摘 要 為了獲得蘇云金芽胞桿菌(Bacillus thuringiensis, 簡稱Bt)解毒Cr(Ⅵ)的相關(guān)基因并進行功能分析,從Bt 407轉(zhuǎn)座子隨機突變體庫篩選并獲得了9株Cr(Ⅵ)還原能力突變株,測定了其轉(zhuǎn)座子插入位點,并研究了表型變化。這些突變株的Cr(Ⅵ)還原能力比野生株極顯著提高(p<0.01),其轉(zhuǎn)座子插入位點均為編碼假定的肽鏈內(nèi)切酶yddH基因。研究結(jié)果表明,野生株與突變株的生長曲線沒有顯著差異,說明突變株Cr(Ⅵ)還原能力的極顯著提高與菌種數(shù)量改變無關(guān)。突變株總鉻含量基本保持不變,表明Bt 407主要是通過將Cr(Ⅵ)還原為Cr(Ⅲ)來解毒Cr(Ⅵ)。本研究為構(gòu)建高效解毒Cr(Ⅵ)工程菌提供了新候選基因材料。
關(guān)鍵詞 蘇云金芽胞桿菌;轉(zhuǎn)座子;肽鏈內(nèi)切酶; Cr(VI);還原
中圖分類號 Q939.9 文獻標識碼 A
Functional Analysis of Genes Controlling Detoxification of Cr(Ⅵ) in
Bacillus thuringeinsis with Transposon Mutagenesis
HUANG Tianpei1,ZHANG Jun1,KANG Rong1,LAI Xiaohua1,
PAN Jieru2,ZHANG Lingling1,3,GUAN Xiong1*
1 Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture
and Forestry University, Fuzhou,F(xiàn)ujian 350002, China
2 Fuzhou Center for Disease Control and Prevention, Fuzhou, Fujian 350004, China
3 China National Engineering Research Center of Juncao Technology, Fujian Agriculture and
Forestry University, Fuzhou, Fujian 350002, China
Abstract In order to analyze the functions of genes controlling detoxification of Cr(Ⅵ) in Bacillus thuringeinsis with transposon mutagenesis, the mutants with different Cr(Ⅵ) reduction capacity were obtained from a library of Bt 407 transposon random insertion mutants. The insertion sites and the phenotypes of the mutants were then determined. 9 mutants which Cr(Ⅵ)-reducing capacities were remarkably different(p<0.01) from Bt 407 were obtained. The flanking sequence of mini-Tn10 insertion in the mutants was sequenced and within putative endopeptidase yddH gene. The results showed that the growth curves of all strains were similar. This indicated that strain populations did not affect the Cr(Ⅵ) reduction capacities of the mutants. The observation that total Cr of Bt 407 and its 9 mutants were similar and waved among 50 mg/L suggested that they mainly detoxify Cr(Ⅵ) by reduction. Herein, the putative endopeptidase yddH gene might be a novel gene for construction of engineering strains detoxifying Cr(Ⅵ) with high efficiency.
Key words Bacillus thuringiensis;Transposon; Endopeptidase;Cr(Ⅵ);Reduction
doi 10.3969/j.issn.1000-2561.2014.04.019
鉻是電鍍等制造業(yè)的副產(chǎn)品,在環(huán)境中會積累,并可能影響土壤肥力和微生物活動,造成作物產(chǎn)量損失[1-3]。廢水中的鉻存在形式主要有Cr(Ⅲ)和Cr(Ⅵ)2種,其中, 以Cr(Ⅵ)的毒性最大, 約Cr(Ⅲ)的1 000倍[2]。把有毒性的Cr(Ⅵ)還原成Cr(Ⅲ),是處理含鉻廢水最常用的方法之一[4]。其中,細菌處理法越來越引起人們的重視[5]。研究已發(fā)現(xiàn)許多細菌在有氧/無氧條件下具有將Cr(Ⅵ)還原為Cr(Ⅲ)的能力[6-8]。大部分的細菌Cr(Ⅵ)還原為酶促反應(yīng)[9]。在有氧條件下,Cr(Ⅵ)還原酶以內(nèi)源電子、NADPH、NADH作為電子供體來還原Cr(Ⅵ)[10]。許多Cr(Ⅵ)還原酶隨著科學(xué)的發(fā)展不斷被鑒定,如硫辛酰脫氫酶、谷胱甘肽還原酶等。這些酶一般都具有NADH:黃素氧化還原酶活性,以Cr(Ⅵ)作為其電子受體,生成黃素半醌和Cr(Ⅴ)[11-12]。另外一類鉻或醌專性的還原酶(ChrR、YieF和NfsA)可以將Cr(Ⅵ)還原為Cr(Ⅲ)[12-16]。
蘇云金芽胞桿菌(Bacillus thuringiensis,Bt)是目前研究最為深入、應(yīng)用最廣泛的微生物殺蟲劑之一。Sahin等[17]和周學(xué)永等[18]分別研究了Bt對Cr(Ⅵ)的動力學(xué)吸附過程。2010年,黃天培等 [19-20]證明了Bt菌株普遍具有將Cr(Ⅴ)還原為Cr(Ⅲ)的能力,明確了細胞色素氧化酶亞單位I可能參與還原Cr(Ⅵ)的調(diào)控。在此基礎(chǔ)上,研究從Bt 407 mini-Tn10轉(zhuǎn)座子隨機突變體庫獲得了9株Cr(Ⅵ)還原能力極顯著提高的突變株(p<0.01),測定了其轉(zhuǎn)座子插入位點,并研究了其表型變化,為構(gòu)建高效解毒Cr(Ⅵ)工程菌奠定了新候選基因的基礎(chǔ)。
1 材料與方法
1.1 材料
3 討論與結(jié)論
轉(zhuǎn)座子作為一類可改造的分子工具,其探索已知基因的新功能和未知基因功能的強大能力隨著功能基因組學(xué)研究展開得到人們的青昧。2008年,Branco等[24]將Tn5轉(zhuǎn)座子隨機突變載體pSUP5011轉(zhuǎn)化蒼白桿菌5bvl1,建立了一個容量為4 000的突變體庫,鑒定了高度耐鉻的蒼白桿菌5bvl1中鉻抗性基因的轉(zhuǎn)座位點(TnOtChr),驗證了其中的chrB、chrA、chrC和chrF基因的功能。mini-Tn10轉(zhuǎn)座子在芽孢桿菌的功能基因組研究中應(yīng)用非常廣泛。如Ghelardi等[25]利用該mini-Tn10轉(zhuǎn)座子pIC333發(fā)現(xiàn)了編碼Bt鞭毛蛋白的fhlA基因。本研究從基于pIC333構(gòu)建的Bt407突變體庫中篩選出9株Cr(Ⅵ)還原能力極顯著提高的突變株,根據(jù)Bt 407全基因組的預(yù)測注釋[26]分析了轉(zhuǎn)座子mini-Tn10插入位點側(cè)翼序列,將插入位點均確認為假定的肽鏈內(nèi)切酶yddH基因第1 009~1 017 bp的“GTACCTGTA”。已發(fā)現(xiàn)枯草芽孢桿菌(Bacillus subtilis)肽鏈內(nèi)切酶YddH可水解細胞壁[27]。將Bt 407肽鏈內(nèi)切酶YddH氨基酸序列進行BLASTP比較,發(fā)現(xiàn)其高度同源序列均注釋為接合轉(zhuǎn)移蛋白(conjugation protein),與枯草芽孢桿菌肽鏈內(nèi)切酶YddH同源性很低。因此,該Bt 407基因是否具有肽鏈內(nèi)切酶功能或接合轉(zhuǎn)移蛋白功能需要進一步實驗驗證。已知在接合轉(zhuǎn)移蛋白介導(dǎo)的接合轉(zhuǎn)移作用下,蠟樣芽胞桿菌組(Bacillus cereus sensu lato family)的細菌間可以進行基因庫之間的交流及協(xié)同進化;Bt和蠟樣芽胞桿菌(Bacillus cereus)可以在河水、土壤、食品、昆蟲腸道中交換遺傳物質(zhì);炭疽芽孢桿菌(Bacillus anthracis)毒素基因或整個毒素質(zhì)??梢越雍限D(zhuǎn)移到其他的芽孢桿菌,反之,其他細菌的基因或質(zhì)粒也可以接合轉(zhuǎn)移到炭疽芽孢桿菌。這導(dǎo)致人們對利用傳統(tǒng)方法區(qū)分炭疽芽孢桿菌與蠟樣芽胞桿菌組細菌正確性的擔心[28]。
Bt是應(yīng)用最廣泛的微生物農(nóng)藥之一,也是作物土壤習居菌,對人無致病性,且能高效還原Cr(Ⅵ),是治理Cr(Ⅵ)污染的理想材料之一。本研究基于轉(zhuǎn)座子技術(shù)發(fā)現(xiàn)了yddH的缺失可能極顯著提高了Bt對Cr(Ⅵ)還原能力(p<0.01)。因此,轉(zhuǎn)座子技術(shù)可為構(gòu)建高效解毒Cr(Ⅵ)工程菌構(gòu)建提供新候選基因資源。后續(xù)實驗將利用該基因活性恢復(fù)突變體和超表達突變體來確認其對Cr(Ⅵ)還原的調(diào)控功能,獲得高效解毒Cr(Ⅵ)工程菌,明確其是否具有肽鏈內(nèi)切酶功能或接合轉(zhuǎn)移蛋白功能。
參考文獻
[1] Wani P A, Khan M S, Zaidi A. Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil[J]. Biotechnol Lett, 2008, 30(1): 159-163.
[2] Elangovan R, Philip L. Performance evaluation of various bioreactors for the removal of Cr(Ⅵ)and organic matter from industrial effluent[J]. Biochem Eng J, 2009, 44(2-3): 174-186.
[3] Nkhalambayausi-Chirwa E M, Wang Y. Simultaneous chromium(Ⅵ)reduction and phenol degradation in a fixed-film coculture bioreactor: reactor performance[J]. Water Res, 2001, 35(8): 1 921-1 932.
[4] 劉 婉,李澤琴. 水中鉻污染治理的研究進展[J]. 廣東微量元素學(xué), 2007, 14(9): 5-9.
[5] 徐衍忠, 秦緒娜, 劉祥紅. 鉻污染及其生態(tài)效應(yīng)[J]. 環(huán)境科學(xué)與技術(shù), 2002, 25(增刊): 89.
[6] Ishibashi Y, Cervantes C, Silver S. Chromium reduction in Pseudomonas putida[J]. Appl Environ Microbiol, 1990, 56(7):2 268-2 270.
[7] Wang P C, Mori T, Komori K, et al. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions[J]. Appl Environ Microbiol, 1989, 55(7): 1 665-1 669.
[8] Shen H, Wang Y T. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456[J]. Appl Environ Microbiol, 1993, 59(11): 3 771-3 777.
[9] Ramirez-Diaz M I, Diaz-Perez C, Vargas E, et al. Mechanisms of bacterial resistance to chromium compounds[J]. Biometals, 2008, 21(3): 321-332.
[10] Barak Y, Ackerley D F, Dodge C J, et al. Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution[J]. Appl Environ Microbiol, 2006, 72(11): 7 074-7 082.
[11] Wang P C, Mori T, Toda K, et al. Membrane-associated chromate reductase activity from Enterobacter cloacae[J]. J Bacteriol, 1990, 172(3): 1 670-1 672.
[12] Ackerley D F, Gonzalez C F, Park C H, et al. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli[J]. Appl Environ Microbiol, 2004, 70(2): 873-882.
[13] Zenno S, Koike H, Kumar A N, et al. Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase[J]. J Bacteriol,1996, 178(15): 4 508-4 514.
[14] Kwak Y H, Lee D S, Kim H B. Vibrio harveyi nitroreductase is also a chromate reductase[J]. Appl Environ Microbiol, 2003, 69(8): 4 390-4 395.
[15] Ackerley D F, Gonzalez C F, Keyhan M, et al. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction[J]. Environ Microbiol, 2004, 6(8): 851-860.
[16] Zhu W, Chai L, Ma Z, et al. Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. strain Ch1[J]. Microbiol Res, 2008, 163(6): 616-623.
[17] Sahin Y, Oztürk A. Biosorption of chromium(Ⅵ) ions from aqueous solution by the bacterium Bacillus thuringiensis[J]. Process Biochem, 2005, 40(5): 1 895-1 901.
[18] 周學(xué)永, 高建保, 汪 威,等. 蘇云金芽胞桿菌殺蟲原粉對鉻離子吸附熱力學(xué)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2007, 26(4): 1 292-1 295.
[19] 黃天培, 張巧鈴, 潘潔茹,等. 高效還原鉻的蘇云金芽胞桿菌菌株篩選[J]. 應(yīng)用與環(huán)境生物學(xué)報, 2010, 16(6): 879-882.
[20] 黃天培, 張 君, 蘇新華, 等. 蘇云金芽胞桿菌還原Cr(Ⅵ)的轉(zhuǎn)座子突變體庫構(gòu)建和分析[J]. 激光生物學(xué)報, 2013, 22(3):37-43.
[21] 孫長坡. 蘇云金芽孢桿菌G03的芽孢形成相關(guān)基因?qū)ry基因表達的影響[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2007.
[22] GB 7467-87. 水質(zhì)六價鉻的測定. 二苯碳酰二肼分光光度法[S].
[23] GB 7466-87. 水質(zhì)總鉻的測定[S].
[24] Branco R, Chung A P, Johnston T, et al. The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(Ⅵ) and superoxide[J]. J Bacteriol, 2008, 190(21): 6 996-7 003.
[25] Ghelardi E, Celandroni F, Salvetti S, et al. Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis[J]. J Bacteriol, 2002, 23(184): 6 424-6 433.
[26] Sheppard A E, Poehlein A, Rosenstiel P, et al. Complete genome sequence of Bacillus thuringiensis strain 407 Cry-[J]. Genome Announc, 2013, 1(1): e00158-12.
[27] Fukushima T, Kitajima T, Yamaguchi H, et al. Identification and characterization of novel cell wall hydrolase CwlT: a two-domain autolysin exhibiting n-acetylmuramidase and DL-endopeptidase activities[J]. J Biol Chem, 2008, 283(17): 11 117-11 125.
[28] Yuan Y, Zheng D, Hu X, et al. Conjugative transfer of insecticidal plasmid pHT73 from Bacillus thuringiensis to B. anthracis and compatibility of this plasmid with pXO1 and pXO2[J]. Appl Environ Microbiol, 2010, 76(2): 468-473.