亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Liquid Crystal Flow sw ith Regu larity in One D irection

        2014-05-13 02:38:25ZHANGZujin

        ZHANG Zu jin

        SchoolofM athematicsand Computer Sciences,Gannan NormalUniversity, Ganzhou 341000,China.

        Liquid Crystal Flow sw ith Regu larity in One D irection

        ZHANG Zu jin?

        SchoolofM athematicsand Computer Sciences,Gannan NormalUniversity, Ganzhou 341000,China.

        Received 7 February 2014;Accep ted 9M ay 2014

        .In this paper,w e consider the Cauchy p roblem for them odelof liquid crystal.We show that if the velocity field u satisfies then the solution is in factsm ooth.

        Liquid crystals;regu larity criteria.

        1 In troduction

        In this paper,w e consider the follow ing m odel of liquid crystal in R3introduced by Lin[33]:

        w here u=(u1,u2,u3)is the fluid velocity field,d=(d1,d2,d3)is the(averaged)m acroscopic/continuum m olecu le orientation,πis a scalar p ressure,u0and d0are the p rescribed initial data,

        Hereand thereafter,w e use the summ ation convention that repeated ind icesare summ ed au tom atically over{1,2,3}.

        The existence of a global-in-tim e w eak solution and the local unique strong solution hasbeen established by Lin and Liu[1].Bu tas for the incom p ressible Navier-Stokessystem(d is constant in(1.1)),w hether a given globalw eak solu tion is regu lar and w hether the localunique strong solu tion can exist globally are challenging open p roblem s.

        M otivated by the regu larity criteria for the Navier-Stokes[2–13]and MHD equations[14–26],som e au thors considered the regu larity cond itions for(1.1),see[27–32]and references cited therein.

        In this paper,w ew ou ld like to im p rove the regu larity criterion

        established in[29].

        Beforew e state the p recise resu lt,letus recall thew eak form u lation of(1.1).

        Definition 1.1([1]).Ameasurablepair(u,d)issaid tobeaweak solution of(1.1)on[0,T]×R3, provided thefollow ing assertionshold:

        Now ou rm ain resu lt reads:

        Theorem 1.1.Let u0∈L2(R3)satisfy?·u0=0,d0∈H1(R3)w ith|d0|≤1,and let themeasurable pair(u,d)bea given weak solution of(1.1)w ith initial data(u0,d0).If

        then the solution is in fact strong,and thus classical.

        By a strong solu tion,w em ean(u,d)satisfy

        Rem ark 1.1.Notice that

        the scaling d im ension of Theorem 1.1 can alm ostachieve 3/2.

        2 Proof of Theorem 1.1

        In this section,w e shallp rove Theorem 1.1.First,letus recall

        Taking the inner p roduct of(1.1)1,(1.1)2w ith-△u,△2d in L2(R3)respectively,w e obtain

        Com bining(2.1)and(2.2),w e deduce

        Gathering(2.4),(2.5)and(2.6)in to(2.3),w e obtain

        App lying Gronw all inequality,w e deduce that the solu tion pair(u,d)isa strong solu tion, as desired.

        The p roofof Theorem 1.1 is com p leted.

        Acknow ledgm en ts

        Thisw ork w as partially supported by the Youth Natural Science Foundation of Jiangxi Province(20132BAB211007),theNationalNatu ralScience Foundation ofChina(11326138), and the Science Foundation of JiangxiProvincial Departm entof Education(GJJ14673).

        [1]Lin F.H.,Liu C.,Nonparabolic d issipative system sm odeling the flow of liquid crystals. Comm.Pure Appl.M ath.,48(1995),501-537.

        [3]Cao C.S.,Su fficientconditions for the regu larity to the 3D Navier-Stokesequations.Discrete Contin.Dyn.Syst.,26(2010),1141-1151.

        [4]Cao C.S.,TitiE.S.,G lobal regu larity criterion for the 3D Navier-Stokesequations involving one entry of the velocity grad ient tensor.Arch.RationalM ech.Anal.,202(2011),919-932.

        [5]Kukavica I.,Ziane M.,One com ponent regu larity for the Navier-Stokes equations.Nonlinearity,19(2006),453-469.

        [6]Kukavica I.,Ziane M.,Navier-Stokes equations w ith regu larity in one d irection.J.M ath. Phys.,48(2007),065203,10 pp.

        [7]Neustupa J.,Novotn′y A.,Penel P.,An interior regu larity of a w eak solu tion to the Navier-Stokesequations in dependenceon one com ponentof velocity,Topics inm athem atical fluid m echanics.Quad.M at.,10(2002),163-183.

        [8]Zhang Z.J.,A Serrin-type regu larity criterion for the Navier-Stokesequations via one velocity com ponent.Commu.Pure Appl.Anal.,12(2013),117-124.

        [9]Zhang Z.J.,Yao Z.A.,LiP.,Guo C.C.,Lu M.,Tw o new regu larity criteria for the 3D Navier-Stokesequations via tw o entriesof the velocity gradient tensor.Acta Appl.M ath.,123(2013), 43-52.

        [10]Zhang Z.J.,Yao Z.A.,Lu M.,N iL.D.,Som e Serrin-type regu larity criteria forw eak solutions to the Navier-Stokesequations.J.M ath.Phys.,52(2011),053103.

        [11]Zhou Y.,A new regu larity criterion for w eak solu tions to the Navier-Stokes equations.J. M ath.Pures Appl.,84(2005),1496-1514.

        [12]Zhou Y.,Pokorn′y M.,On a regu larity criterion for the Navier-Stokes equations involving grad ientofone velocity com ponent.J.M ath.Phys.,50(2009),123514,11 pp.

        [13]Zhou Y.,Pokorn′y M.,On the regu larity of the solutions of the Navier-Stokes equations via one velocity com ponent.Nonlinearity,23(2010),1097-1107.

        [14]Cao C.S.,Wu J.H.,Tw o new regu larity criteria for the 3D MHD equations.J.D ifferential Equations,248(2010),2263-2274.

        [15]Chen Q.L.,M iao C.X.,Zhang Z.F.,On the regu larity criterion ofw eak solution for the 3D viscousm agneto-hyd rodynam icsequations.Comm.M ath.Phys.,284(2008),919-930.

        [16]Chen Q.L.,M iao C.X.,Zhang Z.F.,The Beale-Kato-M ajda criterion for the 3D m agnetohyd rodynam ics equations.Comm.M ath.Phys.,275(2007),861-872.

        [17]He C.,Wang Y.,On the regu larity criteria forw eak solu tions to them agnetohyd rodynam ic equations.J.Differential Equations,238(2007),1-17.

        [18]HeC.,Xin Z.P.,On the regu larity ofw eak solutions to them agnetohyd rodynam icequations. J.Differential Equations,213(2005),235-254.

        [19]Jia X.J.,Zhou Y.,A new regu larity criterion for the 3D incom p ressible MHD equations in term sof one com ponentof the grad ientof p ressu re.J.M ath.Anal.Appl.,396(2012),345-350.

        [20]Jia X.J.,Zhou Y.,Regu larity criteria for the 3D MHD equations involving partial com ponents.(2011),doi:10.1016/j.nonrw a.2011.07.055.

        [21]Jia X.J.,Zhou Y.,Regu larity criteria for the 3DMHD equations via partialderivatives.Kinet. Relat.M odels,5(2012),505-516.

        [22]Wang W.D.,Zhang Z.F.,Lim iting case for the regu larity criterion to the 3D M agnetohyd rodynam ics equations.J.D ifferential Equations,252(2012),5751-5762.

        [23]Zhang Z.J.,Rem arkson the regu larity criteria forgeneralized MHD equations.J.M ath.Anal. Appl.,375(2011),799-802.

        [24]Zhang Z.J.,LiP.,Yu G.H.,Regu larity criteria for the3D MHD equationsvia one directional derivative of the p ressu re.J.M ath.Anal.Appl.,401(2013),66-71.

        [25]Zhou Y.,Rem arks on regu larities for the 3D MHD equations.Discrete Contin.Dyn.Syst.,12 (2005),881-886.

        [26]Zhou Y.,Gala S.,A new regu larity criterion forw eak solutions to theviscousMHD equations in term sof the vorticity field.Nonlinear Anal.,72(2010),3643-3648.

        [27]Fan J.S.,Ozaw a T.,Regu larity criterion for the 3D nem atic liquid crystal flow s.ISRN M ath. Anal.,2012(2012),935045.

        [28]Gala S.,Liu Q.,Ragusa M.A.,A new regu larity criterion for nem atic liquid crystal flow s. Appl.Anal.,(2011),doi:10.1080/00036811.2011.581233.

        [29]Liu Q.,Zhao J.H.,CuiS.B.,A regu larity criterion for the three-dim ensionalnem atic liquid crystal flow in term of one d irectional derivative of the velocity.J.M ath.Phys.,52(2011), 033102.

        [30]Liu Q.,Zhao J.H.,Cui S.B.,Logarithm ically im p roved BKM’s criterion for the 3D nem atic liquid crystal flow s.Nonl.Anal.,75(2012),4942-4949.

        [31]Zhang Z.J.,Wang X.F.,Yao Z.A.,Rem arks on regu larity criteria for thew eak solutions of liquid crystals.J.Evol.Equ.,12(2012),801-812.

        [32]Zhou Y.,Fan J.S.,A regu larity criterion for the nem atic liquid crystal flow s.J.Inequ.Appl., 2010(2010),589697.

        [33]Lin F.H.,Nolinear theory of defects in nem atic liquid crystals:phase transition and flow phenom ena.Comm.PureAppl.M ath.,42(1989),789-814.

        10.4208/jpde.v27.n3.5 Sep tem ber 2014

        ?Correspond ing au thor.Emailaddress:zhangzuj in361@163.com(Z.Zhang)

        AM SSub jectClassifications:35Q 35,76B03

        Chinese Library Classifications: O175.28,O175.29

        男女性高爱潮免费网站| 欧美亅性猛交内射| 老鸭窝视频在线观看| 四虎成人精品国产永久免费无码| 国精产品一区一区三区有限公司杨 | 国产精品毛片一区二区三区| 国产精品一区二区三区色| 国产av一区二区日夜精品剧情| 邻居美少妇张开腿让我爽了一夜| 久久aaaa片一区二区| 免费无码一区二区三区蜜桃| 国产无套护士在线观看| av无码天一区二区一三区| 日韩一区二区三区中文字幕| 日本少妇爽的大叫高潮了| av国产免费在线播放| 蜜桃尤物在线视频免费看| 中文字幕人妻第一区| 亚洲精品中文字幕无码蜜桃| 日本视频中文字幕一区在线| 国产精品国产三级国产an| 亚洲一区二区三区视频免费看| 男女性杂交内射女bbwxz| a级毛片内射免费视频| 91精品国产91久久久无码色戒| 亚洲av一区二区网址| 性色av色香蕉一区二区蜜桃| 久久久久亚洲av综合波多野结衣| 国产精品久久久久久亚洲av| 免费一级毛片在线播放不收费| 久久精品国产只有精品96| 久久青青草原亚洲av| 亚洲国产性夜夜综合另类 | 久久久久国色av免费观看性色| 日本高清视频www| av无码精品一区二区三区四区| 国产亚洲欧美精品一区| 亚洲日本一区二区在线观看 | 欧美人与禽交zozo| 韩国美女主播国产三级| 区一区二区三区四视频在线观看|