亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        激活態(tài)雪旺細胞對神經(jīng)干細胞分化作用的研究

        2014-04-10 16:33:15張睿張軍趙承斌
        中國醫(yī)藥導(dǎo)報 2014年7期
        關(guān)鍵詞:聯(lián)合培養(yǎng)神經(jīng)元

        張睿+張軍+趙承斌

        哈爾濱醫(yī)科大學附屬第四醫(yī)院骨科,黑龍江哈爾濱 150086

        [摘要] 目的 探討激活態(tài)雪旺細胞(SCs)對神經(jīng)干細胞(NSCs)的分化作用。 方法 取出生24 h內(nèi)的SD乳鼠脊髓NSCs,分離培養(yǎng)并傳至4代。取體重(100±5)g的SD大鼠,結(jié)扎右側(cè)坐骨神經(jīng),1周后取雙側(cè)坐骨神經(jīng),左側(cè)提取正常坐骨神經(jīng)分離培養(yǎng)SCs(普通SCs),右側(cè)提取結(jié)扎變性的坐骨神經(jīng)分離培養(yǎng)SCs(激活態(tài)SCs),均采用雙酶消化加差速貼壁法。將SCs與NSCs應(yīng)用Transwell培養(yǎng)皿聯(lián)合培養(yǎng),分為三組:A組為激活態(tài)SCs與NSCs;B組為普通SCs與NSCs;C組僅為NSCs。于培養(yǎng)的第2、4、6天檢測各組NSCs活性。1周后,Western blot檢測各組SCs表皮生長因子(EGF)和堿性成纖維細胞生長因子(bFGF)的表達水平,免疫熒光檢測各組NSCs分化比例。 結(jié)果 傳至4代的NSCs生長穩(wěn)定,分離的SCs 7 d后大量增殖呈旋渦狀。聯(lián)合培養(yǎng)后MTT法檢測細胞活性,第2、4天三組細胞的活性差異無統(tǒng)計學意義(P > 0.05),第6天C組活細胞比例開始降低,A、B組與C組比較差異有統(tǒng)計學意義(P < 0.05),A組與B組比較差異無統(tǒng)計學意義(P > 0.05)。Western blot檢測A組細胞表皮生長因子(EGF)表達水平(0.486±0.028)、堿性成纖維細胞生長因子(bFGF)表達水平(0.385±0.023)均高于B組,差異有統(tǒng)計學意義(P < 0.05)。MAP-2熒光染色,每高倍視野陽性細胞比例A組[(35.26±2.53)%]高于B組[(27.63±3.45)%],差異有統(tǒng)計學意義(P < 0.05);GFAP熒光染色,每高倍視野陽性細胞比例A組[(62.42±3.78)%]低于B組[(70.18±1.26)%],差異有統(tǒng)計學意義(P < 0.05)。 結(jié)論 激活態(tài)SCs能夠促進NSCs向神經(jīng)元的分化進程,提高神經(jīng)元的分化比例。

        [關(guān)鍵詞] 雪旺細胞;神經(jīng)干細胞;細胞分化;聯(lián)合培養(yǎng);神經(jīng)元

        [中圖分類號] R741.02 [文獻標識碼] A [文章編號] 1673-7210(2014)03(a)-0019-04

        Effect of activated Schwann cells in inducing differentiation of neural stem cells

        ZHANG Rui ZHANG Jun ZHAO Chengbin

        Department of Orthopedic, the Fourth Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China

        [Abstract] Objective To discuss the effect of activated Schwann cells (SCs) in the differentiation of neural stem cells (NSCs). Methods The spinal cord of SD rat was taken in the 24 hours after birth. The NSCs from spinal cord were separated and cultured until the fourth passage. (100±5) g SD rat was used to ligature the right sciatic nerve. After one week, both the right and left sciatic nerve were isolated to culture SCs by double enzymes digestion and differential attachment. The SCs from the right sciatic nerve were named activated SCs, and the ones from the left side called common SCs. Then the SCs and NSCs were co-culture by Transwell culture dish, and they were divided into group A, group B and group C. group A was activated SCs and NSCs, group B was common SCs and NSCs, and group C was just NSCs as control. The cytoactive was detected at the second, fourth and sixth days. One week later, the EGF and bFGF secreted by SCs were detected in Western blot, and the differentiation ratio of NSCs was detected by immunofluorescence. Results The fourth passage NSCs grew stably, and the SCs proliferated as vortex after 7 days. The difference of cytoactive between the second and fourth day was not statistically significant (P > 0.05) according to the MTT detection. However, the cytoactive began to reduce at the sixth day by MTT detection, and the cytoactive of group A and group B were superior than those of group C, the differences were statistically significant (P < 0.05). The difference of cytoactive between group A and group B, the difference was not statistically significant (P > 0.05). The expression of EGF and bFGF in group A [(0.486±0.028), (0.385±0.023)] were both higher than those in group B, the differences were statistically significant (P < 0.05). The positive cells ratio of each high power field of group A [(35.26±2.53)%] was superior than that of group B [(27.63±3.45)%] according to the MAP-2 staining, the difference was statistically significant (P < 0.05). The positive cells ratio of each high power field of group A [(62.42±3.78)%] was lower than that of group B [(70.18±1.26)%] according to the GFAP staining, the difference was statistically significant (P < 0.05). Conclusion The activated SCs can promote the NSCs differentiate into neurons, and improve the ratio of neurons.

        [Key words] Schwann cell; Neural stem cell; Cell differentiation; Co-culture; Neuron

        [基金項目] 黑龍江省自然科學基金項目(編號D200901);黑龍江省教育廳科技研究項目(編號11531160)。

        [作者簡介] 張睿(1987.2-),男,哈爾濱醫(yī)科大學2011級在讀碩士研究生;研究方向:神經(jīng)干細胞應(yīng)用。

        [通訊作者] 趙承斌(1958.5-),男,主任醫(yī)師,教授,碩士研究生導(dǎo)師;研究方向:脊柱外科。

        周圍神經(jīng)損傷是骨科常見的疾病之一,雖然周圍神經(jīng)具有一定的再生能力,但對于較大缺損卻很難自身修復(fù)[1]。隨著組織工程學領(lǐng)域研究的深入,神經(jīng)干細胞(NSCs)已被公認為是對神經(jīng)損傷修復(fù)的有效方法,通過NSCs在神經(jīng)斷端的不斷分化,使受損的周圍神經(jīng)重新恢復(fù)連接。然而單純形態(tài)學得連接不能保證神經(jīng)的傳導(dǎo)功能,有研究表明,這與NSCs分化過程中分化為膠質(zhì)細胞和神經(jīng)元的比例有關(guān)[2],提高神經(jīng)元的分化比例,降低膠質(zhì)細胞的表達可有效提高神經(jīng)的傳導(dǎo)速度,因此許多學者通過不同方法促進神經(jīng)干細胞向神經(jīng)元的分化[3-5],均取得了一定進展。本研究通過激活態(tài)雪旺細胞(SCs)刺激NSCs的分化,觀察其誘導(dǎo)NSCs分化為神經(jīng)元的能力。

        1 材料與方法

        1.1 實驗材料

        雌性SD大鼠[中國農(nóng)科院哈爾濱獸醫(yī)研究所提供,許可證號:SYXK(黑)2006-032];DMEM/F12細胞培養(yǎng)基(Hyclone公司,美國);青-鏈雙抗,胰蛋白酶,Ⅱ型膠原酶(碧云天,中國);兔抗鼠單克隆抗體Nestin,F(xiàn)ITC標記的羊抗兔IgG,兔抗鼠堿性成纖維細胞生長因子(bFGF)、表皮細胞生長因子(EGF)單克隆抗體,兔抗鼠MAP-2、GFAP單克隆抗體(武漢博士德公司);Transwell培養(yǎng)皿(Corning公司,美國)。

        1.2 實驗方法

        1.2.1 神經(jīng)干細胞的分離培養(yǎng)與鑒定 取出生24 h內(nèi)的SD大鼠,斷髓處死后無菌條件下取出脊髓,顯微鏡下剝離硬脊膜,剪成5 mm3組織塊,加入0.25%胰酶消化10 min,用吸管反復(fù)吹打至單細胞懸液,加入5 mL DMEM/F12培養(yǎng)基終止消化。1000 r/min離心5 min,棄上清,加入含20 ng/mL的EGF和20 ng/mL的DMEM/F12培養(yǎng)液,重懸后移入細胞培養(yǎng)瓶,置于37℃含5%CO2的細胞培養(yǎng)箱中培養(yǎng)。每6~8天傳代1次,連續(xù)傳4代。取第4代神經(jīng)球,移入含有多聚賴氨酸包被的蓋玻片的6孔板內(nèi),24 h后取出蓋玻片,4%多聚甲醛固定,加入兔抗鼠Nestin(1∶100)單克隆抗體作為一抗,4℃過夜,加入異硫氰酸熒光素(FITC)標記的羊抗兔二抗,孵育30 min,進行觀察。

        1.2.2 雪旺細胞的分離培養(yǎng) 取體重(100±5)g的SD大鼠,10%水合氯醛3 mL/kg腹腔麻醉后,以右側(cè)臀大肌為中心消毒,鋪無菌孔巾,縱行做一長約1.5 cm切口,分離暴露坐骨神經(jīng),于近端結(jié)扎,逐層縫合。1周后,處死大鼠,分離雙側(cè)坐骨神經(jīng),右側(cè)坐骨神經(jīng)由于結(jié)扎變性,SCs受刺激而發(fā)生激活,稱激活態(tài)SCs;左側(cè)為正常坐骨神經(jīng),提取的SCs稱為普通SCs。雙側(cè)坐骨神經(jīng)均剪成5 mm小段,加入0.1%胰蛋白酶和0.25%的Ⅱ型膠原酶消化1 h,反復(fù)吹打至單細胞懸液,加入5 mL DMEM/F12培養(yǎng)基終止消化。采用差速貼壁法,使成纖維細胞貼壁,未貼壁細胞移入含20 ng/mL EGF和20 ng/mL的DMEM/F12培養(yǎng)液中行原代培養(yǎng)。

        1.2.3 細胞的分組與聯(lián)合培養(yǎng) 將細胞隨機分為3組,A組為激活態(tài)SCs與NSCs聯(lián)合培養(yǎng),B組為普通SCs與NSCs聯(lián)合培養(yǎng),C組NSCs單獨培養(yǎng),作為對照。細胞的聯(lián)合培養(yǎng)采用0.2 μm的6孔Transwell培養(yǎng)皿,上室為SCs,下室為NSCs。培養(yǎng)基采用不含任何營養(yǎng)因子的DMEM/F12培養(yǎng)基。于培養(yǎng)的第2、4、6天分別對下室細胞行MTT染色,檢測細胞活性。

        1.2.4 Western blot檢測激活態(tài)雪旺細胞營養(yǎng)因子的表達水平 聯(lián)合培養(yǎng)1周后,取A、B兩組上室細胞,提取總蛋白,進行電泳、轉(zhuǎn)膜、封閉,分別加入兔抗鼠EGF(1∶100)、bFGF(1∶200)單克隆抗體,4℃過夜,加入AP顯色液顯色。用Image-ProPlus專業(yè)圖像分析系統(tǒng)測定平均光密度值,并進行統(tǒng)計學分析。

        1.2.5 神經(jīng)干細胞分化的免疫熒光檢測 聯(lián)合培養(yǎng)1周后,將多聚賴氨酸包被的蓋玻片放入下室,24 h后取出蓋玻片,4%多聚甲醛固定,分別加入兔抗鼠MAP-2(1∶200)、GFAP(1∶200)單克隆抗體作為一抗,4℃過夜,加入FITC標記的羊抗兔IgG二抗(1∶200),室溫孵育30 min。在100倍熒光顯微鏡下隨機選取6個不同視野,計數(shù)抗原陽性細胞數(shù)與全部細胞數(shù),計算陽性細胞數(shù)在全部細胞中的比值,公式為:陽性細胞比值=陽性細胞數(shù)/細胞總數(shù)×100%。

        1.3 統(tǒng)計學方法

        采用統(tǒng)計軟件SPSS 18.0對數(shù)據(jù)進行分析,正態(tài)分布計量資料以均數(shù)±標準差(x±s)表示,多組間比較采用方差分析,兩兩比較采用LSD-t檢驗。以P < 0.05為差異有統(tǒng)計學意義。

        2 結(jié)果

        2.1 神經(jīng)干細胞的分離培養(yǎng)與鑒定

        NSCs在培養(yǎng)瓶內(nèi)懸浮生長,呈圓形,核較大,折光性強。于培養(yǎng)第5天開始聚集成團,呈球樣生長,第7天左右可見部分神經(jīng)球出現(xiàn)貼壁,并發(fā)出短小突起。傳4代后,NSCs形態(tài)穩(wěn)定,未見異型性改變。熒光染色可見聚集成球的NSCs發(fā)出綠色熒光,可見因貼壁而發(fā)出的短促突起。

        2.2 激活態(tài)雪旺細胞的分離培養(yǎng)

        結(jié)扎SD大鼠右側(cè)坐骨神經(jīng)后,大鼠出現(xiàn)右下肢跛行,1周后有足部有潰瘍形成。分離雙側(cè)坐骨神經(jīng),可見結(jié)扎遠端坐骨神經(jīng)明顯較對側(cè)增粗。細胞經(jīng)差速貼壁以后可見胞體較大的成纖維細胞得以去除,去除后細胞呈梭形,3 d后,胞體增長,發(fā)出突起,至7 d細胞大量增殖呈旋渦狀排列,激活態(tài)SCs生長速度較普通SCs的生長速度快。

        2.3 各組神經(jīng)干細胞的分化狀態(tài)

        A組NSCs在培養(yǎng)5 d后即開始發(fā)出較長突起,出現(xiàn)貼壁細胞,細胞形態(tài)增長,細胞間借突起形成網(wǎng)狀連接。B組細胞在8 d后開始出現(xiàn)分化,但細胞發(fā)出的突起較A組短小。C組細胞仍呈球形生長,少見貼壁細胞。應(yīng)用MTT法檢測三組細胞的平均光密度值,可見第2、4天三組細胞的活性差異無統(tǒng)計學意義(P > 0.05),第6天C組活細胞比例開始降低,A、B組與C組比較差異有統(tǒng)計學意義(P < 0.05),A組與B組比較差異無統(tǒng)計學意義(P > 0.05)。見圖1。

        A為激活態(tài)SCs作用下的NSCs活性檢測;B為普通SCs作用下的NSCs活性檢測;C為單獨培養(yǎng)的NSCs活性檢測

        圖1 MTT法對神經(jīng)干細胞活性的檢測

        2.4 激活態(tài)雪旺細胞營養(yǎng)因子的表達水平

        A、B兩組上室細胞提取的蛋白經(jīng)電泳后,條帶清晰,兩組相同蛋白密度有差異,管家基因GAPDH作為內(nèi)參,電泳條帶亮度一致。應(yīng)用Image-ProPlus專業(yè)圖像分析系統(tǒng)測定平均光密度值,根據(jù)公式:相對量=產(chǎn)物電泳條帶密度/GAPDH×100%,計算各組蛋白量,可見A組細胞EGF、bFGF的表達水平均高于B組,差異有統(tǒng)計學意義(P < 0.05)。見表1。

        表1 雪旺細胞營養(yǎng)因子表達的平均光密度值(x±s)

        注:EGF:表皮生長因子,bFGF:堿性成纖維細胞生長因子

        2.5 神經(jīng)干細胞分化的免疫熒光檢測

        對三組細胞分別進行MAP-2和GFAP染色,計算每高倍視野陽性細胞的比例。A組細胞MAP-2染色陽性率明顯高于B、C組,差異有統(tǒng)計學意義(P < 0.05);B組MAP-2染色陽性率明顯高于C組,差異有統(tǒng)計學意義(P < 0.05)。A組GFAP陽性率明顯低于B組,差異有統(tǒng)計學意義(P < 0.05);C組GFAP陽性率明顯低于A、B組,差異有統(tǒng)計學意義(P < 0.05)。見表2。

        表2 免疫熒光染色陽性細胞在分化細胞中的比例(%,x±s)

        注:與A組比較,*P < 0.05;與C組比較,▲P < 0.05

        3 討論

        各種外傷或病變所致的周圍神經(jīng)損傷一直以來都是顯微外科研究的重點內(nèi)容。雖然周圍神經(jīng)具有自我修復(fù)能力,但是如果缺損大于10 mm以上則很難使近端神經(jīng)纖維長入[6],從而造成永久性的功能喪失。為此有學者研制出干細胞結(jié)合導(dǎo)管支架的技術(shù)[7-10],使得周圍神經(jīng)的斷端得以重連,然而單純的形態(tài)學重建卻難以恢復(fù)神經(jīng)的傳導(dǎo)速度。有研究指出NSCs在體內(nèi)主要分化為膠質(zhì)細胞,而膠質(zhì)細胞則會影響神經(jīng)元的傳導(dǎo)速度[11-12],因此NSCs如何高效分化出神經(jīng)元就成為研究關(guān)鍵。

        周圍神經(jīng)損傷后,損傷遠端軸突發(fā)生華勒變性,繼而壞死溶解,周圍的SCs此時會發(fā)生增殖,一方面吞噬溶解的軸突,另一方面分泌大量神經(jīng)營養(yǎng)因子促進近端軸突的長入[13-14]。本研究利用雪旺細胞這一特點,于體外建立SCs,使其持續(xù)分泌多種神經(jīng)營養(yǎng)因子,誘導(dǎo)NSCs的分化。有研究指出,NSCs的生長分化需要多種營養(yǎng)因子的協(xié)同作用[15-16],盡管某一因子的濃度較低,但卻是不可或缺的。體外添加營養(yǎng)因子則難以滿足干細胞分化的要求[17-18]。本研究運用細胞聯(lián)合培養(yǎng)的方式,通過細胞間的旁分泌作用,克服這一不足。同時,應(yīng)用Transwell培養(yǎng)皿,借助聚碳酸酯膜的作用使細胞間不發(fā)生接觸,排除了細胞間的相互干擾。

        本研究的結(jié)果可以看出,與普通SCs相比,激活態(tài)SCs對NSCs的誘導(dǎo)作用存在時間短、神經(jīng)元分化率高等優(yōu)點。但是從MTT染色可以看出,由于各組只應(yīng)用單純DMEM/F12培養(yǎng)基培養(yǎng),活細胞比例隨時間呈下降趨勢,說明單純在體外依靠雪旺細胞分泌的營養(yǎng)因子難以滿足NSCs的生長需求,從而解釋了體內(nèi)移植神經(jīng)干細胞死亡率高的原因[19-20]。這就需要進一步探索能夠保持體內(nèi)高濃度營養(yǎng)因子的方法,從而維持NSCs的體內(nèi)生長狀態(tài)。

        由于條件限制,本實驗尚存在一些不足之處,對SCs分泌的因子只進行了較為重要的EGF和bFGF的檢測,如果能檢測出全部營養(yǎng)因子的表達水平,將有助于進一步的詳細分析。

        綜述所述,激活態(tài)雪旺細胞能夠促進神經(jīng)干細胞向神經(jīng)元的分化進程,提高神經(jīng)元的分化比例。

        [參考文獻]

        [1] Cheng LN,Duan XH,Zhong XM,et al. Transplanted neural stem cells promote nerve regeneration in acute peripheral nerve traction injury:assessment using MRI [J]. AJR Am J Roentgenol,2011,196(6):1381-1387.

        [2] Chang DJ,Oh SH,Lee N,et al. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells(ENStem-A)migrate and improve brain functions in stroke-damaged rats [J]. Exp Mol Med,2013,45:53.

        [3] Akama K,Horikoshi T,Nakayama T,et al. Proteomic identification of differentially expressed genes during differentiation of cynomolgus monkey(Macaca fascicularis)embryonic stem cells to astrocyte progenitor cells in vitro [J]. Biochim Biophys Acta,2013,1834(2):601-610.

        [4] Stringari C,Nourse JL,F(xiàn)lanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

        [5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

        [6] 李高山.骨髓基質(zhì)干細胞與施萬細胞聯(lián)合移植對周圍神經(jīng)缺損的修復(fù)作用[J].中國醫(yī)藥導(dǎo)報,2013,10(21):90-93.

        [7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

        [8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

        [9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

        [10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

        [11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

        [12] Bonner JF,Haas CJ,F(xiàn)ischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

        [13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

        [14] Faulkner SD,Ruff CA,F(xiàn)ehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

        [15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

        [16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

        [17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

        [18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

        [19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

        [20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

        (收稿日期:2013-10-13 本文編輯:李繼翔)

        [4] Stringari C,Nourse JL,F(xiàn)lanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

        [5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

        [6] 李高山.骨髓基質(zhì)干細胞與施萬細胞聯(lián)合移植對周圍神經(jīng)缺損的修復(fù)作用[J].中國醫(yī)藥導(dǎo)報,2013,10(21):90-93.

        [7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

        [8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

        [9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

        [10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

        [11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

        [12] Bonner JF,Haas CJ,F(xiàn)ischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

        [13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

        [14] Faulkner SD,Ruff CA,F(xiàn)ehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

        [15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

        [16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

        [17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

        [18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

        [19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

        [20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

        (收稿日期:2013-10-13 本文編輯:李繼翔)

        [4] Stringari C,Nourse JL,F(xiàn)lanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

        [5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

        [6] 李高山.骨髓基質(zhì)干細胞與施萬細胞聯(lián)合移植對周圍神經(jīng)缺損的修復(fù)作用[J].中國醫(yī)藥導(dǎo)報,2013,10(21):90-93.

        [7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

        [8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

        [9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

        [10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

        [11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

        [12] Bonner JF,Haas CJ,F(xiàn)ischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

        [13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

        [14] Faulkner SD,Ruff CA,F(xiàn)ehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

        [15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

        [16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

        [17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

        [18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

        [19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

        [20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

        (收稿日期:2013-10-13 本文編輯:李繼翔)

        猜你喜歡
        聯(lián)合培養(yǎng)神經(jīng)元
        《從光子到神經(jīng)元》書評
        自然雜志(2021年6期)2021-12-23 08:24:46
        躍動的神經(jīng)元——波蘭Brain Embassy聯(lián)合辦公
        校企雙主體聯(lián)合培養(yǎng)室內(nèi)設(shè)計專業(yè)技能人才的研究
        應(yīng)用型人才培養(yǎng)目標下專業(yè)學位研究生校企聯(lián)合培養(yǎng)模式研究
        東方教育(2016年12期)2017-01-12 20:19:12
        校企高端合作 培養(yǎng)創(chuàng)新型工科博士
        淺析《企業(yè)戰(zhàn)略管理》教學存在的問題及對策
        學理論·下(2016年11期)2016-12-27 16:59:58
        智能科學與技術(shù)專業(yè)“機器人大腦”雙培計劃實施
        廣西無機非金屬材料研究生“產(chǎn)學研”聯(lián)合培養(yǎng)存在的問題及對策
        科技視界(2016年8期)2016-04-05 08:58:45
        基于二次型單神經(jīng)元PID的MPPT控制
        毫米波導(dǎo)引頭預(yù)定回路改進單神經(jīng)元控制
        国产婷婷丁香五月麻豆| 国产又大又硬又粗| 精品水蜜桃久久久久久久 | 婷婷丁香五月激情综合| 九九视频在线观看视频6| 中文字幕精品一二三区| a级三级三级三级在线视频| 男吃奶玩乳尖高潮视频| 亚洲国产精品日韩av专区| 无码日日模日日碰夜夜爽| 天天综合色中文字幕在线视频| 亚洲啪啪视频一区二区| 国产精品毛片久久久久久久| 久久久99精品成人片中文字幕| 久久久精品久久久国产| 18禁止进入1000部高潮网站| 久久婷婷成人综合色| 亚洲午夜久久久久中文字幕| 国产av一区二区三区天美| 亚洲av香蕉一区区二区三区| 欧美丰满大乳高跟鞋| 99在线无码精品秘 入口九色 | 24小时免费在线观看av| 性裸交a片一区二区三区 | 欧美洲精品亚洲精品中文字幕| 亚洲国产一区二区网站| 天天摸夜夜摸夜夜狠狠摸| 亚洲国产AV无码男人的天堂| 国产一区二区三区资源在线观看| 亚洲精品中文字幕一二三区| 免费观看的a级毛片的网站| 国产AV无码专区亚洲AV桃花庵| 亚洲免费福利视频网站| 亚洲精品中文幕一区二区| 久久精品亚洲乱码伦伦中文| 国产不卡一区二区av| 国产色视频一区二区三区不卡 | 东京热日本av在线观看| 国产精品久久久久影院| 亚洲深夜福利| 少妇被粗大的猛进69视频|