亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        微RNA通過調(diào)節(jié)上皮間質(zhì)轉(zhuǎn)化影響腫瘤轉(zhuǎn)移

        2014-05-10 01:25:00楊麗華沈星凱李靜秋楊杰樂燕萍龔朝輝
        遺傳 2014年7期
        關(guān)鍵詞:靶向家族調(diào)控

        楊麗華,沈星凱,李靜秋,楊杰,樂燕萍,龔朝輝

        1. 寧波大學(xué)醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)研究所,寧波 315211;

        2. 浙江省病理生理學(xué)技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,寧波 315211

        據(jù)估計(jì),2013年僅美國就有580350人死于癌癥,平均每天約1600人,癌癥已成為僅次于心臟疾病的第二大死因[1]。在我國,根據(jù)中國衛(wèi)生統(tǒng)計(jì)年鑒(2012 版)統(tǒng)計(jì),1973~1975、1990~1992、2004~2005年中國惡性腫瘤死亡抽樣回顧調(diào)查結(jié)果顯示,惡性腫瘤死亡率呈顯著上升趨勢,分別為 83.65/100000、108.26/100000和134.80/100000。癌癥致人死亡的原因近 90%是癌癥發(fā)生了轉(zhuǎn)移。轉(zhuǎn)移是惡性腫瘤最顯著的特征之一,它是一個(gè)多步驟的過程[2]。腫瘤細(xì)胞發(fā)生轉(zhuǎn)移的初始會(huì)發(fā)生上皮間質(zhì)轉(zhuǎn)化(Epithelialmesenchymal transition,EMT),EMT過程又受到多種因素調(diào)控,如轉(zhuǎn)錄因子、微RNA(MicroRNA,miRNA)等。miRNA是一類內(nèi)源性非編碼小分子RNA,與細(xì)胞生長、凋亡和信號轉(zhuǎn)導(dǎo)密切相關(guān)。同時(shí),miRNA可以調(diào)控EMT過程,在腫瘤轉(zhuǎn)移發(fā)面發(fā)揮了重要作用。

        1 EMT和腫瘤轉(zhuǎn)移

        EMT是胚胎正常發(fā)育、傷口愈合和惡性上皮腫瘤發(fā)生過程中的一個(gè)極其重要的基本過程[3],它可以使上皮細(xì)胞發(fā)生形態(tài)改變,轉(zhuǎn)換成有運(yùn)動(dòng)能力的間充質(zhì)細(xì)胞[4]。這些改變會(huì)使細(xì)胞-細(xì)胞之間和細(xì)胞-細(xì)胞外基質(zhì)之間的連接受到破壞,因而細(xì)胞可以遷移到身體的其他部位參與組織重建和修復(fù)[5]。EMT在腫瘤細(xì)胞的遷移/侵襲以及多種癌癥進(jìn)程方面也起到非常重要的作用,是腫瘤細(xì)胞轉(zhuǎn)移中的一個(gè)關(guān)鍵步驟,也是一個(gè)特定的信號通路[6,7]。EMT的特點(diǎn)是細(xì)胞粘附能力喪失,E-鈣粘蛋白(E-cadherin,CDH1)表達(dá)下降,間葉標(biāo)志物(包括 N-鈣粘蛋白(N-cadherin)、波形蛋白(Vimentin)和纖維連接蛋白(Fibronectin)表達(dá)上升,細(xì)胞運(yùn)動(dòng)能力和侵襲能力增強(qiáng)[8]。原發(fā)部位的腫瘤細(xì)胞可以發(fā)生EMT來獲得運(yùn)動(dòng)能力和侵襲能力,而間質(zhì)上皮轉(zhuǎn)化(Mesenchymalepithelial transition,MET)在腫瘤轉(zhuǎn)移的最后一步起到重要作用,即從血管或淋巴管中滲出的腫瘤細(xì)胞會(huì)恢復(fù)到上皮細(xì)胞狀態(tài),然后增殖形成巨大的甚至肉眼可見的繼發(fā)性腫瘤[9]。腫瘤EMT過程受內(nèi)在因素和外在因素或者是二者共同作用的影響(圖1),其中內(nèi)在因素包括腫瘤發(fā)生過程中產(chǎn)生的基因突變。突變的K-RAS途徑即是一個(gè)典型的例子[10],它可以單獨(dú)誘導(dǎo) EMT,也可以聯(lián)合 EMT誘導(dǎo)因子如轉(zhuǎn)化生長因子-β(Transforming growth factor-β,TGF-β)或者缺氧誘導(dǎo)因子 -2α(Hypoxia-inducible factor-2α,HIF-2α)共同作用。在某種程度上,由煙草(Nicotiana tabacum L.)引起的缺氧或者炎性腫瘤微環(huán)境,通過細(xì)胞外信號通路的失調(diào),創(chuàng)造一個(gè)促進(jìn)EMT發(fā)生的環(huán)境,特別是 TGF-β和環(huán)氧化酶/前列腺素 E2途徑在腫瘤微環(huán)境中具有重要作用[11]。在肺癌中,缺氧腫瘤微環(huán)境誘導(dǎo)EMT主要是上調(diào)了堿性螺旋-環(huán)-螺旋類(Basic helix-loop helix,bHLH)轉(zhuǎn)錄因子和HIF的表達(dá)。在EMT的細(xì)胞內(nèi)外信號通路中,EMT誘導(dǎo)轉(zhuǎn)錄因子和 miRNA起主要作用。在多發(fā)性腫瘤中,EMT被認(rèn)為是轉(zhuǎn)移的標(biāo)志,與許多轉(zhuǎn)錄因子緊密相關(guān)。已有研究表明,轉(zhuǎn)錄因子能夠促進(jìn) EMT和腫瘤轉(zhuǎn)移[12~16]。轉(zhuǎn)移過程中的多個(gè)步驟都受到這些轉(zhuǎn)錄因子調(diào)節(jié),而這些因子本身的表達(dá)同時(shí)受到miRNA的精細(xì)調(diào)控。

        圖1 癌變過程中多種因素共同誘導(dǎo)EMT

        2 影響EMT過程的轉(zhuǎn)錄因子

        影響 EMT的轉(zhuǎn)錄抑制因子包括 Snail1[12]、Snail2[13]、Twist1[14]、Zeb1[15]、Zeb2[16]、Goosecoid[17]、FOXC2[18]、FoxQ1[19]、KLF8[20]、Prrx1[21]等。本文主要總結(jié)了 Snail、Twist和 Zeb轉(zhuǎn)錄因子家族及其在EMT和腫瘤轉(zhuǎn)移方面的網(wǎng)絡(luò)調(diào)控作用。

        2.1 Snail鋅指轉(zhuǎn)錄抑制因子家族

        鋅指簇可以與靶基因調(diào)控區(qū)的 E-box結(jié)合進(jìn)行調(diào)控,Snail家族是EMT轉(zhuǎn)錄抑制因子中研究最多的。諸多研究表明,很多信號通路會(huì)誘導(dǎo) Snail1和Snail2 的表達(dá),包括 TGF-β[22]、Notch[23]和 Wnt[24]信號通路,活性氧[25]和缺氧[26]。其中,TGF-β信號通路是最重要的EMT誘導(dǎo)細(xì)胞因子之一,它可以激活包括Snail1/2在內(nèi)的一系列EMT轉(zhuǎn)錄因子[27,28]。肝纖維化模型在缺氧條件下,基質(zhì)細(xì)胞會(huì)分泌大量的TGF-β,隨后腫瘤細(xì)胞受到 TGF-β的刺激后,促進(jìn)Snail1表達(dá),誘發(fā)EMT[29],這表明EMT誘導(dǎo)的各種信號通路之間互有關(guān)聯(lián)。

        2.2 Twist bHLH轉(zhuǎn)錄因子家族

        參與EMT調(diào)控的bHLH轉(zhuǎn)錄因子包括E12和E47(E2A基因選擇性剪切產(chǎn)物)、Twist1和2、Id1-4[30],均可以直接負(fù)調(diào)控CDH1的表達(dá)。Twist1和Twist2表達(dá)異常誘發(fā) EMT的發(fā)生[14,31]。這是由于 Twist1可以結(jié)合Snail2啟動(dòng)子區(qū),從而促進(jìn)Snail2基因轉(zhuǎn)錄,過表達(dá)的 Snail2蛋白介導(dǎo)乳腺上皮腫瘤細(xì)胞發(fā)生EMT[32]。同時(shí),Twist1亦可通過直接與血小板衍生生長因子受體α(Platelet-derived growth factor receptor-alpha,PDGFRα)啟動(dòng)子區(qū)結(jié)合,促進(jìn) PDGFα及其下游基因的表達(dá),促進(jìn)侵襲性偽足的形成,引起腫瘤細(xì)胞的侵襲和轉(zhuǎn)移[33]。在干細(xì)胞和癌癥中經(jīng)常呈現(xiàn)高表達(dá)的多梳抑制復(fù)合體蛋白 Bmi1同Twist1形成復(fù)合體,進(jìn)而抑制CDH1和p16INK4a基因表達(dá)[34]。Twist亦可誘導(dǎo)miR-10b的表達(dá),miR- 10b通過靶向抑制Homebox D10的翻譯,造成促轉(zhuǎn)移基因RHOC的表達(dá)上調(diào),最終影響乳腺癌轉(zhuǎn)移[35]。一些癌基因可以誘導(dǎo)細(xì)胞異常增殖和異常轉(zhuǎn)化,但細(xì)胞衰老會(huì)抑制腫瘤發(fā)生EMT和轉(zhuǎn)移[36]。Twist2亦可下調(diào)CDH1的表達(dá),參與TGF-β和p21誘導(dǎo)結(jié)腸癌細(xì)胞發(fā)生EMT這一過程[37]。在轉(zhuǎn)錄水平,Twist1主要受缺氧信號通路的調(diào)控[38]。在轉(zhuǎn)錄后水平,幾種微RNA可以直接靶向Twist1 mRNA[39]。此外,通過激酶作用,Twist1蛋白在 Ser68處發(fā)生磷酸化,使Twist1更穩(wěn)定,并且促進(jìn)乳腺癌細(xì)胞的侵襲[40]。以上研究表明,Twist bHLH家族通過EMT影響腫瘤轉(zhuǎn)移。

        2.3 Zeb鋅指轉(zhuǎn)錄因子家族

        Zeb家族包括鋅指/同源結(jié)構(gòu)域蛋白-ZEB1和ZEB2,在物種間高度保守,和其他轉(zhuǎn)錄因子共同作用調(diào)節(jié)EMT,并且在這一過程中受SUMO化、乙?;土姿峄恼{(diào)控。這些蛋白均可通過抑制上皮型標(biāo)志物和激活間質(zhì)型標(biāo)志物的表達(dá)來誘發(fā) EMT過程。多種因子和信號通路可直接激活Zeb家族的表達(dá),如生長激素和類固醇激素、缺氧條件下的HIF-1α、炎性細(xì)胞因子、配體(成纖維細(xì)胞生長因子、胰島素樣生長因子-1、血小板衍生生長因子等受體的配體)、Ras-ERK2-Fra1、NF-κB 和 JAK/STAT3 等腫瘤中經(jīng)常處于激活狀態(tài)的下游通路、Wnt和Notch信號通路。Zeb家族也受miR-200的抑制,它們之間存在一個(gè)負(fù)反饋環(huán)路,最終誘發(fā)多種腫瘤的EMT[41,42]。

        3 miRNA通過EMT調(diào)節(jié)腫瘤轉(zhuǎn)移

        miRNA是一類長約 22 nt的小分子RNA,可在轉(zhuǎn)錄后水平通過結(jié)合靶 mRNA的 3′UTR阻止靶mRNA的翻譯或者促進(jìn)靶mRNA的降解,實(shí)現(xiàn)對其靶基因的負(fù)調(diào)控[43]。據(jù)估計(jì),miRNA可以調(diào)控人類30%左右蛋白的表達(dá)[44]。miRNA通過調(diào)節(jié)腫瘤細(xì)胞EMT相關(guān)靶蛋白表達(dá),進(jìn)而抑制或促進(jìn)腫瘤轉(zhuǎn)移(表 1)。

        3.1 miRNA通過 CDH1、波形蛋白和轉(zhuǎn)錄因子調(diào)節(jié)EMT

        CDH1是 EMT/MET中非常重要的調(diào)控基因,miRNA可以通過多種機(jī)制對其進(jìn)行調(diào)節(jié)。miR-9通過直接靶向CDH1 mRNA引發(fā)EMT,促進(jìn)乳腺癌轉(zhuǎn)移。和未發(fā)生轉(zhuǎn)移的乳腺癌患者相比,發(fā)生轉(zhuǎn)移患者的原位癌組織中miR-9的表達(dá)升高。進(jìn)一步研究發(fā)現(xiàn),miR-9增加細(xì)胞的運(yùn)動(dòng)和侵襲能力,因而使非轉(zhuǎn)移的乳腺癌細(xì)胞形成微轉(zhuǎn)移[46]。miR-23a也直接靶向CDH1調(diào)控肺癌發(fā)生EMT[49]。Xu等[45]研究表明,miR-25在食管鱗狀細(xì)胞癌中表達(dá)上調(diào),其表達(dá)和淋巴結(jié)轉(zhuǎn)移及腫瘤分期相關(guān),這是由于miR-25直接負(fù)調(diào)控CDH1,進(jìn)而促進(jìn)細(xì)胞侵襲和遷移。

        表1 參與腫瘤EMT的miRNA

        miRNA除了直接靶向CDH1外,亦可間接調(diào)控CDH1。miR-138表達(dá)下調(diào)會(huì)促進(jìn) EMT的發(fā)生,其直接靶點(diǎn)是波形蛋白[47]。除了波形蛋白,miR-138還靶向EMT相關(guān)的其他靶基因,如ZEB2和靶向zeste基因增強(qiáng)子人類同源物2 (Enhancer of zeste homologue 2,EZH2)。由于EZH2可抑制組蛋白去乙?;?/2(Histone deacetylases 1/2,HDAC1/2)和Snail的表達(dá),間接降低 CDH1的表達(dá),最終誘發(fā)鼻咽癌發(fā)生EMT[55]。

        miRNA還可通過直接調(diào)控相關(guān)轉(zhuǎn)錄因子進(jìn)而作用于 CDH1。據(jù)報(bào)道,幾種誘發(fā) EMT的因子,如ZEB1、ZEB2、Twist1、Snai1、Snai2、TGF-β 和 E47均可通過與 CDH1啟動(dòng)子區(qū)的 E-box結(jié)合抑制CDH1轉(zhuǎn)錄,促進(jìn)腫瘤侵襲和轉(zhuǎn)移[56~58]。

        在EMT中,miR-200家族是研究最多的miRNA[59]。miR-200家族包括 miR-200a、-200b、-200c、-141和-429。miR-200家族直接結(jié)合ZEB1和ZEB2 mRNA 3′UTR,進(jìn)而抑制其表達(dá)[48],間接上調(diào) CDH1表達(dá),最終抑制EMT過程。同時(shí),ZEB1和ZEB2反過來又可結(jié)合miR-200家族成員啟動(dòng)子中的E-box,從而抑制miR-200家族成員的表達(dá),這表明 miR-200家族和ZEB因子相互負(fù)調(diào)控,它們之間形成了一個(gè)負(fù)反饋環(huán)路[42]。Gibbons等[60]對 40株人非小細(xì)胞肺癌(Non-small cell lung cancer,NSCLC)細(xì)胞進(jìn)行了分析,發(fā)現(xiàn)miR-200家族的表達(dá)和EMT標(biāo)志物具有相關(guān)性。此后,他們又將小鼠K-RAS和p53基因突變獲得肺腺癌模型后,用 TGF-β處理小鼠誘導(dǎo)其發(fā)生EMT,使得 miR-200家族低表達(dá),而上調(diào) miR-200家族的表達(dá)會(huì)阻礙EMT的發(fā)生,這表明NSCLC發(fā)生 EMT這一過程取決于 miR-200家族的表達(dá)。在miR-200家族上游調(diào)控方面,Yang等[61]發(fā)現(xiàn)具有轉(zhuǎn)移傾向的鼠肺腺癌細(xì)胞能高表達(dá)Notch和Notch配體,其中Notch配體Jagged2能上調(diào)GATA結(jié)合因子的表達(dá),而GATA結(jié)合因子可以抑制EMT轉(zhuǎn)錄抑制因子 miR-200家族的表達(dá),從而誘導(dǎo) EMT,同時(shí)miR-200又可調(diào)節(jié)Gata3的表達(dá),他們互相調(diào)控。這些結(jié)果表明,miR-200家族有可能成為肺癌治療的潛在靶點(diǎn)。

        最近,Kumarswamy等[39]通過生物信息學(xué)方法分析發(fā)現(xiàn),在NSCLC細(xì)胞株中,Snail的上游調(diào)控基因 miR-30a與 CDH1和 N-鈣粘蛋白的表達(dá)相關(guān),miR-30a可靶向CDH1的轉(zhuǎn)錄抑制因子Snai1來抑制EMT,而且與相應(yīng)的正常組織比較,miR-30a在NSCLC中表達(dá)下調(diào)。在非肺癌組織和細(xì)胞中,有研究證實(shí)miR-30a可以靶向Snai1阻斷TGF-β誘導(dǎo)的EMT過程[62]。肺癌發(fā)生 EMT,除了 miR-30a,miR-34[50]也可作用于CDH1轉(zhuǎn)錄抑制物Snai1。miR-10b是Twist1的直接靶點(diǎn),但是單獨(dú)改變miR-10b的表達(dá)并不能誘導(dǎo)人類乳腺癌細(xì)胞發(fā)生EMT[35]。這表明,miRNA在 EMT過程中的調(diào)控作用并非唯一,有其他基因的參與,甚至是一個(gè)網(wǎng)絡(luò)。

        3.2 miRNA直接靶向DICER調(diào)節(jié)EMT

        Dicer是一種核糖核酸內(nèi)切酶,屬于 RNase III家族中特異識別雙鏈 RNA的一員。Bernstein等[63]首次在小干擾RNA(Small interfering RNA,siRNA)形成過程中明確了其作用,在胞質(zhì)中其可對 premiRNA進(jìn)行剪切形成成熟的miRNA[64,65]。在腫瘤的基因組中經(jīng)常會(huì)出現(xiàn) Dicer1的缺失突變,上調(diào)Dicer1的表達(dá)則會(huì)抑制腫瘤的形成[66],反之亦然[67]。在間質(zhì)型或發(fā)生遠(yuǎn)處骨轉(zhuǎn)移的乳腺癌細(xì)胞中,Dicer1呈現(xiàn)低表達(dá)[68]。這些研究表明,Dicer1在腫瘤中具有雙面作用:它是腫瘤細(xì)胞增殖和細(xì)胞存活所不可或缺的,同時(shí)又是腫瘤向遠(yuǎn)處轉(zhuǎn)移的一道屏障。

        Dicer1是 miR-103/107的靶基因,其表達(dá)高低和腫瘤轉(zhuǎn)移及乳腺癌患者的預(yù)后緊密相關(guān)。在穩(wěn)定表達(dá) miR-103/107的MDA-MB-231細(xì)胞中,Dicer1和成熟 miRNA的表達(dá)均下降。在臨床上,高表達(dá)miR-103/107的乳腺癌患者發(fā)生轉(zhuǎn)移的機(jī)率更高。同時(shí),miR-103/107高表達(dá)會(huì)誘發(fā) EMT,這是由于miR-107可通過miR-200通路調(diào)節(jié)ZEB1/ZEB2的表達(dá)[51]。總之,miR-103/miR-107可以調(diào)節(jié)Dicer1的表達(dá),進(jìn)而減少成熟miRNA的生物合成,最終增強(qiáng)細(xì)胞的遷移能力及體內(nèi)腫瘤的轉(zhuǎn)移。

        Su等[69]研究表明,TAp63可調(diào)控Dicer1的表達(dá),Dicer低表達(dá)會(huì)增加細(xì)胞的侵襲能力,同時(shí)TAp63可以反式激活miR-130b的表達(dá),miR-130b與轉(zhuǎn)移密切相關(guān)并且其加工成熟需Dicer1的參與。在TAp63缺失表達(dá)的細(xì)胞中上調(diào) Dicer1和 miR-130b的表達(dá)顯著影響其轉(zhuǎn)移能力。通過調(diào)控 Dicer1和 miR-130b的表達(dá),TAp63可抑制腫瘤的形成和轉(zhuǎn)移。

        miR-18a作為癌基因miR-17-92簇的一員,在鼻咽癌組織及細(xì)胞中呈現(xiàn)高表達(dá),并且與中晚期鼻咽癌發(fā)展密切相關(guān)。研究表明,miR-18a可與Dicer1基因 3′UTR結(jié)合抑制 Dicer1翻譯,因而包括 miR-200家族和miR-143在內(nèi)的miRNA合成受到影響,最終誘發(fā)EMT,促進(jìn)腫瘤轉(zhuǎn)移[52]。因此,miRNA可通過調(diào)控Dicer1的表達(dá)影響EMT。

        3.3 miRNA通過鋅指蛋白調(diào)節(jié)EMT

        鋅指蛋白(Tristetraprolin,TTP)是一種可降解靶基因mRNA 3′UTR中富含AU序列的蛋白。在Ras信號通路的作用下,下調(diào)TTP可以引起EMT和癌癥轉(zhuǎn)移。miR-29a通過結(jié)合3′UTR的2個(gè)位點(diǎn)調(diào)節(jié)TTP的表達(dá),因而miR-29a可通過TTP參與EMT及乳腺癌的轉(zhuǎn)移[53]。

        3.4 miRNA通過NF-κB調(diào)節(jié)EMT

        NF-κB 是一個(gè)蛋白復(fù)合體,在 DNA 轉(zhuǎn)錄成mRNA過程中起調(diào)控作用。在多種腫瘤中,NF-κB出現(xiàn)異常(包括表達(dá)改變和位置變化),并且和轉(zhuǎn)移有關(guān)[70~73]。在化療反應(yīng)中,NF-κB和miR-448之間可形成正反饋環(huán)路,通過EMT調(diào)節(jié)腫瘤轉(zhuǎn)移[54]。

        4 miRNA參與腫瘤轉(zhuǎn)移其他步驟的調(diào)控

        腫瘤轉(zhuǎn)移是一個(gè)多步驟的過程,包括腫瘤細(xì)胞從原發(fā)部位擴(kuò)散,入侵組織,滲入血管或淋巴管,隨血液循環(huán)系統(tǒng)或淋巴循環(huán)系統(tǒng)在體內(nèi)播散,遷出血管或淋巴管以及在新的地點(diǎn)定居和增殖[2]。除EMT外,miRNA也參與腫瘤轉(zhuǎn)移所必須經(jīng)歷的其他過程(表2),如細(xì)胞外基質(zhì)降解和血管生成等方面。眾所周知,腫瘤細(xì)胞在轉(zhuǎn)移過程中需要將細(xì)胞外基質(zhì)蛋白降解才可出入自由,參與這一過程的miRNA包括 miR-335[74]、miR-373和 miR-520c[75]。腫瘤在發(fā)生微轉(zhuǎn)移后,血管生成是其生長存活所必須的,miR-9在乳腺癌中高表達(dá),其在轉(zhuǎn)移中具有雙重作用,不但引發(fā)細(xì)胞 EMT,而且刺激血管的形成[46]。miR-9介導(dǎo)的CDH1下降會(huì)激活β-catenin信號通路,使血管內(nèi)皮生長因子表達(dá)上升,最終導(dǎo)致血管生成增加。有研究表明,miR-126[76,77]和miR-205[78]也調(diào)節(jié)血管生成。因此,miRNA可調(diào)控ECM降解和血管形成繼而影響腫瘤轉(zhuǎn)移。

        表2 在腫瘤轉(zhuǎn)移中起作用的其他 miRNA(不包括調(diào)控EMT/MET的miRNA)

        5 結(jié) 語

        miRNAs可以作為潛在的癌基因或者抑制基因在EMT過程中起作用,可作為腫瘤惡化或者逆轉(zhuǎn)的生物標(biāo)志物。今后的研究無疑是要將注意力集中在不同腫瘤 EMT中發(fā)生特異性改變的 miRNA,以及這些 miRNA下游和上游調(diào)控相關(guān)的一些尚未被發(fā)現(xiàn)的新的調(diào)控因子上。EMT是一個(gè)多步驟過程,而這個(gè)過程涉及到許多信號分子、通路和轉(zhuǎn)錄因子。更為重要的是,EMT也和轉(zhuǎn)移、耐藥以及腫瘤干細(xì)胞的形成密切相關(guān)。越來越多的證據(jù)表明,促進(jìn)EMT和腫瘤干細(xì)胞形成的治療性藥物[83]以及分子靶向治療也可促進(jìn)轉(zhuǎn)移[84]。鑒于EMT在腫瘤發(fā)展中的重要作用,針對參與EMT的蛋白和miRNA可以提供一個(gè)具有特異性的治療策略,以防止腫瘤的轉(zhuǎn)移、耐藥和復(fù)發(fā)[85]。這些新的治療策略將開辟癌癥個(gè)性化治療的新方向,將提高人們對腫瘤EMT和轉(zhuǎn)移的認(rèn)識,最終在腫瘤綜合診治的方案及策略選擇上有所突破。

        [1]American Cancer Society. Cancer Facts & Figures 2013.Atlanta: American Cancer Society,2013.

        [2]Fidler IJ. The pathogenesis of cancer metastasis: the‘seed and soil’hypothesis revisited. Nat Rev Cancer,2003,3(6): 453–458.

        [3]Lee JM,Dedhar S,Kalluri R,Thompson EW. The epithelial-mesenchymal transition: new insights in signaling,development,and disease. J Cell Biol,2006,172(7):973–981.

        [4]Drasin DJ,Robin TP,Ford HL. Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res,2011,13(6):226–239.

        [5]Radisky DC,Labarge MA. Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell,2008,2(6): 511–512.

        [6]Voulgari A,Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms,markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta,2009,1796(2): 75–90.

        [7]Hugo H,Ackland ML,Blick T,Lawrence MG,Clements JA,Williams ED,Thompson EW. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol,2007,213(2):374–383.

        [8]Kalluri R,Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest,2009,119(6):1420–1428.

        [9]Yang J,Weinberg RA. Epithelial-mesenchymal transition:at the crossroads of development and tumor metastasis.Dev Cell,2008,14(6): 818–829.

        [10]Oft M,Peli J,Rudaz C,Schwarz H,Beug H,Reichmann E.TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev,1996,10(19): 2462–2477.

        [11]Heinrich EL,Walser TC,Krysan K,Liclican EL,Grant JL,Rodriguez NL,Dubinett SM. The inflammatory tumor microenvironment,epithelial mesenchymal transition and lung carcinogenesis. Cancer Microenviron,2012,5(1):5–18.

        [12]Batlle E,Sancho E,Franci C,Dominguez D,Monfar M,Baulida J,Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol,2000,2(2): 84–89.

        [13]Hajra KM,Chen DY,Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res,2002,62(6): 1613–1618.

        [14]Yang J,Mani SA,Donaher JL,Ramaswamy S,Itzykson RA,Come C,Savagner P,Gitelman I,Richardson A,Weinberg RA. Twist,a master regulator of morphogenesis,plays an essential role in tumor metastasis. Cell,2004,117(7): 927–939.

        [15]Eger A,Aigner K,Sonderegger S,Dampier B,Oehler S,Schreiber M,Berx G,Cano A,Beug H,Foisner R. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene,2005,24(14): 2375–2385.

        [16]Vandewalle C,Comijn J,De Craene B,Vermassen P,Bruyneel E,Andersen H,Tulchinsky E,Van Roy F,Berx G. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res,2005,33(20): 6566–6578.

        [17]Hartwell KA,Muir B,Reinhardt F,Carpenter AE,Sgroi DC,Weinberg RA. The Spemann organizer gene,Goosecoid,promotes tumor metastasis. Proc Natl Acad Sci USA,2006,103(50): 18969–18974.

        [18]Mani SA,Yang J,Brooks M,Schwaninger G,Zhou A,Miura N,Kutok JL,Hartwell K,Richardson AL,Weinberg RA. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA,2007,104(24):10069–10074.

        [19]Zhang H,Meng F,Liu G,Zhang B,Zhu J,Wu F,Ethier SP,Miller F,Wu G. Forkhead transcription factor foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis. Cancer Res,2011,71(4): 1292–1301.

        [20]Wang X,Zheng M,Liu G,Xia W,Mckeown-Longo PJ,Hung MC,Zhao J. Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion.Cancer Res,2007,67(15): 7184–7193.

        [21]Ocana OH,Corcoles R,Fabra A,Moreno-Buen G,Acloque H,Vega S,Barrallo-Gimeno A,Cano A,Nieto MA.Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell,2012,22(6): 709–724.

        [22]Peinado H,Quintanilla M,Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem,2003,278(23): 21113–21123.

        [23]Sahlgren C,Gustafsson MV,Jin S,Poellinger L,Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA,2008,105(17): 6392–6397.

        [24]Zhoubp,Hung MC. Wnt,hedgehog and snail: sister pathways that control by GSK-3beta and beta-Trcp in the regulation of metastasis. Cell Cycle,2005,4(6): 772–776.

        [25]Radisky DC,Levy DD,Littlepage LE,Liu H,Nelson CM,Fata JE,Leake D,Godden EL,Albertson DG,Nieto MA,Werb Z,Bissell MJ. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability.Nature,2005,436(7047): 123–127.

        [26]Imai T,Horiuchi A,Wang C,Oka K,Ohira S,Nikaido T,Konishi I. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells.Am J Pathol,2003,163(4): 1437–1447.

        [27]Comijn J,Berx G,Vermassen P,Verschueren K,Van Grunsven L,Bruyneel E,Mareel M,Huylebroeck D,Van Roy F. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell,2001,7(6): 1267–1278.

        [28]Thuault S,Tan EJ,Peinado H,Cano A,Heldin CH,Moustakas A. HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition. J Biol Chem,2008,283(48): 33437–33446.

        [29]Copple BL. Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-beta-dependent mechanisms.Liver Int,2010,30(5): 669–682.

        [30]Massari ME,Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol,2000,20(2): 429–440.

        [31]Ansieau S,Bastid J,Doreau A,Morel AP,Bouchetbp,Thomas C,Fauvet F,Puisieux I,Doglioni C,Piccinin S,Maestro R,Voeltzel T,Selmi A,Valsesia-Wittmann S,Caron De Fromentel C,Puisieux A. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell,2008,14(1): 79–89.

        [32]Casas E,Kim J,Bendesky A,Ohno-Machado L,Wolfe CJ,Yang J. Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res,2011,71(1): 245–254.

        [33]Eckert MA,Lwin TM,Chang AT,Kim J,Danis E,Ohno-Machado L,Yang J. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell,2011,19(3): 372–386.

        [34]Yang MH,Hsu DS,Wang HW,Wang HJ,Lan HY,Yang WH,Huang CH,Kao SY,Tzeng CH,Tai SK,Chang SY,Lee OK,Wu KJ. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol,2010,12(10): 982–992.

        [35]Ma L,Teruya-Feldstein J,Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer.Nature,2007,449(7163): 682–688.

        [36]Serrano M,Lin AW,Mccurrach ME,Beach D,Lowe SW.Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell,1997,88(5): 593–602.

        [37]Tsuji T,Ibaragi S,Shima K,Hu MG,Katsurano M,Sasaki A,Hu GF. Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res,2008,68(24): 10377–10386.

        [38]Maxwell PH,Wiesener MS,Chang GW,Clifford SC,Vaux EC,Cockman ME,Wykoff CC,Pugh CW,Maher ER,Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature,1999,399(6733): 271–275.

        [39]Kumarswamy R,Mudduluru G,Ceppi P,Muppala S,Kozlowski M,Niklinski J,Papotti M,Allgayer H. MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. Int J Cancer,2012,130(9): 2044–2053.

        [40]Hong J,Zhou J,Fu J,He T,Qin J,Wang L,Liao L,Xu J.Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res,2011,71(11): 3980–3990.

        [41]Sanchez-Tillo E,Liu Y,De Barrios O,Siles L,Fanlo L,Cuatrecasas M,Darling DS,Dean DC,Castells A,Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci,2012,69(20): 3429–3456.

        [42]Bracken CP,Gregory PA,Kolesnikoff N,Bert AG,Wang J,Shannon MF,Goodall GJ. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res,2008,68(19): 7846–7854.

        [43]Zhang J,Ma L. MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev,2012,31(3–4): 653–662.

        [44]Lewisbp,Burge CB,Bartel DP. Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets. Cell,2005,120(1):15–20.

        [45]Xu X,Chen Z,Zhao X,Wang J,Ding D,Wang Z,Tan F,Tan X,Zhou F,Sun J,Sun N,Gao Y,Shao K,Li N,Qiu B,He J. MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem Biophys Res Commun,2012,421(4): 640–645.

        [46]Ma L,Young J,Prabhala H,Pan E,Mestdagh P,Muth D,Teruya-Feldstein J,Reinhardt F,Onder TT,Valastyan S,Westermann F,Speleman F,Vandesompele J,Weinberg RA. miR-9,a MYC/MYCN-activated microRNA,regulates E-cadherin and cancer metastasis. Nat Cell Biol,2010,12(3): 247–256.

        [47]Liu X,Wang C,Chen Z,Jin Y,Wang Y,Kolokythas A,Dai Y,Zhou X. MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J,2011,440(1): 23–31.

        [48]Gregory PA,Bert AG,Paterson EL,Barry SC,Tsykin A,Farshid G,Vadas MA,Khew-Goodall Y,Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol,2008,10(5): 593–601.

        [49]Cao M,Seike M,Soeno C,Mizutani H,Kitamura K,Minegishi Y,Noro R,Yoshimura A,Cai L,Gemma A.MiR-23a regulates TGF-beta-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol,2012,41(3): 869–875.

        [50]Kim NH,Kim HS,Li XY,Lee I,Choi HS,Kang SE,Cha SY,Ryu JK,Yoon D,Fearon ER,Rowe RG,Lee S,Maher CA,Weiss SJ,Yook JI. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol,2011,195(3): 417–433.

        [51]Martello G,Rosato A,Ferrari F,Manfrin A,Cordenonsi M,Dupont S,Enzo E,Guzzardo V,Rondina M,Spruce T,Parenti AR,Daidone MG,Bicciato S,Piccolo S. A MicroRNA targeting dicer for metastasis control. Cell,2010,141(7): 1195–1207.

        [52]Luo Z,Dai Y,Zhang L,Jiang C,Li Z,Yang J,Mccarthy JB,She X,Zhang W,Ma J,Xiong W,Wu M,Lu J,Li X,Li X,Xiang J,Li G. miR-18a promotes malignant progression by impairing microRNA biogenesis in nasopharyngeal carcinoma. Carcinogenesis,2013,34(2): 415–425.

        [53]Gebeshuber CA,Zatloukal K,Martinez J. miR-29a suppresses tristetraprolin,which is a regulator of epithelial polarity and metastasis. EMBO Rep,2009,10(4):400–405.

        [54]Zhang Z,Liu S,Shi R,Zhao G. miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet,2011,204(9):486–491.

        [55]Tong ZT,Cai MY,Wang XG,Kong LL,Mai SJ,Liu YH,Zhang HB,Liao YJ,Zheng F,Zhu W,Liu TH,Bian XW,Guan XY,Lin MC,Zeng MS,Zeng YX,Kung HF,Xie D.EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and Snail to inhibit E-cadherin. Oncogene,2012,31(5): 583–594.

        [56]Kang Y,Massague J. Epithelial-mesenchymal transitions:twist in development and metastasis. Cell,2004,118(3):277–279.

        [57]Korpal M,Lee ES,Hu G,Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem,2008,283(22):14910–14914.

        [58]Pawelek JM,Chakraborty AK. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer,2008,8(5): 377–386.

        [59]Mongroo PS,Rustgi AK. The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther,2010,10(3): 219–222.

        [60]Gibbons DL,Lin W,Creighton CJ,Rizvi ZH,Gregory PA,Goodall GJ,Thilaganathan N,Du L,Zhang Y,Pertsemlidis A,Kurie JM. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev,2009,23(18): 2140–2151.

        [61]Yang Y,Ahn YH,Gibbons DL,Zang Y,Lin W,Thilaganathan N,Alvarez CA,Moreira DC,Creighton CJ,Gregory PA,Goodall GJ,Kurie JM. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest,2011,121(4): 1373–1385.

        [62]Zhou Q,Yang M,Lan H,Yu X. miR-30a negatively regulates TGF-beta1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am J Pathol,2013,183(3): 808–819.

        [63]Bernstein E,Caudy AA,Hammond SM,Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001,409(6818): 363–366.

        [64]Hutvagner G,Mclachlan J,Pasquinelli AE,Balint E,Tuschl T,Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science,2001,293(5531):834–838.

        [65]Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell,2009,136(2): 215–233.

        [66]Kumar MS,Pester RE,Chen CY,Lane K,Chin C,Lu J,Kirsch DG,Golub TR,Jacks T. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev,2009,23(23): 2700–2704.

        [67]Iliou MS,Da Silva-Diz V,Carmona FJ,Ramalho-Carvalho J,Heyn H,Villanueva A,Munoz P,Esteller M. Impaired DICER1 function promotes stemness and metastasis in colon cancer. Oncogene,2013,[Epub ahead of print].

        [68]Grelier G,Voirin N,Ay AS,Cox DG,Chabaud S,Treilleux I,Leon-Goddard S,Rimokh R,Mikaelian I,Venoux C,Puisieux A,Lasset C,Moyret-Lalle C. Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer,2009,101(4): 673–683.

        [69]Su X,Chakravarti D,Cho MS,Liu L,Gi YJ,Lin YL,Leung ML,El-Naggar A,Creighton CJ,Suraokar MB,Wistuba I,Flores ER. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature,2010,467(7318): 986–990.

        [70]Karin M. Nuclear factor-kappaB in cancer development and progression. Nature,2006,441(7092): 431–436.

        [71]Van Waes C. Nuclear factor-kappaB in development,prevention,and therapy of cancer. Clin Cancer Res,2007,13(4): 1076–1082.

        [72]Sethi G,Sung B,Aggarwal BB. Nuclear factor-kappaB activation: from bench to bedside. Exp Biol Med (Maywood),2008,233(1): 21–31.

        [73]Li ZM,Pu YW,Zhu BS. Blockade of NF-kappaB nuclear translocation results in the inhibition of the invasiveness of human gastric cancer cells. Oncol Lett,2013,6(2):432–436.

        [74]Tavazoie SF,Alarcon C,Oskarsson T,Padua D,Wang Q,Bos PD,Gerald WL,Massague J. Endogenous human microRNAs that suppress breast cancer metastasis. Nature,2008,451(7175): 147–152.

        [75]Huang Q,Gumireddy K,Schrier M,Le Sage C,Nagel R,Nair S,Egan DA,Li A,Huang G,Klein-Szanto AJ,Gimotty PA,Katsaros D,Coukos G,Zhang L,Pure E,Agami R. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol,2008,10(2):202–210.

        [76]Fish JE,Santoro MM,Morton SU,Yu S,Yeh RF,Wythe JD,Ivey KN,Bruneau BG,Stainier DY,Srivastava D.miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell,2008,15(2): 272–284.

        [77]Harris TA,Yamakuchi M,Ferlito M,Mendell JT,Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule. Proc Natl Acad Sci USA,2008,105(5): 1516–1521.

        [78]Wu H,Zhu S,Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res,2009,19(4):439–448.

        [79]Garofalo M,Di Leva G,Romano G,Nuovo G,Suh SS,Ngankeu A,Taccioli C,Pichiorri F,Alder H,Secchiero P,Gasparini P,Gonelli A,Costinean S,Acunzo M,Condorelli G,Croce CM. miR-221 & 222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell,2009,16(6):498–509.

        [80]Rice SJ,Lai SC,Wood LW,Helsley KR,Runkle EA,Winslow MM,Mu D. MicroRNA-33a mediates the regulation of high mobility group AT-hook 2 gene (HMGA2)by thyroid transcription factor 1 (TTF-1/NKX2–1). J Biol Chem,2013,288(23): 16348–16360.

        [81]Wu X,Liu T,Fang O,Leach LJ,Hu X,Luo Z. miR-194 suppresses metastasis of non-small cell lung cancer through regulating expression of BMP1 and p27. Oncogene,2014,33(12): 1506–1514.

        [82]Zhang S,Kim K,Jin UH,Pfent C,Cao H,Amendt B,Liu X,Wilson-Robles H,Safe S. Aryl hydrocarbon receptor agonists induce microRNA-335 expression and inhibit lung metastasis of estrogen receptor negative breast cancer cells. Mol Cancer Ther,2012,11(1): 108–118.

        [83]Liang Y,Zhong Z,Huang Y,Deng W,Cao J,Tsao G,Liu Q,Pei D,Kang T,Zeng YX. Stem-like cancer cells are inducible by increasing genomic instability in cancer cells.J Biol Chem,2010,285(7): 4931–4940.

        [84]Ebos JM,Lee CR,Cruz-Munoz W,Bjarnason GA,Christensen JG,Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell,2009,15(3): 232–239.

        [85]Creighton CJ,Li X,Landis M,Dixon JM,Neumeister VM,Sjolund A,Rimm DL,Wong H,Rodriguez A,Herschkowitz JI,Fan C,Zhang X,He X,Pavlick A,Gutierrez MC,Renshaw L,Larionov AA,Faratian D,Hilsenbeck SG,Perou CM,Lewis MT,Rosen JM,Chang JC. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA,2009,106(33): 13820–13825.

        猜你喜歡
        靶向家族調(diào)控
        如何判斷靶向治療耐藥
        MUC1靶向性載紫杉醇超聲造影劑的制備及體外靶向?qū)嶒?yàn)
        毛必靜:靶向治療,你了解多少?
        肝博士(2020年5期)2021-01-18 02:50:18
        如何調(diào)控困意
        HK家族崛起
        經(jīng)濟(jì)穩(wěn)中有進(jìn) 調(diào)控托而不舉
        中國外匯(2019年15期)2019-10-14 01:00:34
        《小偷家族》
        電影(2019年3期)2019-04-04 11:57:18
        皿字家族
        家族中的十大至尊寶
        順勢而導(dǎo) 靈活調(diào)控
        日韩精品一二区在线视频| 国产精品特级毛片一区二区三区| 亚洲熟伦在线视频| 国产v综合v亚洲欧美大天堂| 国产成人丝袜在线无码| 国产精品久久婷婷六月| 久久精品国产亚洲av一| 日本一区二区高清精品| 日本道色综合久久影院| 三级全黄的视频在线观看| 久久久天堂国产精品女人| 欧美人与动牲交片免费| 亚洲人成网站久久久综合| 亚洲视频一区二区三区免费 | 久久99欧美| 亚洲国产日韩精品综合| 经典黄色一区二区三区| 好大好爽我要高潮在线观看| 美女露内裤扒开腿让男人桶无遮挡 | 亚洲av色影在线| 久久老子午夜精品无码怎么打| 亚洲人成无码网站久久99热国产 | 亚洲视频免费一区二区| 日本一区二区在线播放| 国产综合无码一区二区色蜜蜜 | 亚洲色图视频在线观看网站| 日韩毛片久久91| 人妻经典中文字幕av| 国产精品免费观看调教网| 护士人妻hd中文字幕| 艳妇乳肉豪妇荡乳av无码福利| 无遮挡亲胸捏胸免费视频| 日本久久久久| 黄片国产一区二区三区| 亚洲中文字幕国产视频| 国产黄大片在线观看| 亚洲乱码国产一区三区| 亚洲欧洲日产国码久在线观看| 中文少妇一区二区三区| 国产一区二区三区视频在线观看| 韩国三级在线观看久|