爽| 亚洲精品aⅴ无码精品丝袜足| 国产又湿又爽又猛的视频 | 国产av一区二区三区无码野战| 中文字幕日韩精品无码内射| 中文字幕久久久人妻无码| 日本高清成人一区二区三区 | 妺妺窝人体色www聚色窝| 国产日韩网站| 人妻少妇无乱码中文字幕| 草逼短视频免费看m3u8| 亚洲综合国产一区二区三区| 国产一区二区三区啪| 视频一区中文字幕在线观看| 成年美女黄的视频网站| 亚洲av无码乱观看明星换脸va| 一区二区三区国产高潮| 亚洲无人区乱码中文字幕能看| 亚洲av永久无码精品三区在线| 91免费播放日韩一区二天天综合福利电影| 亚洲国产精品成人一区| 四虎永久在线精品免费一区二区 | 国产曰批免费视频播放免费s| 亚洲一区二区三区在线更新| 多毛小伙内射老太婆| 一本大道久久东京热无码av|