于善棟,洪 權(quán),傅 博,陳香美,吳 鏑
解放軍總醫(yī)院 腎臟病科暨腎臟疾病國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100853
高尿酸通過miR-663下調(diào)轉(zhuǎn)化生長(zhǎng)因子β1抑制內(nèi)皮細(xì)胞遷移
于善棟,洪 權(quán),傅 博,陳香美,吳 鏑
解放軍總醫(yī)院 腎臟病科暨腎臟疾病國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100853
目的 探討高尿酸通過miR-663影響內(nèi)皮細(xì)胞遷移功能的機(jī)制。方法培養(yǎng)人臍靜脈內(nèi)皮細(xì)胞系(EA.hy926),用600μmol/L尿酸孵育48 h,實(shí)時(shí)定量PCR檢測(cè)miR-663的水平,并檢測(cè)高尿酸患者血清中miR-663水平;利用雙熒光素酶試驗(yàn)預(yù)測(cè)并驗(yàn)證miR-663的靶基因;檢測(cè)高尿酸條件下內(nèi)皮細(xì)胞中轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth fator beta 1,TGF-β1)的表達(dá)水平,利用miR-663抑制物、TGFB1 siRNA轉(zhuǎn)染及劃痕實(shí)驗(yàn)觀察高尿酸如何通過miR-663及其靶基因影響內(nèi)皮細(xì)胞的遷移功能。結(jié)果高尿酸培養(yǎng)條件下內(nèi)皮細(xì)胞中miR-663表達(dá)水平明顯升高,高尿酸血癥患者血清中miR-663的水平也高于正常人;雙熒光素酶試驗(yàn)結(jié)果表明TGFB1的翻譯水平受miR-663直接調(diào)控;高尿酸能明顯抑制細(xì)胞的遷移能力,而高尿酸條件下TGF-β1的表達(dá)水平也明顯下降,轉(zhuǎn)染miR-663抑制物后,TGF-β1表達(dá)水平升高,內(nèi)皮細(xì)胞遷移能力也明顯改善,但是利用siRNA抑制TGF-β1的表達(dá)后,miR-663抑制物不能再促進(jìn)內(nèi)皮細(xì)胞的遷移。結(jié)論高尿酸通過miRNA-663下調(diào)TGF-β1而抑制細(xì)胞遷移。
高尿酸;內(nèi)皮細(xì)胞遷移;miRNA-663;轉(zhuǎn)化生長(zhǎng)因子β1
大量研究表明高尿酸血癥是慢性腎病(chronic kidney disease,CKD)與心血管疾病(cadiovascular disease,CVD)的獨(dú)立危險(xiǎn)因素[1-4]。而目前關(guān)于高尿酸血癥引起心血管和腎損傷的機(jī)制研究還處于初步階段,內(nèi)皮細(xì)胞功能受損可能是其中的重要環(huán)節(jié)。microRNA(miR)是一類小的非編碼RNA,長(zhǎng)度為18 ~ 22 nt,其參與了眾多生理和病理生理活動(dòng)的調(diào)控[5]。已有一些研究顯示高尿酸能夠引起內(nèi)皮功能損傷[6-7]。有研究表明miRNAs在某些情況下參與了內(nèi)皮細(xì)胞損傷的過程,但在高尿酸條件下是否有miRNAs參與內(nèi)皮細(xì)胞損傷過程尚不清楚[8]。我們前期的miRNA芯片結(jié)果顯示在高尿酸條件下,內(nèi)皮細(xì)胞中有多個(gè)miRNA出現(xiàn)表達(dá)差異,其中miR-663表達(dá)差異最明顯,在高尿酸條件下,miR-663表達(dá)水平明顯高于正常水平。Neth等[9]報(bào)道m(xù)iR-663的高表達(dá)可以引起內(nèi)皮細(xì)胞一系列病理生理改變。我們利用Targetscan查找miR-663的靶基因,其中轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth fator beta 1,TGF-β1)與細(xì)胞遷移功能有關(guān),其表達(dá)產(chǎn)物TGF-β1能夠促進(jìn)內(nèi)皮細(xì)胞遷移[10-11]。本研究對(duì)高尿酸通過miR-663調(diào)控TGFB1影響內(nèi)皮細(xì)胞遷移的假說進(jìn)行驗(yàn)證,并為未來預(yù)防和治療高尿酸血癥引起的內(nèi)皮功能損傷提供依據(jù)。
1 主要材料 人臍靜脈內(nèi)皮細(xì)胞系(EA.hy926)(購(gòu)自美國(guó)ATCC,No.CRL-2922);脂質(zhì)體轉(zhuǎn)染試劑Lipofectamine 2000、Trizol試劑盒、M-MLV逆轉(zhuǎn)錄試劑盒(購(gòu)于美國(guó)Invitrogen公司);miR-663抑制物(miR-663 inhibitor)(購(gòu)于美國(guó)Life Technologies公司)(Cat. # 4464084),TGFB1 siRNA(購(gòu)于美國(guó)Santa Cruz公司)(sc-44146),miR-663模擬物(miR-663 mimics,序列AGGCGGGGCGCCGCGGGACCGC),U6和cel-mir-39的Real time PCR引物、siRNA(購(gòu)自上海吉瑪制藥技術(shù)有限公司);定量PCR試劑盒(購(gòu)自日本Toyobo公司);TGF-β1多克隆抗體(購(gòu)自美國(guó)Abcam公司);細(xì)胞培養(yǎng)試劑(購(gòu)自美國(guó)GIBCO公司);雙熒光素酶報(bào)告質(zhì)粒(購(gòu)于美國(guó)Promega公司);QuickChange定點(diǎn)突變?cè)噭┖?購(gòu)自美國(guó)Agilent Technologies公司)。
2 細(xì)胞培養(yǎng) 人臍靜脈內(nèi)皮細(xì)胞系(EA.hy926)用含10% FBS的低糖DMEM培養(yǎng)基,在37℃、5% CO2、飽和濕度孵箱中培養(yǎng)。
3 實(shí)時(shí)定量PCR檢測(cè)miR-663的表達(dá) 細(xì)胞接種到10 cm的培養(yǎng)皿中,分為對(duì)照組和高尿酸組(600 μmol/L)。培養(yǎng)48 h后,提取細(xì)胞及患者總RNA,用miR-663特異性的反轉(zhuǎn)錄引物(5’→3’引物序列AGGCGGGGCGCCGCGGGACCGC),U6作為細(xì)胞內(nèi)RNA定量的參照物,cel-mir-39作為血清RNA定量的參照物,參照M-MLV逆轉(zhuǎn)錄試劑盒說明書進(jìn)行反轉(zhuǎn)錄,條件為:16℃ 30 min,42℃ 30 min,95℃ 10 min。標(biāo)本置于-20℃保存?zhèn)溆?。采用Rotor Gene3000熒光定量PCR儀行Real time PCR檢測(cè)miR-663表達(dá)情況。反應(yīng)條件:50℃ 2 min,95℃ 10 min,95℃ 4 s,57℃ 30 s,共40個(gè)循環(huán)。每組設(shè)3個(gè)復(fù)孔。以△CT值作為MicroRNA-663的相對(duì)表達(dá)量,△CT=CT663-CTU6,以2-△△CT進(jìn)行差異比較。
4 雙熒光素酶報(bào)告質(zhì)粒的構(gòu)建與檢測(cè) 利用PCR將TGFB1(NM_000660.5)3’-UTR區(qū)包含的miR-663的結(jié)合序列(CCCCGCC Position 13-19和18-24 of TGFB1 3’UTR)克隆到雙熒光素酶報(bào)告質(zhì)粒psiCHECKTM-2中,得到psiCHECK-WT-TGFB1質(zhì)粒,然后利用QuikChange?定點(diǎn)突變?cè)噭┖袑GFB1 3’-UTR區(qū)的與miR-663結(jié)合的核心序列突變?yōu)門TTTATT,克隆到psiCHECKTM-2質(zhì)粒中,得到psiCHECK-MT-TGFB1質(zhì)粒。psiCHECKWT-TGFB1、psiCHECK-MT-TGFB1分別與miR-663模擬物或miRNA control共轉(zhuǎn)染內(nèi)皮細(xì)胞。每組設(shè)3個(gè)復(fù)孔。轉(zhuǎn)染48 h后,PBS液洗滌細(xì)胞2次。吸盡殘液,加入100 μl 1×PLB裂解液室溫裂解細(xì)胞15 min。取20 μl裂解上清加入96孔白板,然后加入30 μl LARⅡ,混勻后立即在熒光/化學(xué)發(fā)光儀上檢測(cè)Firefly熒光素酶活性(F值);再加入30 μl 1×Stop&Glo溶液檢測(cè)Renilla熒光素酶活性(R值),Renilla活性與Firefly活性的比值即為報(bào)告基因的相對(duì)表達(dá)水平。實(shí)驗(yàn)共重復(fù)3次。
5 患者選擇和血清中RNA的提取 選擇2010 -2013年本院30例高尿酸血癥男性患者和30例健康男性,檢測(cè)血清中的miR-663水平。所有患者及健康者均簽署知情同意書。取靜脈血分離血清后,用TRIzol試劑盒提取血清中的RNA。
6 Western blot 用RIPA裂解液提取EA.hy926細(xì)胞總蛋白,BCA法測(cè)定蛋白濃度。蛋白變性后取40 μg進(jìn)行SDS-PAGE電泳。50 mA恒流半干轉(zhuǎn)至纖維素膜,室溫封閉1 h。按照抗體說明書分別加抗TGF-β1抗體、抗β-actin抗體4℃過夜孵育。用TBST洗膜,加二抗室溫孵育1 h。洗膜后顯影,用Image J軟件分析并計(jì)算各組吸光度與β-actin吸光度的比值,獲取蛋白表達(dá)水平。
7 劃痕實(shí)驗(yàn) EA.hy926細(xì)胞接種至6孔板中,待每孔中細(xì)胞鋪滿后用白槍頭在沿著孔的直徑劃一直線。細(xì)胞分為2組,每組3個(gè)復(fù)孔,對(duì)照組用無血清的低糖DMEM培養(yǎng)基培養(yǎng),實(shí)驗(yàn)組在無血清的低糖DMEM培養(yǎng)基中加入尿酸,終濃度為600 μmol/L,培養(yǎng)12 h后在顯微鏡下觀察并用OLYMPUS DP2-BSW測(cè)量劃痕兩側(cè)細(xì)胞的距離。
8 小RNA轉(zhuǎn)染 細(xì)胞長(zhǎng)至50% ~ 70%時(shí)進(jìn)行轉(zhuǎn)染,用無血清的低糖DMEM稀釋待轉(zhuǎn)染的RNA,將待轉(zhuǎn)染的RNA與Lipofectamine 2000混勻,放置15 min后轉(zhuǎn)染細(xì)胞,在細(xì)胞培養(yǎng)箱中培養(yǎng)5 h后,更換含血清的低糖DMEM培養(yǎng)基繼續(xù)培養(yǎng)。
9 統(tǒng)計(jì)學(xué)處理 利用SPSS17.0.2進(jìn)行統(tǒng)計(jì)學(xué)分析,數(shù)據(jù)以表示,用單因素方差分析比較多組間差異。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 miR-663表達(dá)情況 利用熒光定量PCR檢測(cè)高尿酸刺激的內(nèi)皮細(xì)胞和正常培養(yǎng)條件下的內(nèi)皮細(xì)胞中miR-663的表達(dá)水平,結(jié)果顯示高尿酸刺激的內(nèi)皮細(xì)胞中miR-663表達(dá)水平明顯高于正常培養(yǎng)條件下的內(nèi)皮細(xì)胞(P<0.05)(圖1A),與miRNA芯片結(jié)果一致。高尿酸血癥病人血清中miR-663的水平明顯高于正常人(P<0.05)(圖1B)。
圖 1 高尿酸刺激的內(nèi)皮細(xì)胞(A)和高尿酸血癥患者血清(B)中miR-663的表達(dá)水平 aP<0.05,與對(duì)照組比較;bP<0.05,與對(duì)照組比較(單因素方差分析)Fig. 1 Expression level of miRNA-663 in high UA concentrationstimulated endothelial cells (A) and hyperuricemia patients (B) aP<0.05,bP<0.05, vs control group(ANOVA)
2 miR-663靶基因驗(yàn)證 高表達(dá)miR-663能夠引起內(nèi)皮細(xì)胞一系列的病理生理變化,因此我們推測(cè)miR-663在高尿酸導(dǎo)致的內(nèi)皮細(xì)胞功能紊亂中發(fā)揮了重要作用[9]。利用miRNA靶基因預(yù)測(cè)軟件Targetscan(version 6.2)預(yù)測(cè)miR-663的靶基因,其中TGFB1與內(nèi)皮細(xì)胞的遷移功能有關(guān),其表達(dá)產(chǎn)物TGF-β1能夠促進(jìn)內(nèi)皮細(xì)胞遷移[10-11]。為了驗(yàn)證TGFB1是否為miR-663的靶基因,我們進(jìn)行了雙熒光素酶試驗(yàn)。實(shí)驗(yàn)結(jié)果顯示miR-663模擬物可以顯著下調(diào)psiCHECK-WT-TGFB1的熒光素酶活性(P<0.05),而miR-663抑制物可以顯著上調(diào)內(nèi)皮細(xì)胞psiCHECK-WT-TGFB1的熒光素酶活性(P<0.05),但miR-663模擬物和miR-663抑制物對(duì)突變質(zhì)粒psiCHECK-MT-TGFB1熒光素酶活性影響不明顯(圖2)。這表明miR-663能夠特異性地與TGFB1 mRNA作用并在轉(zhuǎn)錄后水平抑制TGFB1的表達(dá)。
3 高尿酸通過miR-663調(diào)控內(nèi)皮細(xì)胞遷移的機(jī)制在高尿酸條件下,內(nèi)皮細(xì)胞的遷移能力明顯低于正常培養(yǎng)條件下內(nèi)皮細(xì)胞的遷移能力(P<0.05),而高尿酸條件下內(nèi)皮細(xì)胞TGF-β1表達(dá)水平明顯下降(P<0.05)。當(dāng)我們用miR-663抑制物抑制miR-663的表達(dá)后,TGF-β1的表達(dá)水平明顯升高,內(nèi)皮細(xì)胞的遷移能力也明顯增強(qiáng)(P<0.05)(圖3A)。然而,利用siRNA抑制TGFB1的表達(dá)后,miR-663抑制物無法再明顯促進(jìn)內(nèi)皮細(xì)胞的遷移(P>0.05) (圖3B)。這些結(jié)果說明,高尿酸通過miR-663下調(diào)TGFB1而抑制內(nèi)皮細(xì)胞遷移。
圖 2 雙熒光素酶試驗(yàn)(aP<0.05,bP<0.05,與miRNA對(duì)照組比較Fig. 2 Dual luciferase assay (aP<0.05,bP<0.05, vs miRNA control group)
許多研究顯示,血尿酸水平與多種疾病,如冠心病、高血壓、糖尿病的預(yù)后呈負(fù)相關(guān)關(guān)系[12-15]。盡管已經(jīng)有研究表明高尿酸能夠引起內(nèi)皮功能紊亂,但是miRNAs在這個(gè)過程中是否發(fā)揮作用仍不是很清楚[6]。miR-663是高尿酸條件下內(nèi)皮細(xì)胞中表達(dá)差異最顯著的miRNA,因此我們推測(cè)miR-663在高尿酸導(dǎo)致內(nèi)皮功能紊亂過程中發(fā)揮了重要作用。本實(shí)驗(yàn)利用qRT-PCR證實(shí)了內(nèi)皮細(xì)胞中的miR-663在高尿酸條件下表達(dá)水平明顯高于正常培養(yǎng)條件下內(nèi)皮細(xì)胞中miR-663的水平。通過雙熒光素酶實(shí)驗(yàn)及劃痕實(shí)驗(yàn),我們證實(shí)了高尿酸通過上調(diào)miR-663調(diào)控TGFB1從而抑制內(nèi)皮細(xì)胞遷移的猜測(cè)。高尿酸血癥患者血清中的miR-663水平也明顯高于正常人,這說明在高尿酸患者體內(nèi)可能也存在這種現(xiàn)象。內(nèi)皮細(xì)胞遷移在損傷修復(fù)和血管新生中發(fā)揮重要作用,根據(jù)我們的實(shí)驗(yàn)結(jié)果,我們認(rèn)為高尿酸血癥患者體內(nèi)可能會(huì)出現(xiàn)血管新生受抑制和損傷修復(fù)的延遲,這種情況會(huì)導(dǎo)致心血管疾病及其他疾病的發(fā)生。在TGF-β1的下游,還有許多分子參與內(nèi)皮細(xì)胞的遷移,PTEN是TGF-β1調(diào)控的磷酸化酶,其能夠激活一系列下游分子影響內(nèi)皮細(xì)胞遷移。Choorapoikayil等[16],Bhattacharya等[17]、Huang和Kontos[18]報(bào)道了抑制PTEN能夠激活VEGF通路促進(jìn)內(nèi)皮細(xì)胞遷移,而Wang等[11]和Ma等[19]報(bào)道了PTEN通過抑制AKT通路抑制細(xì)胞遷移,在高尿酸條件下TGF-β1通過何種通路影響細(xì)胞遷移還需要進(jìn)一步的研究??傊覀兊难芯拷Y(jié)果闡明了高尿酸影響內(nèi)皮功能的新機(jī)制,為將來預(yù)防和治療高尿酸血癥引起的內(nèi)皮功能紊亂提供了新的治療思路和靶點(diǎn)。
圖 3 高尿酸影響內(nèi)皮細(xì)胞遷移功能的機(jī)制(劃痕實(shí)驗(yàn)與蛋白印跡法) A: 高尿酸通過miR-663影響TGF-β1的表達(dá)和內(nèi)皮細(xì)胞遷移(aP<0.05,bP<0.05, 與對(duì)照組比較; B: 高尿酸條件下,miR-663通過TGF-β1調(diào)控內(nèi)皮細(xì)胞遷移(單因素方差分析)Fig. 3 Scratch test and Western blot showing mechanism of high UA concentration underlying endothelial cell migration A: Effect of high UA concentration on TGF-β1expression and endothelial cell migration via miR-663 (aP<0.05,bP<0.05, vs control group); B: Effect of miR-663 on migration of endothelial cells cultured with high UA concentration via regulation of TGF-β1expression (ANOVA)
1 Weng SC, Shu KH, Wu MJ, et al. Hyperuricemia predicts kidney disease progression after acute allograft dysfunction[J]. Transplant Proc, 2014, 46(2): 499-504.
2 Viazzi F, Garneri D, Leoncini G, et al. Serum uric acid and its relationship with metabolic syndrome and cardiovascular risk profile in patients with hypertension: Insights from the I-DEMAND study[J/OL]. http://www.sciencedirect.com/science/article/pii/S0939475314000519.
3 Grassi D, Desideri G, Di Giacomantonio AV, et al. Hyperuricemia and cardiovascular risk[J/OL]. http://link.springer.com/article/10.1007%2Fs40292-014-0046-3.
4 Grassi D, Ferri L, Desideri G, et al. Chronic hyperuricemia, uric acid deposit and cardiovascular risk[J]. Curr Pharm Des, 2013,19(13): 2432-2438.
5 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
6 Hong Q, Qi K, Feng Z, et al. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial Calcium overload[J]. Cell Calcium, 2012, 51(5):402-410.
7 Choi YJ, Yoon Y, Lee KY, et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis[J/OL]. http://www.fasebj.org/content/early/2014/03/20/fj.13-247148.1.long.
8 Palmieri D, Capponi S, Geroldi A, et al. TNFα induces the expression of genes associated with endothelial dysfunction through p38MAPK-mediated down-regulation of miR-149[J]. Biochem Biophys Res Commun, 2014, 443(1):246-251.
9 Neth P, Nazari-Jahantigh M, Schober A, et al. MicroRNAs in flowdependent vascular remodelling[J]. Cardiovasc Res, 2013, 99(2):294-303.
10 Petzelbauer E, Springhorn JP, Tucker AM, et al. Role of plasminogen activator inhibitor in the reciprocal regulation of bovine aortic endothelial and smooth muscle cell migration by TGF-beta 1[J]. Am J Pathol, 1996, 149(3): 923-931.
11 Wang J, Wang Y, Wang Y, et al. Transforming growth factor β-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium[J]. J Biol Chem, 2013, 288(15): 10418-10426.
12 Ficociello LH, Rosolowsky ET, Niewczas MA, et al. High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes: results of a 6-year follow-up[J]. Diabetes Care, 2010, 33(6): 1337-1343.
13 Causevic A, Semiz S, Macic Dzankovic A, et al. Relevance of uric Acid in progression of type 2 diabetes mellitus[J]. Bosn J Basic Med Sci, 2010, 10(1): 54-59.
14 Puig JG, Torres RJ, Ruilope LM, et al. The pathophysiology of hyperuricemia in essential hypertension: a pilot study[J]. Nucleosides Nucleotides Nucleic Acids, 2004, 23(8/9): 1197-1199.
15 Wiik BP, Larstorp AC, H?ieggen A, et al. Serum uric acid is associated with new-onset diabetes in hypertensive patients with left ventricular hypertrophy: The Life Study[J]. Am J Hypertens,2010, 23(8): 845-851.
16 Choorapoikayil S, Weijts B, Kers R, et al. Loss of Pten promotes angiogenesis and enhanced vegfaa expression in zebrafish[J]. Dis Model Mech, 2013, 6(5): 1159-1166.
17 Bhattacharya D, Singh MK, Chaudhuri S, et al. T11TS impedes glioma angiogenesis by inhibiting VEGF signaling and pro-survival PI3K/Akt/eNOS pathway with concomitant upregulation of PTEN in brain endothelial cells[J]. J Neurooncol, 2013, 113(1): 13-25.
18 Huang J, Kontos CD. PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects[J]. J Biol Chem,2002, 277(13): 10760-10766.
19 Ma J, Sawai H, Ochi N, et al. PTEN regulates angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic Cancer cells[J]. Mol Cell Biochem, 2009, 331(1/2): 161-171.
High uric acid concentration inhibits endothelial cell migration by down-regulating TGF-β1expression via miRNA-663
YU Shan-dong, HONG Quan, FU Bo, CHEN Xiang-mei, WU Di
Department of Nephrology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, China
WU Di. Email:wudi@301hospital.com.cn
ObjectiveTo study the mechanism of high uric acid (UA) concentration underlying endothelial cell migration via miRNA-663.MethodsEA.hy926 cells were incubated in 600 μmol/L uric acid for 48 h. Serum miRNA-663 level in patients with high UA concentration was measured by RT-PCR. The miRNA-663 target gene was identifed by dual luciferase assay. TGF-β1expression level in endothelial cells was measured. Effect of high UA concentration on endothelial cell migration via miRNA-663 was detected by miR-663 inhibitor and TGF-β1siRNA transfection and scratch test, respectively.ResultsThe expression level of miRNA-663 was signifcantly higher in endothelial cells after cultured with high UA concentration than before cultured with high UA concentration. The serum miRNA-663 level was signifcantly higher in hyperuricemia patients than in normal subjects. Dual luciferase assay showed that miRNA-663 directly regulated the TGFB1 translation level. Scratch test revealed that high UA concentration signifcantly inhibited the endothelial cell migration and down-regulated the TGF-β1expression level. The TGF-β1expression level elevated and the endothelial cell migration increased after the miRNA-663 inhibitors were transfected. However, the miRNA-663 inhibitors could not promote endothelial cell migration when the TGF-β1expression was inhibited by siRNA.ConclusionHigh UA concentration inhibits endothelial cell migration by down-regulating TGF-β1expression via miRNA-663
hyperuricemia; endothelial cell migration; miRNA-663; TGF-β1
R 543
A
2095-5227(2014)07-0733-05
10.3969/j.issn.2095-5227.2014.07.024
時(shí)間:2014-04-11 17:25
http://www.cnki.net/kcms/detail/11.3275.R.20140411.1725.007.html
2014-03-19
國(guó)家自然科學(xué)基金面上項(xiàng)目(31170810;81102673);北京科技新星計(jì)劃(Z121107002512078)
Supported by the National Natural Science Foundation of China(31170810; 81102673)
于善棟,男,在讀碩士。Email:alexyu_0507@163.com
吳鏑,主任醫(yī)師。Email:wudi@301hospital.com.cn