賈明輝
(內(nèi)蒙古民族大學數(shù)學學院,內(nèi)蒙古通遼028043)
特殊擬α-雙對角占優(yōu)矩陣的討論及其應(yīng)用
賈明輝
(內(nèi)蒙古民族大學數(shù)學學院,內(nèi)蒙古通遼028043)
定義了特殊擬-雙對角占優(yōu)矩陣,給出了嚴格特殊擬-雙對角占優(yōu)矩陣的等價表征。由此得到非奇異H-矩陣的判定條件,并用數(shù)值例子說明了判定條件的有效性。
非奇異H-矩陣;-雙對角占優(yōu)矩陣;特殊擬-雙對角占優(yōu)矩陣
非奇異H-矩陣是計算數(shù)學、數(shù)學物理、控制理論、電力系統(tǒng)理論、經(jīng)濟數(shù)學等領(lǐng)域中具有廣泛應(yīng)用的重要矩陣類。在實際應(yīng)用中,如何簡便地判別一個矩陣是否為非奇異H-矩陣,一直是學者們關(guān)注的熱點問題。眾所周知,對角占優(yōu)矩陣、雙對角占優(yōu)矩陣、按回路對角占優(yōu)矩陣、-對角占優(yōu)矩陣、-雙對角占優(yōu)矩陣、按回路-對角占優(yōu)矩陣以及相應(yīng)的不可約及非零元鏈形式等均為非奇異H-矩陣。
近年來國內(nèi)外學者做了不少工作,提出了一些實用的判定非奇異H-矩陣的條件[1-12]。本文將定義特殊擬-雙對角占優(yōu)矩陣,給出嚴格特殊擬-雙對角占優(yōu)矩陣的等價表征,由此得到非奇異H-矩陣的判定條件,從而推廣了文獻[1-12]中的定理2,并用數(shù)值例子說明判定條件的有效性。
眾所周知,H-矩陣也可等價地定義為廣義嚴格對角占優(yōu)矩陣。因為非奇異H-矩陣主對角元素非零,所以本文總假定所涉及矩陣主對角元素aii≠0且。
由定義1及引理1可知B為非奇異H-矩陣。又由H-矩陣的等價定義可知,存在正對角陣X1,使得A(XX1)=AXX1=BX1為嚴格對角占優(yōu)矩陣。顯然XX1仍為正對角矩陣,故A為非奇異H-矩陣。
即式(1)成立。
再證充分性。
由式(1)及指標集M1,M2的取法可知,必存在常數(shù),滿足
解由矩陣A可得:
令正對角矩陣X=diag(1.4, 0.2, 1),并根據(jù)本文的記號有:
顯然不滿足文獻[1-12]中定理1和定理2的條件,因此無法判斷出A是否為非奇異H-矩陣。
經(jīng)計算可得:
由此可知矩陣A滿足定理4的條件,所以A為非奇異H-矩陣。
[1]黃政. 非奇異H-矩陣的一組充分條件[J]. 吉首大學學報:自然科學版,2006,27(3):12-14. Huang Zheng. A Set of Sufficient Conditions for Nonsingular H-Matrices[J]. Journal of Jishou University:Natural Science Edition,2006,27(3):12-14.
[2]Varga R S. Matrix Iterative Analysis[M]. Englewood Cliffs:Prentice Hall Inc,1962:19-170.
[3]Varga R S. On Recurring Theorems on Diagonal Dominance [J]. Linear Algebra and Its Applications,1976,13(1):1-9.
[4]Li Bishan,Tsatsomeros M J. Doubly Diagonally Dominant Matrices[J]. Linear Algebra and Its Applications,1997, 261(1/2/3) :221-235.
[5]黃廷祝. Ostrowski定理的推廣與非奇H矩陣的條件[J].計算數(shù)學,1994,16(1):19-24. Huang Tingzhu. Generalizations of Ostrowski Theorem and Conditions for H-Matrices[J]. Mathematica Numerica Sinica,1994,16(1):19-24.
[6]Gan Taibin,Huang Tingzhu. Simple Criteria for Nonsingular H-Matrices[J]. Linear Algebra and Its Applications,2003,374:317-326.
[7]Cvetkovi Ljiljana,Kosti Vladimir. New Criteria for Identifying H-Matrices[J]. Journal of Computational and Applied Mathematics,2005,180(2):265-278.
[8]庹清,謝清明,劉建州.非奇異H-矩陣的實用新判定[J].應(yīng)用數(shù)學學報,2008,31(1):143-151. Tuo Qing,Xie Qingming,Liu Jianzhou. New Practical Criteria for Nonsingular H-Matrices[J]. Acta Mathematicae Applicatae Sinica,2008,31(1):143-151.
[9]Bru R,Corral C,Gimenez I,et al. Classes of general HMatrices[J]. Linear Algebra and Its Applications,2008,429(10):2358-2366.
[10]李敏,李慶春. 非奇異H-矩陣的新判定準則[J]. 工程數(shù)學學報,2012,29(5):715-719. Li Min,Li Qingchun. New Criteria for Nonsingular HMatrices[J]. Chinese Journal of Engineering Mathematics,2012:29(5):715-719.
[11]Hadjidimos A. Irreducibility and Extensions of Ostrowski’s Theorem[J]. Linear Algebra and Its Applications,2012,436(7):2156-2168.
[12]Hadjidimos A. A Note on Ostrowski’s Theorem[J]. Linear Algebra and Its Applications,2013,439(12): 3785-3795.
(責任編輯:鄧光輝)
Discussion on Special Quasi α-Double Diagonally Dominant Matrix and Its Applications
Jia Minghui
(School of Mathematics,Inner Mongolia University for the Nationalities,Tongliao Inner Mongolia 028043,China)
The special -double diagonally dominant matrix is defined, and an equivalent representation for strictly special quasi α-double diagonally dominant matrix is presented. And the judgment condition for nonsingular H-matrices is obtained. The efficiency of the judgment condition is illustrated with a numerical example.
nonsingular H-matrix;-double diagonally dominant matrix;special quasi -double diagonally dominantmatrix
O151.21
A
1673-9833(2014)04-0008-04
10.3969/j.issn.1673-9833.2014.04.002
2014-05-23
內(nèi)蒙古民族大學科學研究基金資助項目(NMD1303)
賈明輝(1977-),女,內(nèi)蒙古通遼人,內(nèi)蒙古民族大學副教授,碩士,主要研究方向為數(shù)值代數(shù),E-mail:jiaminghui1978@163.com