亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Positive Solu tions of Non linear Ellip tic Prob lem in a Non-Sm ooth Planar Dom ain

        2014-05-13 02:37:58BENBOUBAKERMohamedAmine
        關(guān)鍵詞:被試計(jì)分平均數(shù)

        BEN BOUBAKERM oham ed Am ine

        Institut Preparatoire aux Etudes D’Ing′enieur De Nabeul University of Carthage CampusUniversitaireM erezka,8000,Nabeul,Tunisia.

        Positive Solu tions of Non linear Ellip tic Prob lem in a Non-Sm ooth Planar Dom ain

        BEN BOUBAKERM oham ed Am ine?

        Institut Preparatoire aux Etudes D’Ing′enieur De Nabeul University of Carthage CampusUniversitaireM erezka,8000,Nabeul,Tunisia.

        Received 2Decem ber 2013;A ccep ted 28 June 2014

        . Wef indandprove3Ginequal i t ies for theLaplacianGreenfunct ionwi th the D irich let boundary cond ition,w hich are app lied to show the existence of positive continuous solutions of the non linear equation w here V and g are Borelm easurable functions,required to satisfy suitable assum ptions related to a new functional class J.Our app roach uses the Schauder fixed point theorem.

        Greenfunct ion;Schauder f ixedpoint theorem;superharmonicfunct ion.

        1 In troduction

        In this paper,w e w ork in the Euclidean space R2.By Sα,w e denote the dom ain defined by

        The objective is to study the existence of con tinuous solu tions for the non linear ellip tic p roblem

        w here V and g are Borelm easu rable functions,required to satisfy suitable assum p tions related to a new functional class J.The existence resu lts of p roblem(1.1)have been extensively stud ied w hen V=0 and the special non linearity g(x,t)=p(x)q(t),for both bounded and unbounded dom ain D in(n≥1),w ith sm ooth com pact boundary(see for exam p le[1–4]).On the other hand,in[5–7],the au thors considered the p roblem(1.1) w here there isno restrictionson the sign of g,and D isan unbounded dom ain in(n≥1) w ith a com pact Lipschitz boundary.Then,they p roved the existence of infinitely m any solu tionsp rovided that g is in a certain Kato class.Nam ely,they show ed that there exists a num ber b0>0 such that for each b∈(0,b0],there existsa positive continuous solution u insatisfying

        Theorem1.1.(3G-Theorem)There existsa constant C1=C1(α)>0 such that forall x,y and z in Sα,wehave

        whereδ(x)is the Euclidean distance from x to?Sα.

        Thisenablesus to define and study,in Section 4 a new Kato class J of functionson Sα. Let

        Definition1.1.Wesay that a Borelmeasurable function q on Sαbelongs to the Kato class Jifq satisfies thefollow ing conditions:

        Note that ifα=1,then J is the Kato class K in troduced and stud ied in[8].For a Borel m easurable function q on Sα,let

        w here hα(x)=|x|αcos(αarg x),for all x∈Sα.To study the p roblem(1.1)in section 5,w e assum e the follow ing cond ition on V and g:

        (H1)The function g is a Borelm easu rable on Sα×(0,∞),continuousw ith respect to the second variable and satisfies

        Ourm ain resu lt is the follow ing:

        Theorem1.2.Assume(H1)-(H3).Then the problem(1.1)has infinitelymany continuous solutions.M oreprecisely,there existsε0>0 such thatforeachε∈(0,ε0],thereexistsa solution u of

        (1.1),continuouson Sαand satisfying

        The follow ing notionsw illbe adop ted:

        i)Let f and k be tw o positive functionson a set?.We say that f is com parable to k on?and w e denote fk,if there exists C>1,such that?x∈?.

        iii)B(x,r)denotes the Euclidean open ballof center x and rad ius r.

        Throughout this paper,C denotes a generic positive constantw hichm ay vary from line to line and?cdenotes the com p lem entary of?in.

        2 Inequalities for the G reen function

        Proposition2.1.([10])There existsa constant Cα>0,such that forall x and y in Sα,wehave

        Theorem2.1.([10])Letα∈]0,+∞[{1}.Then,forall x,y∈Sα

        Lemma2.1.ThereexistsC=C(α)>1,such thatforallx,y∈Sα,wehave thefollow ing properties:

        Proof.i)Assum e|x|α-1δ(x)|y|α-1δ(y)≤|x-y|2(|x|∨|y|)2(α-1).Let Cαbe the constant defined in Proposition2.1 and x,y∈Sα.Let

        Since|x|α-1δ(x)|y|α-1δ(y)≤|x-y|2(|x|∨|y|)2(α-1),it follow s,by Proposition2.1,that

        Thus,w e deduce that

        Using Proposition 2.1,w e get

        By interchanging the role of x and y,w e obtain(i).

        ii)Assum e|x-y|2(|x|∨|y|)2(α-1)≤|x|α-1δ(x)|y|α-1δ(y),then,by Proposition 2.1,w e get

        In consequence,w e obtain

        w hich gives

        So,by using Proposition 2.1,w e deduce that

        The p roof is com p lete.

        Proposition2.2.Thereexists C=C(α)>0 depending only on Sα,such that forall x,y in Sα

        there exists C>0 such that

        Since|xα-yα|?|x-y|(|x|∨|y|)α-1andδ(x)≤|x|,there exists C>0 such that

        ii)The left hand side inequality in(2.7)follow s from(2.8).We p rove the righ t hand side inequality.There are tw o cases to d iscuss:

        If|x|α-1δ(x)|y|α-1δ(y)≤|x-y|2(|x|∨|y|)2(α-1),then it follow s by Lemm a 2.1 that

        If|x|α-1δ(x)|y|α-1δ(y)≥|x-y|2(|x|∨|y|)2(α-1),then it follow s by Lemm a 2.1 that

        The p roof is com p lete.

        ProofofTheorem1.1.Since the function z7-→zαis a con form alm app ing from Sαinto the half p lane S1.It follow s from 3G inequality p roved in[8]that,for all x,y and z in Sα

        將需要反向計(jì)分的條目進(jìn)行轉(zhuǎn)換后,所有被試的數(shù)據(jù)根據(jù)量表總得分由高到低進(jìn)行排列,以總得分前27%的被試作為高分組,后27%的被試作為低分組,兩組被試每一條目得分的平均數(shù)差異均顯著,ps<0.01。被試每一條目得分與量表總得分之間均呈顯著正相關(guān),相關(guān)系數(shù)在0.35~0.87之間。

        Thus the resu lt follow s from Proposition 2.1.

        3 Kato class

        Proposition3.1.Let R>0,then forall x,y∈Sα∩B(0,R),wehave

        Proof.We can suppose that|x|≥|y|.Assum e12<α<1,then

        Assum eα>1,then

        The p roof is com p lete.

        Proposition3.2.Letq bea Borelmeasurablefunction on Sαsuch thatq∈J,then foreach R>0,

        Proof.By(2.7)w e have

        This im p lies by Proposition 2.1,that for all x,y∈Sα

        Since q∈J,then by(1.3)there exists r>0 such that

        The p roof is com p lete.

        Proposition3.3.Ifq∈J,then k q k<+∞.

        Proof.Using Proposition 2.1,w e get

        Let r>0 and M>0.Then,w e have

        By(2.3)and Proposition 3.1,w e obtain

        The resu lt follow s from(1.3),(1.4)and Proposition 3.2.

        Proposition3.4.Let h beapositive superharmonic function in Sαand q in J.Then

        Proof.Let h bea positive superharm onic function on Sα.By[11,Theorem 2.1],thereexists a sequence(fn)n∈Nof positivem easu rable function on Sαsuch that

        Hence,w e need on ly to verify(3.3)-(3.5)for h(y)=Gα(y,z)uniform ly on Sα.

        1.Let r>0.Then by Theorem 1.1,w e have

        Letηand M>0.By using(2.6),w e get

        We obtain(3.3)by using(1.3),(1.4)and Proposition 3.2.

        On the other hand,

        2.(3.5)follow s imm ed iately by using Theorem 1.1.

        Corollary3.1.Letq bea Borelmeasurablefunction in J.Then,

        Proof.By using(3.5)w ith h=1 and Proposition 3.3,w e obtain(3.7).Let x0∈Sα.By(2.6) and(3.7)w e get

        Finally,(3.9)follow s from(3.8).

        Proposition3.5.Letη,μ∈R such thatη<2<μandα∈]12,1[.Then thefunctionσdefined on Sαby

        is in J.

        Proof.Letη,μ∈R such thatη<2<μand r>0.Then w e have

        Let us recall that ifα∈]12,1[,then|x-y|(|x|∨|y|)α-1≤21-α|x-y|α.This im p lies by using Lemm a 2.1,that

        On the other hand,by Lemm a2.1 there exists C>1 such that for all y∈?2,xw e have

        Since ln(1+t2)≤C tγ,?t≥0,?γ∈](0∨η),2[,then

        Now let M>0,

        and show ing that limM-→+∞IM=0.Letε>0,then there exists r>0 such that

        Then

        w here r0=21-αrα.

        Fixing this r0>0 and letting M>1,w e get

        Since the function z7-→zαis a conform alm apping,by using(2.2)w e obtain

        The p roof is com p lete.

        Lemma3.1.Let hα(x)=|x|αcos(αarg x),x∈Sα.Let M>0 and r>0.Then there exists a constant C>0,such that forall x,y∈Sαsatisfying|x-y|≥r and|y|≤M

        4 Proof of Theorem 1.2

        Let C(Sα)denotes the space of allbounded con tinuous functions in Sαendow ed w ith the uniform norm k k∞and let

        w here Cαis the constant defined in Proposition 2.1.For v∈C1(Sα),w e define

        In the follow ing,for sim p licity,w ew rite q(y)=|V(y)|+ψ(y).

        Proof.Let x0∈and r>0.Let M>|x0|+r,and x,It follow s from(H1) and v≤1/Cαthat

        Hence Lv is continuous in Sαuniform ly for v∈C1(Sα).

        We next consider x0=∞.Let M>0 and x∈Sαsuch that|x|≥M+1,then

        By(1.4),the second term of the righ t hand side is bounded byε,w henever M is su fficiently large.Note that from Proposition 3.1 and Lemm a 3.1,there exists C>0 such that

        It follow s from Proposition 3.2 and Lebesgue’s convergence theorem that

        M oreover,Lε(Gε)isrelatively compact in C(Sα∪{∞}).

        Let0<λ<1 and define

        so it follow s from(H1)that for x∈Sα,w e have

        Lemma4.3.Let0<ε<ε0.Then Lεis continuouson Gε.

        Proof.Let(vk)kbe a sequence in Gεw hich convergesuniform ly to v∈Gε.It follow s from (H1)-(H3)and Lebesgue’s theorem that

        Since Lε(Gε)is a relatively com pact fam ily in C(Sα∪{∞}),the pointw ise convergence im p lies the uniform convergence.Therefore k Lεvk-Lεv k∞-→0 as k-→+∞.Thus Lεis continuouson Gε.

        ProofofTheorem1.2.Let 0<ε≤ε0,w hereε0is the positive constant defined in Lemm a

        Let u(x)=v(x)hα(x).Then u>0 in Sα,and u=0 on?Sαsince hαsatisfies these cond itions. A lso,w e have for x∈Sα,

        The p roof is com p lete.

        Example4.1.Letν>0,α∈]12,1[andη<2<μ.Let h be a Borelm easu rable function on Sαsuch that

        Then,there existsε0>0 such that for eachε∈(0,ε0],the p roblem

        has a solution w continuouson Sαand satisfying

        [1]Edelson A.L.,Entiere solu tions of singu lar ellip tic equations.J.M ath.Anal.Appl.139(1989), 523-532.

        [2]Lair A.V.,Shaker A.W.,Entiere solutions of a singu lar sem ilinear ellip tic p roblem.J.M ath. Anal.Appl.200(1996),498-505.

        [3]Lair A.V.,Shaker A.W.,Classicaland w eak solu tions of a singu lar sem i-linear ellip tic p roblem.J.M ath Anal.Appl.211(1997),371-385.

        [4]Lazer A.C.,M ackenna P.J.,On a singu lar nonlinear ellip tic boundary-value p roblem.Proc. Amer.M ath.Soc.111(1991),721-730.

        [5]U fektepe U.,Zhao Z.,Positive solutions of nonlinear ellip tic equations in the euclidean p lane.Proc.Amer.M ath.Soc.126(1998),3681-3692.

        [6]Zhao Z.,On the existence of positive solu tions of non linear ellip tic equations-a p robabilistic potential theory app roach.Duke.M ath.J.69(1993),247-258.

        [7]Zhao Z.,Positive solu tions of non linear second order ord inary d ifferential equations.Proc. Amer.M ath.Soc.121(2)(1994),465-469.

        [8]Bachar I.,M aagliH.,M aatoug L.,Positive solutions of nonlinear ellip tic equations in a half space in R2.Electronic.J.D iff.Eqns.41(2002),1-24.

        [9]H irata K.,Sharp Estim ates for the Green function,3G inequalities,and non linear Schrod inger p roblem s in uniform cones.J.D’analyseM ath′ematique,99(2006).

        [10]Boubaker M.A.Ben,Selm iM.,Estim ation of Green’s function on piecew ise Dini-sm ooth Bounded Jordan dom ains.Collo.M ath.133(1)(2013),1-22.

        [11]Port S.,Stone C.,Brow nian M otion and Classical Potential Theory.Probab.M ath.Staist, Academ ic Press,New York,1978.

        10.4208/jpde.v27.n3.2 Sep tem ber 2014

        ?Correspond ing au thor.Emailaddress:MohamedAmine.BenBoubaker@ipein.rnu.tn(M.A.Ben Boubaker)

        AMSSubjectClassifications:31A10,31A25,31A35,34B15,34B27,31C45,35J65

        ChineseLibraryClassifications:O175.5,O175.8

        猜你喜歡
        被試計(jì)分平均數(shù)
        加權(quán)平均數(shù)的應(yīng)用
        多級(jí)計(jì)分測(cè)驗(yàn)中基于殘差統(tǒng)計(jì)量的被試擬合研究*
        帶定性判斷的計(jì)分投票制及其公理刻畫
        大學(xué)生宿舍人際交往研究
        引導(dǎo)素質(zhì)教育的新高考計(jì)分模式構(gòu)想:線性轉(zhuǎn)化計(jì)分模式
        基于單片機(jī)的中國(guó)式摔跤比賽計(jì)分器開(kāi)發(fā)設(shè)計(jì)
        電子制作(2019年9期)2019-05-30 09:42:06
        關(guān)注加權(quán)平均數(shù)中的“權(quán)”
        平均數(shù)應(yīng)用舉隅
        說(shuō)說(shuō)加權(quán)平均數(shù)
        計(jì)分考核表在績(jī)效管理中的應(yīng)用效果
        久久青草伊人精品| 欧美老妇多毛xxxxx极瑞视频| 国产乱码一二三区精品| 国产成人久久综合热| 亚洲又黄又大又爽毛片| 国产91成人精品高潮综合久久| 97碰碰碰人妻无码视频| 日韩精品一区二区三区视频| 久久精品国产久精国产69| av在线入口一区二区| 日本真人做爰免费视频120秒| 国产精品视频一区二区噜噜| 欧美一级视频在线| 区一区二区三区四视频在线观看| 精品国产这么小也不放过| 国产内射合集颜射| 性色av成人精品久久| 日本一区二区精品高清| 在线高清理伦片a| 综合无码综合网站| 人妻少妇中文字幕专区| 国产av久久久久精东av| 中文字幕亚洲乱码熟女在线萌芽| 中文无码免费在线| 国产av在线观看一区二区三区| 无人高清电视剧在线观看 | 中文 国产 无码免费| 久久精品天堂一区二区| 国产私人尤物无码不卡| 永久免费观看的毛片手机视频| AV在线毛片| 白白发在线视频免费观看2| 少妇性荡欲视频| 自拍亚洲一区欧美另类| 日本av一区二区在线| 人妻饥渴偷公乱中文字幕| 可以免费观看的毛片| 青青青视频手机在线观看| 久久久久亚洲av成人人电影| 亚洲日韩精品欧美一区二区一| 最新永久免费AV网站|